Workspace Manager Developer's Guide
11g Release 2 (11.2)
E11826-03
September 2010
Provides usage and reference information about Oracle Workspace Manager, which enables applications to create workspaces and group different versions of table row values in different workspaces.
Oracle Database Workspace Manager Developer's Guide, 11g Release 2 (11.2)
E11826-03
Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved.
Primary Author: Chuck Murray
Contributors: Bill Beauregard, Ben Speckhard
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Database Workspace Manager Developer's Guide describes Oracle Workspace Manager, often referred to as Workspace Manager, which enables applications to create workspaces and group different versions of table row values in different workspaces.
Oracle Database Workspace Manager Developer's Guide is intended for application designers and developers. It is assumed that you have some experience programming in PL/SQL.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information about using this product in a development environment, see the following documents:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section describes new and changed Workspace Manager features for Oracle Database Release 11.	
The following are new and changed features for Oracle Database 11g Release 2 (11.2).	
The following subprograms have been added to the DBMS_WM PL/SQL package, which is documented in Chapter 4:	
The following enhancements have been made to the support for triggers on version-enabled tables:	
In the previous release, you needed to create a separate trigger for each type of DML operation.	
For information about using triggers on version-enabled tables, see Section 1.10.	
The following are new and changed features for Oracle Database 11g Release 1 (11.1).	
Note: The title of this book has been changed, effective with this release. The previous title was Oracle Database Application Developer's Guide - Workspace Manager.	
The following are new Workspace Manager system parameters for this release:	
ADD_UNIQUE_COLUMN_TO_HISTORY_VIEW	
COMPRESS_PARENT_AFTER_REMOVE	
KEEP_REMOVED_WORKSPACES_INFO	
ROW_LEVEL_LOCKING	
TARGET_PGA_MEMORY	
USE_SCALAR_TYPES_FOR_VALIDTIME	
The Workspace Manager system parameters are documented in Section 1.5.	
The following new options are available for the alter_option	
parameter of the AlterVersionedTable procedure:	
REBUILD_INDEX	
, which has the following related new parameter_options	
parameter keywords: index_owner	
, index_name	
, and reverse	
and noreverse	
USE_SCALAR_TYPES_FOR_VALIDTIME	
and USE_WM_PERIOD_FOR_VALIDTIME	
(only one of which can be specified in each call to the procedure) The AlterVersionedTable procedure is documented in Chapter 4.	
The validTimeRange	
parameter (WM_PERIOD DEFAULT NULL	
) has been added for the EnableVersioning procedure. With this parameter, if you enable valid time support when you version-enable a table, you can specify an initial valid time range.	
The EnableVersioning procedure is documented in Chapter 4.	
The new ALL_REMOVED_WORKSPACES and USER_REMOVED_WORKSPACES views contain information about workspaces that have been removed during a RemoveWorkspace operation or a MergeWorkspace operation in which the remove_workspace	
parameter value was true	
, and while the value of the Workspace Manager system parameter KEEP_REMOVED_WORKSPACES_INFO	
was ON	
.	
These views are documented in Chapter 5.	
You can use the MergeTable procedure to apply changes to multiple tables (all rows or as specified in the WHERE	
clause) in a workspace to its parent workspace. To specify multiple tables, specify them in the table_id	
parameter and separate the names with commas (for example, 'table1, table2'	
). In previous releases, you could specify only a single table name.	
The MergeTable procedure is documented in Chapter 4.	
A numeric WORKSPACE_ID column has been added to the ALL_WORKSPACES and USER_WORKSPACES views.	
These views are documented in Chapter 5.	
You can specify user-defined hints, which modify (and thus override) default optimizer hints, with the goal of improving the performance of SQL statements executed by the DBMS_WM package on a specified version-enabled table or all version-enabled tables. To add a user-defined hint, use the new AddUserDefinedHint procedure; to remove a user-defined hint, use the new RemoveUserDefinedHint procedure.	
These procedures are documented in Chapter 4.	
You can add, merge, and split table partitions in a version-enabled table by using the alter_option	
parameter to the AlterVersionedTable procedure, which is documented in Chapter 4.	
SET NULL foreign key constraints are now supported, and any such constraint is reflected in the ALL_WM_RIC_INFO metadata view with a row for which the DELETE_RULE column is set to N	
. (The value in this column does not affect behavior in any way; it only displays metadata about the table.) The ALL_WM_RIC_INFO metadata view is described in Section 5.11.	
If you need to perform DDL operations on a version-enabled table in an Oracle Label Security (OLS) environment, you can use the apply_table_policy	
, remove_table_policy	
, enable_table_policy	
, and disable_table_policy	
procedures of the SA_POLICY_ADMIN package on the skeleton (_LTS) table, and the changes will be transferred to the version-enabled table.	
This document has three parts:	
Part I is organized for efficient learning about Workspace Manager. It covers basic concepts and techniques first, and proceeds to more advanced material (such as Workspace Manager events and valid time support). Part I contains the following chapters:	
Oracle Workspace Manager, often referred to as Workspace Manager, provides an infrastructure that enables applications to create workspaces and group different versions of table row values in different workspaces. Users are permitted to create new versions of data to update, while maintaining a copy of the old data. The ongoing results of the activity are stored persistently, assuring concurrency and consistency.	
Applications that can benefit from Workspace Manager typically do one or more of the following operations:	
You can review changes and roll back undesirable ones before making the changes public. Until you make the changes public, they are invisible to other users of the database, who will access only the regular production data. You can organize the changes in a simple set of workspaces or in a complex workspace hierarchy. A typical example might be a life sciences application in which Workspace Manager supports the discovery and quality assurance (QA) processes by managing a collection of updates before they are merged with the production data.	
A team can share access to a collection of updates and insertions for a collaborative project. Workspace privileges control access to a workspace and its operations, and you can restrict workspace access to single-writer, read-only, or no access. Workspace locks prevent update conflicts between projects in separate workspaces. A typical example might be an application to design an engineering project, in which multiple subprojects are concurrently developed in separate workspaces.	
You can organize changes in workspaces to view them in the context of the whole database, but without requiring that you actually copy data between tables. Different users can make simultaneous changes to the same row, and you can detect and resolve conflicts. A typical example might be a telecommunications application in which you create multiple cell phone coverage scenarios to find the optimal design.	
You can navigate workspaces and row versions to view the database as of a particular milestone or point in time. You can roll back changes to a row or table in a workspace to a milestone. A typical example might be a land information management application where Workspace Manager supports regulatory requirements by maintaining a history of all changes to land parcels.	
Workspace Manager is also useful in managing long-transaction scenarios, where complex, long-duration database transactions can take days to complete, and multiple users must access the same database.	
This chapter explains concepts and operations that you must understand to use Workspace Manager. It contains the following major sections:	
For complete examples of Workspace Manager, see Section 1.17. However, you may want to read the rest of this chapter first, to understand the concepts that the examples illustrate.	
Note: Workspace Manager is installed by default in the Oracle seed database and any database created using the Database Configuration Assistant (DBCA). To use Workspace Manager in any other Oracle database, you must first perform the installation procedure described in Appendix A, "Installing Workspace Manager with Custom Databases".	
Workspace Manager enables you to version-enable one or more user tables in the database. When a table is version-enabled, all rows in the table can support multiple versions of the data. The versioning infrastructure is not visible to the users of the database, and application SQL statements for selecting, inserting, modifying, and deleting data continue to work in the usual way with version-enabled tables, although you cannot update a primary key column value in a version-enabled table. (Workspace Manager implements these capabilities by maintaining system views and creating INSTEAD OF	
triggers, as explained in Section 1.1.11; however, application developers and users do not need to see or interact with the views and triggers.)	
After a table is version-enabled, users in a workspace automatically see the correct version of the record in which they are interested. If you no longer need a table to be version-enabled, you can disable versioning for the table.	
A workspace is a virtual environment that one or more users can share to make changes to the data in the database. A workspace logically groups collections of new row versions from one or more version-enabled tables, and isolates these versions until they are explicitly merged with production data or discarded, thus providing maximum concurrency. Users can perform a variety of operations involving workspaces: go to, create, refresh, merge, roll back, remove, compress, alter, and other operations.	
Users in a workspace always see a transactionally consistent view of the entire database; that is, they see changes made in their current workspace plus the rest of the data in the database as it existed either when the workspace was created or when the workspace was most recently refreshed with changes from the parent workspace. (Workspace hierarchy and parent and child workspaces are explained in Section 1.1.1.)	
Workspace Manager automatically detects conflicts, which are differences in data values resulting from changes to the same row in a workspace and its parent workspace. You must resolve conflicts before merging changes from a workspace into its parent workspace. You can use workspace locks to avoid conflicts.	
Savepoints are points in the workspace to which row changes in version-enabled tables can be rolled back, and to which users can go to see the database as it existed at that point. Savepoints are usually created in response to a business-related milestone, such as the completion of a design phase or the end of a billing period. (For more information about savepoints, see Section 1.1.2.)	
The history option enables you to timestamp changes made to all rows in a version-enabled table and to save a copy of either all changes or only the most recent changes to each row. If you keep all changes (specifying the "without overwrite" history option) when version-enabling a table, you keep a persistent history of all changes made to all row versions, and enable users to go to any point in time to view the database as it existed from the perspective of that workspace.	
Workspace Manager provides a comprehensive PL/SQL API that you can add to new and existing applications to manage workspaces, savepoints, history information, privileges, access modes, and Workspace Manager locks, and to detect and resolve conflicts. You can also perform many of these operations using the Oracle Enterprise Manager graphical user interface.	
Another database object created by Workspace Manager is a database-wide system table that maps row versions to workspaces. This table is not visible to users.	
There can be a hierarchy of workspaces in the database. For example, a workspace can be a parent to one or more workspaces (child workspaces). By default, when a workspace is created, it is created from the topmost, or LIVE	
, database workspace. (Workspace names are case-sensitive, and the workspace name of the live database is spelled LIVE	
. The length of a workspace name must not exceed 30 characters, and the depth of the workspace hierarchy must not exceed 30 levels.) Users are included in a workspace by a GotoWorkspace operation.	
Figure 1-1 shows a hierarchy of workspaces. Workspace1	
and Workspace4	
were formed off the LIVE	
database workspace; Workspace2	
and Workspace3	
were formed off Workspace1	
, and Workspace5	
was formed off Workspace4	
. After Workspace1	
was created, a user executed a GotoWorkspace operation specifying Workspace1	
, and then executed CreateWorkspace operations to create Workspace2	
and Workspace3	
. A comparable sequence was followed with Workspace4	
and Workspace5	
.	
See also Section 1.1.2.1 for a discussion of design issues in deciding whether to create a child workspace or a savepoint for certain needs	
A savepoint is a point in the workspace to which data changes can be rolled back. Workspace Manager accomplishes the rollback by deleting the row versions that contain the unwanted changes.	
An explicit savepoint is a savepoint that you create and name. You can later roll back changes in version-enabled tables to the savepoint, or you can go to the savepoint to view the state of the entire database (including versioned rows) at the time the savepoint was created. In Figure 1-2, SP1	
, SP2	
, SP3	
, and SP4	
are explicit savepoints that were created in the workspaces indicated. (Savepoints are indicated by dashed lines in Figure 1-2.)	
In addition, implicit savepoints are created automatically whenever a new workspace is created. An implicit savepoint is needed so that the users in the child workspace get a view of the database that is frozen at the time of the workspace creation. Thus, in Figure 1-2 two implicit savepoints (SPa	
and SPd	
) are created in the LIVE	
workspace corresponding to Workspace1	
and Workspace4	
creation; two implicit savepoints (SPb	
and SPc	
) are created in Workspace1	
corresponding to Workspace2	
and Workspace3	
creation; and one implicit savepoint (SPe	
) is created in Workspace4	
corresponding to Workspace5	
creation.	
Workspace Manager uses the name LATEST	
to designate a logical savepoint that refers to the latest version in the workspace. LATEST	
is often the default when a savepoint is an optional parameter for a DBMS_WM	
subprogram (procedure or function).	
A removable savepoint is a savepoint that can be deleted by the CompressWorkspace, CompressWorkspaceTree, and DeleteSavepoint procedures. A savepoint is removable if either of the following applies:	
A Workspace Manager design issue that you may face is whether to create a savepoint or a child workspace to "save" a project at a given point. Both a savepoint and a child workspace allow you to group a set of changes, compare changes in different row versions, and roll back a set of changes. However, creating a savepoint enables you to continue to make changes in the same workspace, and it allows other users in the workspace immediate access to the changes. (Changes in another workspace are not visible to users until the current workspace is refreshed or merged.) Creating a savepoint also makes it convenient to archive a set of changes, to which you can later roll back.	
On the other hand, creating a child workspace is convenient for providing an isolated environment in which a complex set of changes can be made, completely removed from the parent workspace (for example, the production data). If you want to set up an independent environment for a scenario, and if regular users in the parent workspace do not need access to this scenario's data, you probably want to create a child workspace instead of simply creating a savepoint in the parent workspace.	
Workspaces can be merged or rolled back.	
Merging a workspace involves applying changes made in a child workspace to its parent workspace, after which the child workspace is removed. To merge a workspace, use the MergeWorkspace procedure.	
Rolling back a workspace involves deleting either all data changes (row versions) made in the workspace or all changes made after an explicit savepoint.	
Note: You cannot roll back to a savepoint if any implicit savepoints were created since the specified savepoint, unless you first merge or remove the descendent workspaces that caused the implicit savepoints to be created. For example, referring to Figure 1-2 in Section 1.1.2, the user inWorkspace1 cannot roll back to savepoint SP1 until Workspace3 (which caused implicit savepoint SPc to be created) is merged or removed.	
A workspace cannot be rolled back when it has open database transactions. Rollback of a workspace leaves behind the workspace structure for future use; only the data in the workspace is deleted. (To completely remove a workspace, use the RemoveWorkspace procedure, as described in Section 1.1.6.)	
When a child workspace is merged, the row changes in the child workspace are incorporated in its parent workspace; and when a child workspace is refreshed, row changes in the parent workspace are incorporated in the child workspace. When a row is changed in both the child and parent workspace, a data conflict is created. Conflicts are automatically detected when a merge or refresh operation is requested, and they are presented to the user in conflict (xxx_CONF) views. There is one conflict view for each table, as described in Section 5.45. This view lists the column values of the rows in the two workspaces involved in the conflict.	
You must resolve conflicts manually by setting the workspace conflict context for the session and then using the ResolveConflicts procedure. For each conflict you can choose to keep the row from the child workspace, the row from the parent workspace, or the common base row (that is, no change: keep the original data values for the row). You must resolve the conflicts before you can perform a merge (MergeWorkspace) or refresh (RefreshWorkspace) operation.	
The base row is the currently visible row at the time of the first update or delete operation in the child workspace. In the case of an insert operation, the base row does not exist, except if the inserted row was previously deleted in an ancestor version of a parent workspace, the base row is that deleted row. The parent row is the currently visible row in the parent workspace at the time of the conflict resolution, and the child row is the currently visible row in the child workspace at the time of the conflict resolution.	
Absence of data is not a conflict. In these cases, you can use the xxx_DIFF view (described in Section 5.46) to detect a change in one workspace when there is no row or no change to the row in the other workspace.	
The general process for resolving conflicts is as follows:	
You can control read and write access to a workspace by freezing and unfreezing the workspace. If a workspace is frozen, the ability of users to access the workspace and to make changes to rows in version-enabled tables is restricted. You can freeze a workspace in any of the following modes: no access, read-only, and one writer only (1WRITER	
).	
To make a workspace frozen, use the FreezeWorkspace procedure. To make a frozen workspace not frozen, use the UnfreezeWorkspace procedure.	
In addition, some procedures automatically freeze one or more workspaces. Table 1-1 lists these procedures, the workspaces affected, and the mode in which the workspaces are frozen. (For explanations of the mode values, see the FreezeWorkspace procedure description in Chapter 4.)	
Table 1-1 Freeze Results of Procedures	
Procedure	Workspace and Mode
---	---
Specified workspace:	
Specified workspace: Parent workspace:	
Specified workspace:	
Specified workspace:	
Specified workspace:	
Specified workspace:	
Specified workspace:	
Specified workspace:	
Specified workspace: Parent workspace:	
Specified workspace:	
Specified workspace:	
A workspace can be removed with the RemoveWorkspace procedure. RemoveWorkspace rolls back the data in a workspace and then deletes the workspace structure. An entire tree of workspaces can be removed with the RemoveWorkspaceTree procedure. This will remove the workspace and all its descendant workspaces. A workspace cannot be removed when it has users in it.	
Several types of Workspace Manager operations can be captured as events, and can be communicated to applications through the Oracle Advanced Queuing (AQ) framework. Messaging features provided by AQ, such as asynchronous notification, persistence, propagation, access control, history, and rule-based subscription, can be used for Workspace Manager events.	
Support for Workspace Manager events includes the ALLOW_CAPTURE_EVENTS	
Workspace Manager system parameter, the SetCaptureEvent procedure, and the WM_EVENTS_INFO metadata view.	
Chapter 2 describes Workspace Manager events and explains how to use them in applications.	
Many Workspace Manager operations are by default executed as autonomous database transactions that will be committed when they finish. That is, each such transaction is an independent transaction that is called from within the current database transaction, leaves the context of the calling transaction, performs the Workspace Manager operation and then automatically commits it, and then returns to the calling transaction's context and continues with that transaction. Workspace Manager (DBMS_WM	
) subprograms that operate in this way have an optional auto_commit	
parameter, which has a default value of TRUE	
.	
For example, the CompressWorkspace procedure by default starts an autonomous transaction, compresses the workspace, commits the compression operation, and returns to the calling transaction's context, where the current database transaction continues.	
However, if you want such subprograms not to start an autonomous transaction, but instead to execute in the context of the calling transaction, you can specify the auto_commit	
parameter with a value of FALSE	
. In this case, the Workspace Manager operation is executed as part of the current database transaction; and if there is no current open transaction, the Workspace Manager operation starts a new transaction. In either case, the Workspace Manager operation does not take effect until that transaction ends with a commit operation. For example, if you call the CompressWorkspace procedure with the auto_commit	
parameter specified as FALSE	
, the workspace is not compressed until the transaction is committed; and if the transaction is rolled back, the workspace is not compressed.	
Note that if you specify FALSE	
for the auto_commit	
parameter, you must remember to commit or roll back the transaction explicitly.	
If the auto_commit	
parameter value is TRUE	
and any open transactions exist, the following considerations apply:	
A continually refreshed workspace is a workspace that is automatically refreshed from its parent workspace whenever data changes are committed in the parent workspace or are merged into the parent workspace from another child workspace. You do not need to call the RefreshWorkspace procedure for a continually refreshed workspace.	
Any workspace in a branch of the workspace tree can be continually refreshed. A child workspace can be a continually refreshed workspace, regardless of whether its parent workspace is continually refreshed. However, if a parent workspace is a continually refreshed workspace, its child workspaces must also be continually refreshed.	
To create a continually refreshed workspace, specify TRUE	
for the isrefreshed	
parameter in the call to the CreateWorkspace procedure. See the Usage Notes for the CreateWorkspace procedure for rules that apply to the creation of a continually refreshed workspace.	
To change a workspace that is not continually refreshed to be continually refreshed, use the ChangeWorkspaceType procedure.	
If a workspace is not continually refreshed, you must call the RefreshWorkspace procedure whenever you want to ensure that data changes in its parent workspace are visible in the workspace.	
A multiparent workspace is a child workspace that has two or more parent workspaces. A workspace is initially created with a single parent workspace. However, if the need arises, you can add other workspaces as parent workspaces to an existing workspace, thus making it a multiparent workspace. The multiparent workspace can see data from all of its parent workspaces and their ancestor workspaces, and it can be merged with and refreshed from its parent workspaces.	
Figure 1-3 shows the same hierarchy of workspaces in Figure 1-1, except that Workspace3	
is now a multiparent workspace with two parent workspaces: Workspace1	
and Workspace4	
.	
A multiparent workspace is also called a multiparent leaf workspace. Thus, in Figure 1-3, Workspace3	
is a multiparent leaf workspace. The nearest common ancestor of all parent workspaces of a multiparent lead workspace is called the multiparent root workspace. In Figure 1-3, the LIVE	
workspace is the multiparent root workspace of Workspace3	
. All of the workspaces in the directed acyclic graph (DAG) formed as a result of adding parent workspaces as parents of a leaf workspace are called multiparent graph workspaces. In Figure 1-3, Workspace1	
, Workspace4	
, and Workspace3	
are the multiparent graph workspaces.	
Multiparent workspaces are allowed only if the ALLOW_MULTI_PARENT_WORKSPACE	
Workspace Manager system parameter is set to ON.	
In addition, for a continually refreshed workspace to be a multiparent workspace, the CR_WORKSPACE_MODE	
Workspace Manager system parameter must be set to PESSIMISTIC_LOCKING	
; and for a workspace that is not continually refreshed to be a multiparent workspace, the NONCR_WORKSPACE_MODE	
Workspace Manager system parameter must be set to PESSIMISTIC_LOCKING	
. For information about Workspace Manager system parameters, see Section 1.5.	
To create a multiparent workspace, use the AddAsParentWorkspace procedure. To remove a workspace as a parent of a multiparent workspace, use the RemoveAsParentWorkspace procedure. To grant and revoke privileges on multiparent graph workspaces, use the GrantGraphPriv and RevokeGraphPriv procedures, respectively. These procedures are described in Chapter 4.	
Workspace Manager provides the following static data dictionary views (described in Chapter 5) to store information about multiparent workspaces:	
When you version-enable a table using the EnableVersioning procedure, Workspace Manager automatically performs operations and creates data structures that are invisible to non-DBA users, but that permit Workspace Manager to function. Some of the information maintained by Workspace Manager is stored in the static data dictionary views described in Chapter 5, and some is stored in system data structures not accessible by users.	
When a table is version-enabled, Workspace Manager renames the table to <table-name>_LT, and it adds several columns to this table to store versioning metadata. Note that users and applications should not specify the <table-name>_LT table in SQL statements; they should continue to specify the original table name (<table-name>). (If you ever need to find the name of the <table_name>_LT table associated with a version-enabled table, or if you want to find out if a table is version-enabled by checking for the existence of a <table_name>_LT table, use the GetPhysicalTableName function.)	
Workspace Manager also creates a view on the original table (<table-name>), as well as INSTEAD OF	
triggers on the view for insert, update, and delete operations. When an application executes a statement to insert, update, or delete data in a version-enabled table, the appropriate INSTEAD OF	
trigger performs the actual operation. When the view is accessed, it uses the workspace metadata to show only the row versions relevant to the current workspace of the user.	
Because Workspace Manager uses the original object name when it creates infrastructure objects, the effective maximum length of the name for some kinds of objects is shorter than the maximum permitted by Oracle Database. Table 1-2 provides guidelines for the maximum name length for version-enabled tables and related objects. (See also the information in Section 1.15 about reserved words and characters for certain names.)	
Table 1-2 Name Length Guidelines for Workspace Manager	
Type of Object	Maximum Name Length in Characters
---	---
Table	25
Column	28
Index	30 (26 if the index is created or altered between calls to the BeginDDL and CommitDDL procedures)
Trigger	30 (24 in Release 11.2.0.1; fixed to 30 in 10.2.0.4.5 and 11.2.0.2)
Constraint	30 (26 if the constraint is created or altered between calls to the BeginDDL and CommitDDL procedures)
Workspace Manager does not support the RETURNING clause with INSERT, MERGE, or UPDATE statements on version-enabled tables. This restriction is caused by the fact that Workspace Manager creates views with INSTEAD OF	
triggers on version-enabled tables, and Oracle Database does not support the RETURNING clause on views that have INSTEAD OF	
triggers defined on them.	
This section describes the process by which Workspace Manager creates new row versions and maintains historical copies of old versions.	
A new row version is created in a version-enabled table when you do either of the following:	
Any subsequent update of the current row overwrites the current row version, unless history is enabled on the table or another savepoint is created.	
VIEW_WO_OVERWRITE	
), each update of the current row version creates a full copy of the current row version with the changes and with a timestamp based on the transaction time. This copy becomes the new current row version. VIEW_W_OVERWRITE	
), each update of the current row version overwrites the current row version and updates the transaction timestamp. Row versions created in a workspace are not visible from that workspace until you execute the MergeWorkspace or MergeTable procedure.	
When you execute the MergeWorkspace procedure for a child workspace, only the current row version in the child workspace is merged into the parent workspace. If you specify the remove_workspace	
parameter as TRUE	
, any intermediate row versions in the child workspace are deleted when the child workspace is removed. To retain all intermediate versions created in the child workspace, the remove_workspace	
parameter value must be FALSE	
(the default).	
When you execute the CompressWorkspace procedure on a child workspace to eliminate intermediate savepoints, you can also remove the associated historical copies of that row version. If you do not remove these copies, they are associated with the next version.	
Intermediate row versions can only be selected for read-only access. To select an intermediate row version for read-only access, go to the workspace (GotoWorkspace procedure) if you are not already in it, and execute either the GotoDate procedure to set the session context to a historical time or the GotoSavepoint procedure to set the session context to a specific savepoint. Subsequent SELECT statements will select, for read-only access, the latest row version as of the specified date or savepoint.	
Workspace Manager creates a user named WMSYS	
. The WMSYS	
schema is used to store all the metadata information for Workspace Manager. A PL/SQL package with the public synonym DBMS_WM	
contains the Workspace Manager subprograms (procedures and functions).	
The following privileges are granted to the PUBLIC	
user group:	
Users perform Workspace Manager operations within a standard Oracle session. (A session is a specific connection of a user to an Oracle instance through a user process; a session lasts from the time the user connects until the time the user disconnects or exits the database application.) When you perform Workspace Manager operations, information relating to the session context is automatically recorded.	
The session context information includes the workspace name and a context value, and it determines what data the session can see in the workspace and what workspaces the session can enter. The context value is one of the following:	
LATEST	
: The session is currently set to the LATEST	
savepoint (explained in Section 1.1.2), and it can see changes as they are made in the workspace. The context is automatically set to LATEST	
when the session enters the workspace (using the GotoWorkspace procedure). You can retrieve information about the session context by using the GetSessionInfo procedure. Retrieving this information can be useful if you need to know where a session is (workspace and context) -- for example, after you performed a combination of GotoWorkspace, GotoSavepoint, and GotoDate operations.	
In addition to locks provided by regular Oracle database transactions, Workspace Manager provides two types of version locks. These locks are primarily intended to eliminate row conflicts between a parent workspace and a child workspace. You can enable locking for the workspace, the session, or specified rows, or some combination:	
WHERE	
clause after the update). Workspace or session locks persist for the duration of the workspace or session, respectively, or until the workspace is merged or rolled back.	
Like database locks, Workspace Manager locks can be exclusive or shared:	
Workspace-exclusive locks and version-exclusive locks are forms of exclusive locking that control which users can and cannot change data values, but (unlike exclusive locking) they do not prevent conflicts from occurring. Workspace-exclusive locks lock rows such that only the user that set the lock can change the values in the current workspace; however, other users in other workspaces can change the values. Version-exclusive locks lock rows such that only the user that set the lock can change the values (and that user can be in any workspace); no other users (in any workspace) can change the values.	
Table 1-3 indicates, for a row locked by a specific user in a specific workspace, which users in which workspaces can and cannot modify the row. For example, the first two entries in Table 1-3 mean that when a shared (S) lock is placed on a row, any user in the workspace in which the row was locked can modify the row, but any user in a workspace different from the workspace in which the row was locked cannot modify the row.	
Table 1-3 Workspace Manager Lock Modes and Data Modification Ability	
Lock Mode	User
---	---
Shared (S)	Any user
Shared (S)	Any user
Exclusive (E)	User that locked the row
Exclusive (E)	User that locked the row
Exclusive (E)	Different user from the one that locked the row
Workspace Exclusive (WE)	User that locked the row
Workspace Exclusive (WE)	Different user from the one that locked the row
Workspace Exclusive (WE)	Different user from the one that locked the row
Version Exclusive (VE)	User that locked the row
Version Exclusive (VE)	Different user from the one that locked the row
Locking a row does not affect workspace merge, refresh, and rollback operations, but it affects what can be done with the row after these operations. You can control these workspace operations by using workspace privileges, calling the FreezeWorkspace procedure, and checking the workspace xxx_LOCK view or views (described in Section 5.48) before performing the operations.	
The xxx_LOCK static data dictionary views (described in Section 5.48) contain information about locks in each version-enabled table.	
For information about Workspace Manager locking with DML operations on tables with referential integrity constraints, see Section 1.9.1.1.	
The timing of an exclusive lock with respect to an update operation in a child workspace can affect which version, if any, of the row can be updated in a parent workspace. For example, when a table is version-enabled in the LIVE	
workspace, each original row is assigned version 0. Assume that a workspace named W1	
is created as a child of the LIVE	
workspace. When workspace W1	
is created, the following things happen:	
LIVE	
workspace (but no additional row is created). W1	
(but no additional row is created). Queries in workspace W1	
still return version 0 of the row that is in the LIVE	
workspace. Using this example, if a user in workspace W1	
places an exclusive lock on a row before it updates the row, only that user in workspace W1	
can update the row. Specifically:	
W1	
(or a descendent workspace of W1	
) because version 0 is the current physical row for the workspace. W1	
updates the row, a new row (version 2) is created that is visible only from workspace W1	
and any of its child workspaces. However, if the row is not locked in the LIVE	
workspace and if a user in workspace W1 updates the row and then places an exclusive lock on the row, a user in the LIVE	
workspace can update the row. Specifically:	
W1	
and any of its child workspaces. W1	
other than the user that placed the lock, or no user in any child workspace of W1	
, can update the row or create a new version of the row. LIVE	
workspace is not locked. If a user in the LIVE	
workspace or a sibling workspace of W1	
updates the row, a new version (version 1) of the row is created. (Version 0 is not locked because it is no longer the current version of the row for users in workspace W1	
; rather, version 2 is the current version of the row in that workspace.) In other words, an exclusive lock after an update does not lock previous versions of the row in workspaces above the locking workspace in the workspace tree or in other branches of the workspace tree.	
Workspace Manager provides a set of privileges that are separate from standard Oracle database privileges. Workspace Manager workspace-level privileges (with names in the form xxx_WORKSPACE) allow the user to affect a specified workspace, and system-level privileges (with names in the form xxx_ANY_WORKSPACE) allow the user to affect any workspace.	
Table 1-4 lists the Workspace Manager privileges.	
Table 1-4 Workspace Manager Privileges	
Privilege	Description
---	---
Allows the user to go to a specified workspace.	
Allows the user to go to any workspace.	
Allows the user to create a child workspace in a specified workspace.	
Allows the user to create a child workspace in any workspace.	
Allows the user to remove a specified workspace.	
Allows the user to remove any workspace.	
Allows the user to merge the changes in a specified workspace to its parent workspace.	
Allows the user to merge the changes in any workspace to its parent workspace.	
Allows the user to roll back the changes in a specified workspace.	
Allows the user to roll back the changes in any workspace.	
Allows the user to freeze and unfreeze a specified workspace.	
Allows the user to freeze and unfreeze any workspace.	
Each privilege can be granted with or without the grant option. The grant option allows the user to which the privilege is granted to grant the privilege to other users.	
The WM_ADMIN_ROLE	
role has all Workspace Manager privileges with the grant option. By default, the database administrator (DBA	
role) is granted the WM_ADMIN_ROLE	
role. Thus, after you decide which users should be granted which privileges, either have the DBA grant the privileges, or have the DBA grant the WM_ADMIN_ROLE	
role to one or more selected users and have these users grant the privileges.	
The GrantWorkspacePriv and GrantSystemPriv procedures are used to grant workspace-level privileges and system-level privileges, respectively.	
The RevokeWorkspacePriv and RevokeSystemPriv procedures are used to revoke workspace-level privileges and system-level privileges, respectively. These procedures require that the user have sufficient privilege to revoke the specified privilege from the specified user. The user that granted a privilege can revoke it.	
Workspace Manager provides a set of system parameters that allow a user with the WM_ADMIN_ROLE	
role (described in Section 1.4) to enforce global Workspace Manager-specific settings for the database. (These Workspace Manager system parameters are not Oracle initialization parameters. The only way to set Workspace Manager system parameters is to use the SetSystemParameter procedure, described in Chapter 4).	
To set a system parameter, use the SetSystemParameter procedure. To get the current setting for a system parameter, use the GetSystemParameter procedure. Both procedures are described in Chapter 4.	
Table 1-5 lists the Workspace Manager system parameters.	
Table 1-5 Workspace Manager System Parameters	
Parameter Name	Values
---	---
A number from 1 to 1000, identifying the number of batches to be used when the	
A number representing the maximum amount of memory, specified in bytes, that should be used for selecting rows into memory during any MergeTable, MergeWorkspace, or RefreshWorkspace operation. The default is 8388608 (8 megabytes). Workspace Manager uses this value to determine the optimal number of rows to fetch at any one time. This value does not affect the amount of memory used by other database processes, but only internal workspace operations.	
A string containing You can override the value of the	
This parameter affects only tables that are subsequently version-enabled; it does not affect the views on existing version-enabled tables. To change the views on an existing version-enabled table, use the AlterVersionedTable procedure and specify the	
Workspace Manager supports the import and export of version-enabled tables in one of the following two ways: a full database import and export, and a workspace-level import and export through Workspace Manager procedures. No other export modes, such as schema, table, or partition level, are currently supported.	
Full database import and export operations can be performed on version-enabled databases using the Oracle utilities; however, the following considerations and restrictions apply:	
LIVE	
workspace). table_exists_action=truncate	
. If the dump file does not include the WMSYS schema, you can specify table_exists_action=append	
if the version-enabled tables being imported do not yet exist or are empty. (In general, dump files generated by Oracle Database release 10.2 or later will not include the WMSYS schema, while dump files generated by earlier releases will include the WMSYS schema.) The dump files must be from compatible versions of Workspace Manager. In general, Workspace Manager kits released at the same time, such as for a specific Oracle Database release, are compatible with each other.	
REMAP_SCHEMA	
capability in Data Pump Import utility is not supported with version-enabled databases. (In the original Import utility, the FROMUSER	
and TOUSER	
capabilities are not supported with version-enabled databases.) IGNORE=Y	
. For workspace-level export operations, each version-enabled table can be exported at the workspace level. Follow these steps to export a version-enabled table from one database into another database:	
t1	
). The data that is exported can either be all of the data as seen from a particular workspace, savepoint, or instant, or only the data that was modified in the particular workspace. See the information about the Export procedure in Chapter 4 for more details. To export multiple workspaces for a version-enabled table, call the Export procedure again, specifying the new workspace that needs to be exported as well as the original staging table. If you intend to import the data into a non-versioned table, specify the versioned_db	
parameter as FALSE	
.	
t1	
), using the Oracle Data Pump Export utility or the original Export utility. t1	
), using the Oracle Data Pump Import utility or the original Import utility, into the destination database. The structure of the staging table must match that of the version-enabled table. By default, all enabled constraints must be validated before the import procedure successfully completes.	
You can use SQL*Loader to perform bulk loading into version-enabled tables, but you must also call some special Workspace Manager procedures, and some restrictions apply. You can perform both direct-path and conventional-path bulk loading of data into either the latest version of any workspace or into the root version (version number 0, which is in the LIVE	
workspace). The root version is the ancestor of all other versions, so data in the root version is visible from all other workspaces (unless non-LIVE	
workspaces have updated the data).	
Follow these general steps for bulk loading into a version-enabled table:	
_LT	
name and to include the version number fetched in step 1. For example, assume that the existing control file has the following line: If the version number fetched in step 1 is 5, the line in the control file for bulk loading into the version-enabled table should be changed to:	
This ensures that all the bulk-loaded rows will be tagged with version 5, and that the other Workspace Manager-specific columns for these rows will have null values. If the table was version-enabled with the history option, create and retire times can be bulk loaded into the createtime	
and retiretime	
columns of <table_name>_LT	
.	
If you commit the bulk loading changes, Workspace Manager ensures that the data is updated in the required workspace and version. By default, the bulk-loaded data is checked for each unique or referential constraint defined on the table, and any bulk-loaded rows that are in violation of any constraints are moved to a discards table specified as a parameter to the CommitBulkLoading procedure. If you specified to check for duplicates (that is, records in the data to be bulk loaded that have the same values in the primary key columns), for any duplicate records only the record with the lowest ROWID value is loaded into the table, and the rest are moved to the discards table.	
The following restrictions apply to bulk loading with version-enabled tables in the current release:	
LIVE	
, that has continually refreshed child workspaces is not allowed. WM_ADMIN_ROLE	
role can bulk load into a version-enabled table. INSERT	
privilege for <table_name>_LT	
. To perform DDL (data definition language) operations on a version-enabled table, you must use special Workspace Manager procedures before and after the DDL operations, and you must specify the name of a special table created by Workspace Manager. You cannot perform DDL operations in the usual manner on the table or any index or trigger that refers to the table. For example, to add a column to a table named EMPLOYEES	
that has been version-enabled, you cannot simply enter a statement in the form ALTER TABLE EMPLOYEES ADD (
column-name data-type)	
.	
The reason for these requirements is to ensure that Workspace Manager versioning metadata is updated to reflect the DDL changes. Therefore, DDL operations affecting a version-enabled table must be preceded by a call to the BeginDDL procedure, and must be concluded by a call to either the CommitDDL or RollbackDDL procedure. The BeginDDL procedure creates an empty temporary table with a name in the form <table-name>_LTS (the S standing for skeleton). The actual DDL statement must specify the name of the temporary <table-name>_LTS table, and must not specify the <table-name> or <table-name>_LT name. The CommitDDL and RollbackDDL procedures delete the temporary <table-name>_LTS table.	
Note: An exception to this procedure is adding valid time support to an existing version-enabled table. To add valid time support, use the AlterVersionedTable procedure, as explained in Section 3.10.	
The following DDL operations related to version-enabled tables are supported:	
logging	
, pctfree	
, pctused	
, initrans	
, next	
, minextents	
, maxextents	
, pctincrease	
, freelists	
, and buffer_pool	
ADD	
, DROP	
, MODIFY	
(but for MODIFY	
only the following operations: changing the default value of a column; changing the data type of a column that contains only null values or for which there are no existing data rows; changing the length of a column of type VARCHAR2	
, VARCHAR	
, CHAR	
, NCHAR	
, NVCHAR	
, or NVCHAR2	
; changing the scale or precision of a column of type NUMBER	
) Note that any new length, scale, or precision for a column should be adequate for any existing data in the column.	
CREATE INDEX	
, DROP INDEX	
, ALTER INDEX	
(but for ALTER INDEX	
only the following options: logging	
, pctfree	
, initrans	
, initialextent	
, minextents	
, nextextent	
, maxextents	
, pctincrease	
, freelists	
, freelist groups	
, and buffer_pool	
) If the name of the index on a version-enabled table is longer than 26 characters, you must use the AlterVersionedTable procedure if you want to rename the index; you cannot use the ALTER INDEX statement with the RENAME clause. If the name of the index on a version-enabled table is 26 or fewer characters long, you can do either of the following to rename the index: use the AlterVersionedTable procedure, or use the ALTER INDEX statement with the RENAME clause between calls to the BeginDDL and CommitDDL procedures. See the Usage Notes for AlterVersionedTable for more information.	
CREATE TRIGGER	
, DROP TRIGGER	
, ALTER TRIGGER ENABLE/DISABLE	
You can create the following types of indexes on version-enabled tables: normal, bitmap, function-based normal, function-based bitmap, and domain. You cannot create or drop a partitioned, reverse, or join index on a version-enabled table. (You can, however, version-enable a table that has a partitioned, reverse, or join index.)	
If you try to perform an unsupported DDL operation, the change will not be made, and an exception might be raised by the CommitDDL procedure.	
If the DDL operation involving a version-enabled table is on a domain index (for example, creating an R-tree index on the table), you must have the CREATE TABLE	
privilege.	
If you need to perform DDL operations on a version-enabled table in an Oracle replication environment, see Section C.3 for additional guidelines.	
If you need to perform DDL operations on a version-enabled table in an Oracle Label Security (OLS) environment, you can use the apply_table_policy	
, remove_table_policy	
, enable_table_policy	
, and disable_table_policy	
procedures of the SA_POLICY_ADMIN package on the skeleton (_LTS) table, and the changes will be transferred to the version-enabled table.	
Example 1-1 shows the statements needed to add a column named COMMENTS	
to the COLA_MARKETING_BUDGET	
table by using the special table named COLA_MARKETING_BUDGET_LTS	
. It also includes a DESCRIBE	
statement to show the addition of the column.	
Example 1-1 DDL Operation on a Version-Enabled Table	
In Example 1-1, the ALTER TABLE	
statement specifies the COLA_MARKETING_BUDGET_LTS	
table, which is created by the BeginDDL procedure. The CommitDDL procedure applies the change to the COLA_MARKETING_BUDGET	
table and deletes the COLA_MARKETING_BUDGET_LTS	
table.	
This section describes Workspace Manager considerations relating to the use of database constraints.	
Version-enabled tables can have referential integrity constraints, including constraints with the CASCADE	
and RESTRICT	
options; however, the following considerations and restrictions apply:	
EMPLOYEE	
and DEPARTMENT	
table definitions, with a foreign key constraint added after the creation (that is, the dept_id	
value in each EMPLOYEE	
row must match an existing dept_id	
value in a DEPARTMENT	
row). In this example, DEPARTMENT	
is considered the parent and EMPLOYEE	
is considered the child in the referential integrity relationship; and if DEPARTMENT	
is version-enabled, EMPLOYEE	
must be version-enabled also. In this relationship definition, when a DEPARTMENT	
row is deleted, all its child rows in the EMPLOYEE	
table are deleted (cascading delete operation).	
DEPARTMENT	
is the parent table and EMPLOYEE	
is the child table, you cannot change the department ID of a department. EMPLOYEE(emp_id, dept_id)	
could have the constraint that the department ID must exist in the table DEPARTMENT(dept_id, dept_name, loc_id)	
; and the table DEPARTMENT(dept_id, dept_name, loc_id)	
could have the constraint that the location ID must exist in the table LOCATION(loc_id, loc_name)	
. However, all tables that are involved in multilevel referential integrity constraints must be version-enabled and version-disabled together, unless all the referential integrity constraints involved have the Restrict	
rule. If all the constraints involved have the Restrict	
rule, you can version-enable the tables either all together or one at a time with child tables preceding their parent tables. The table names must be passed as a comma-delimited list to the EnableVersioning and DisableVersioning procedures. Workspace Manager uses the static data dictionary views ALL_WM_RIC_INFO and USER_WM_RIC_INFO (described in Chapter 5) to hold information pertinent to referential integrity support.	
If you need to add, drop, enable, or disable a referential integrity constraint that involves two tables, it is more convenient if you perform the operation before version-enabling the tables. However, you can add, drop, enable, or disable a referential integrity constraint that involves two version-enabled tables if you follow these steps:	
Example 1-2 adds a foreign key constraint. Assume that the EMPLOYEE	
and DEPARTMENT	
tables are version-enabled and are defined as follows:	
Example 1-2 Adding a Referential Integrity Constraint	
If you are in a DDL session (that is, if you have called the BeginDDL procedure), you cannot add, drop, enable, or disable a referential integrity constraint that involves two tables if one table is version-enabled and the other is not version-enabled. Both tables must be version-enabled.	
When data manipulation language (DML) operations are performed on version-enabled tables that have referential integrity constraints, Workspace Manager acquired shared locks so that the following conditions are enforced:	
DEPARTMENT	
is the parent table and EMPLOYEE	
is the child table, during the time that a new employee is being added or an existing employee is being assigned to a different department, no departments can be deleted. See also: For general information about locking performed by Workspace Manager, including explanations of shared and exclusive locks, see Section 1.3.	
Multiple sessions can simultaneously perform either of the following, but not both of the following, DML operations simultaneously:	
Multiple sessions can simultaneously perform any of the following Workspace Manager operations simultaneously:	
One session will be blocked until the other session finishes in the following situations:	
Tables with unique constraints defined on them can be version-enabled. The following are supported:	
UNIQUE	
constraint on a single column or multiple columns The treatment of null values is the same for version-enabled tables as for tables that are not version-enabled.	
Workspace Manager uses the following static data dictionary views (described in Chapter 5) to hold information pertinent to support for unique constraints:	
Version-enabled tables can have triggers defined; however, the following considerations and restrictions apply:	
action_type	
must be PL/SQL. Any triggers that are not supported for version-enabled tables are deactivated when versioning is enabled, and are activated when versioning is disabled.	
You can selectively enable specific user-defined triggers for certain kinds of events by using the SetTriggerEvents procedure.	
You can use Workspace Manager in conjunction with the Oracle Virtual Private Database (VPD) technology. (Virtual private databases are described in Oracle Database Security Guide.) However, the following considerations apply Workspace Manager in a VPD:	
MERGE_WORKSPACE	
) to control workspace operations. For any Workspace Manager procedure or function input parameter that calls for a table name, you can instead specify a synonym. When Workspace Manager looks for a table, it searches in the following sequence and uses the first match for the specified name:	
This section describes considerations for using Workspace Manager with materialized views.	
You can create a materialized view on a version-enabled table only if you specify the complete refresh method (REFRESH COMPLETE	
) when you create the materialized view. You cannot specify any of the following clauses in the CREATE MATERIALIZED VIEW	
statement:	
FAST	
(incremental refresh) ON COMMIT	
FOR UPDATE	
You cannot version-enable a materialized view or the base table of a materialized view.	
When the materialized view is created, its content is based on the workspace in which the session is at that time. When the materialized view is refreshed, its content is based on the workspace in which the session is when the DBMS_MVIEW.REFRESH operation is performed. When the materialized view is created or refreshed, it shows the same data in all workspaces.	
This section describes special considerations and techniques for using Workspace Manager with tables in Oracle Spatial topologies, which are documented in Oracle Spatial Topology and Network Data Models Developer's Guide.	
A topology consists of feature tables, as well as tables with names in the form <topology-name>	
_NODE$	
, <topology-name>	
_EDGE$	
, <topology-name>	
_FACE$	
, <topology-name>	
_RELATION$	
, and <topology-name>	
_HISTORY$	
. If you want to version-enable any topology tables, you must version-enable all tables associated with the topology. To do so, you must specify the topology name as the table_name	
parameter to the EnableVersioning procedure, and you must specify the isTopology	
parameter as TRUE	
. For example:	
The preceding example version-enables the xyz_topo	
topology; that is, it version-enables all feature tables associated with the xyz_topo	
topology, as well as the XYZ_TOPO_NODE$	
, XYZ_TOPO_FACE$	
, XYZ_TOPO_EDGE$	
, XYZ_TOPO_RELATION$	
, and XYZ_TOPO_HISTORY$	
tables.	
A version-enabled topology must have at least one feature table.	
To disable versioning on any topology tables, you must disable versioning on all tables associated with the topology by specifying the topology name as the table_name	
parameter to the DisableVersioning procedure and the isTopology	
parameter as TRUE	
.	
However, exceptions apply to the preceding guidelines about version-enabling and version-disabling topology tables in the following cases:	
CASCADE	
option with a table that is not in the topology In these cases, you must version-enable or version-disable the feature table separately. That is, first call the EnableVersioning or DisableVersioning procedure on the feature table (along with any tables required by the referential integrity constraint), and then invoke the EnableVersioning or DisableVersioning procedure specifying the topology name.	
To lock or unlock rows in tables associated with a topology, you must specify the topology name as the table_name	
parameter to the LockRows or UnlockRows procedure, and you must identify the window containing the rows by using the Xmin	
, Ymin	
, Xmax	
, and Ymax	
parameters. You must also not specify the where_clause	
parameter. For example:	
The preceding example puts version locks on all the rows of the specified topology contained in the specified window. To edit the elements of a topology in a workspace (including the LIVE	
workspace), follow these steps:	
loadWindow	
method for the same window of interest. The following additional considerations apply to using Workspace Manager with Spatial topologies:	
Because Workspace Manager creates internal objects using its own naming conventions, you must avoid some words and characters in the names for certain kinds objects. Table 1-6 lists kinds of objects and restrictions that apply to their names. (See also the name length guidelines in Table 1-2 in Section 1.1.11.)	
Table 1-6 Workspace Manager Reserved Words and Characters	
Object	Name Cannot Be Any of the Following
---	---
Workspace	
Version-enabled table	A string ending with
Column in a version-enabled table	
In addition, if the table includes valid time support (explained in Chapter 3),	
Index on a version-enabled table	A string starting with
The Workspace Manager application programming interface (API) consists of PL/SQL subprograms (procedures and functions) in a single PL/SQL package named DBMS_WM	
. The subprograms can be logically grouped into the categories described in this section.	
Note: Most Workspace Manager subprograms are procedures, but a few are functions. (A function returns a value; a procedure does not return a value.)Most functions have names starting with Get (such as GetConflictWorkspace and CreateSavepoint).	
Reference information for all subprograms is in Chapter 4.	
Table management subprograms enable and disable workspace management on a table, and perform other table-related operations.	
Table 1-7 shows the subprograms available for table management.	
Table 1-7 Table Management Subprograms	
Procedure	Description
---	---
Version-enables a table, creating the necessary structures to enable the table to support multiple versions of rows.	
Deletes all support structures that were created to enable the table to support versioned rows.	
Disables the	
Enables the	
Starts a DDL (data definition language) session for a specified table.	
Commits DDL changes made during a DDL session for a specified table, and ends the DDL session.	
Rolls back (cancels) DDL changes made during a DDL session for a specified table, and ends the DDL session.	
Attempts to complete the migration process on a table that was left in an inconsistent state after the Workspace Manager migration procedure failed.	
Attempts to complete the migration process on all tables that were left in an inconsistent state after the Workspace Manager migration procedure failed.	
Allows LOB columns (BLOB, CLOB, or NCLOB) in version-enabled tables to be modified.	
Exports data from a version-enabled table (all rows, or as limited by any combination of several parameters) to a staging table.	
Imports data from a staging table (all rows, or as limited by any combination of several parameters) into a version-enabled table in a specified workspace.	
Workspace management subprograms perform operations on workspaces.	
Table 1-8 shows the subprograms available for workspace management.	
Table 1-8 Workspace Management Subprograms	
Procedure	Description
---	---
Creates a new workspace in the database.	
Moves the current session to the specified workspace.	
Finds differences in values in version-enabled tables for two savepoints and their common ancestor (base). It creates rows in the differences views describing these differences.	
Returns the names of the (workspace, savepoint) pairs on which the session has performed the SetDiffVersions operation.	
Applies changes to a table (all rows or as specified in the	
Applies all changes in a workspace to its parent workspace, and optionally removes the workspace.	
Discards all data changes made in the workspace to version-enabled tables.	
Discards all changes made in the workspace to a specified table (all rows or as specified in the	
Discards all data changes made in the workspace to version-enabled tables since the specified savepoint.	
Applies to a workspace all changes made to a table (all rows or as specified in the	
Applies to a workspace all changes made in its parent workspace.	
Modifies the description of a workspace.	
Changes a workspace that is not continually refreshed to be continually refreshed.	
Discards all row versions associated with a workspace and deletes the workspace.	
Discards all row versions associated with a workspace and its descendant workspaces, and deletes the affected workspaces.	
Restricts access to a workspace and the ability of users to make changes in the workspace.	
Enables access and changes to a workspace, reversing the effect of the FreezeWorkspace procedure.	
Deletes removable savepoints in a workspace, and minimizes the Workspace Manager metadata structures for the workspace.	
Deletes removable savepoints in a workspace and all its descendant workspaces. It also minimizes the Workspace Manager metadata structures for the affected workspaces, and eliminates any redundant data that might arise from the deletion of the savepoints.	
Checks whether or not a workspace has any active sessions.	
Returns the current workspace for the session.	
Makes the specified workspace or workspaces visible in the multiworkspace views for version-enabled tables.	
Returns the names of workspaces visible in the multiworkspace views for version-enabled tables.	
Returns the context of the current operation for the current session.	
Adds a workspace as a parent workspace to a child workspace in a multiparent workspace environment.	
Removes a workspace as a parent workspace in a multiparent workspace environment.	
Savepoint management subprograms perform operations related to savepoints.	
Table 1-9 shows the subprograms available for savepoint management.	
Table 1-9 Savepoint Management Subprograms	
Procedure	Description
---	---
Creates a savepoint for the current version.	
Goes to the specified savepoint in the current workspace.	
Goes to a point at or near the specified date and time in the current workspace.	
Retrieves information about the current workspace and session context; useful for finding the session's current savepoint or instant in time.	
Modifies the description of a savepoint.	
Deletes a savepoint and associated rows in version-enabled tables.	
Privilege management subprograms grant and revoke Workspace Manager privileges.	
Table 1-10 shows the subprograms available for privilege management.	
Table 1-10 Privilege Management Subprograms	
Procedure	Description
---	---
Grants workspace-level privileges to users, roles, or	
Revokes workspace-level privileges from users and roles.	
Grants privileges on all workspaces to users, roles, or	
Revokes system-level privileges from users and roles.	
Returns a comma-delimited list of all privileges that the current user has for the specified workspace.	
Lock management subprograms control Workspace Manager locking.	
Table 1-11 shows the subprograms available for lock management.	
Table 1-11 Lock Management Subprograms	
Procedure	Description
---	---
Enables Workspace Manager locking for the current session.	
Disables Workspace Manager locking for the current session.	
Enables Workspace Manager locking for the specified workspace.	
Disables Workspace Manager locking for the specified workspace.	
Returns the locking mode for the current session, which determines whether or not access is enabled to versioned rows and corresponding rows in the previous version.	
Controls access to versioned rows in a specified table and to corresponding rows in the parent workspace.	
Enables access to versioned rows in a specified table and to corresponding rows in the parent workspace.	
Conflict management subprograms detect and resolve conflicts between workspaces.	
Table 1-12 shows the subprograms available for conflict management.	
Table 1-12 Conflict Management Subprograms	
Procedure	Description
---	---
Determines whether or not conflicts exist between a workspace and its parent workspace.	
Returns the name of the workspace on which the session has performed the SetConflictWorkspace procedure.	
Starts a conflict resolution session.	
Resolves conflicts between workspaces.	
Ends a conflict resolution session and saves (makes permanent) any changes in the workspace since the BeginResolve procedure was executed.	
Quits a conflict resolution session and discards all changes in the workspace since the BeginResolve procedure was executed.	
Replication support subprograms provide support for Oracle replication in a Workspace Manager environment. For information about using replication, see Appendix C.	
Table 1-13 shows the subprograms available for replication support.	
Table 1-13 Replication Support Subprograms	
Procedure	Description
---	---
Creates necessary structures for multimaster replication of Workspace Manager objects, and starts the master activity for the newly created master group.	
Deletes replication support objects that were created by the GenerateReplicationSupport procedure.	
Makes one of the nonwriter sites the new writer site in a Workspace Manager replication environment. (The old writer site becomes one of the nonwriter sites.)	
Brings the local site (the old writer site) up to date in the Workspace Manager replication environment after the writer site was moved using the RelocateWriterSite procedure.	
Bulk load support subprograms enable SQL*Loader to be used for bulk loading data into version-enabled tables, as explained in Section 1.7.	
Table 1-14 shows the subprograms available for bulk loading support.	
Table 1-14 Bulk Loading Support Subprograms	
Procedure	Description
---	---
Returns a version number to be specified when you call the BeginBulkLoading procedure.	
Starts the bulk loading process for a version-enabled table.	
Ends the bulk loading process for a version-enabled table by committing the bulk load changes.	
Rolls back changes made to a version-enabled table during a bulk load operation.	
This section presents two simplified examples of using Workspace Manager to try out some scenarios and select one of them. Each example uses workspaces and one or more savepoints. One example (in Section 1.17.2) uses the OE.WAREHOUSES	
table in the Oracle sample schemas.	
The examples refer to concepts that were explained in this chapter, and they use procedures documented in Chapter 4.	
In Example 1-3, a soft drink (cola) manufacturer has four products, each with a marketing manager and a marketing budget. Because of an exceptional opportunity for growth in the market for one product (cola_b	
), the company wants to do what-if analyses involving different managers and budget amounts.	
Example 1-3 Marketing Budget Options	
In Example 1-4, a company that uses the Oracle sample schemas decided that it needs additional warehouse space. It wants to consider two scenarios: a single large warehouse in Town A, and two smaller warehouses in Town B and Town C that together offer more total storage capacity. There are potential advantages and disadvantages to each scenario, and financial and legal issues to be resolved with each. Later, the company decides that it might need even more warehouse space under each scenario, so it wants to consider the same additional warehouse in each scenario.	
Example 1-4 creates a workspace for each scenario; and within each workspace it creates a savepoint before adding an extra new warehouse to the table, because the company might decide not to use the extra warehouse. The warehouse rows are stored on the OE.WAREHOUSES	
table, which is part of the Oracle sample schemas.	
Example 1-4 Warehouse Expansion Options	
The SELECT	
statement near the end of Example 1-4 displays the IDs and names of warehouses in the OE.WAREHOUSES	
table, including the newly added warehouses in Town B and Town C, as shown in the following example:	
Certain applications may be interested in knowing what Workspace Manager operations are being performed and may want to take some actions based on that. Several types of Workspace Manager operations can be captured as events. Workspace Manager provides a framework for communicating these events asynchronously to the interested applications. The applications can then take some actions based on the event. Some scenarios in which events can be used include the following:	
The Workspace Manager event framework is built on the Oracle Advanced Queuing (AQ) capability. Messaging features provided by AQ, such as asynchronous notification, persistence, propagation, access control, history, and rule-based subscription, can be used for Workspace Manager events.	
Workspace Manager creates a multiconsumer queue where events are enqueued. The relevant information about the event, such as the type of event, the user and workspace that triggered the event, and the name of the versioned table, is initialized in the event payload and enqueued. Applications can subscribe to these events, optionally specifying a rule for their subscriptions. Only the events that satisfy the rule will be applicable to the subscriber. Subscribers can get event notification in variety of ways, such as listening for the events in the queue, registering a callback for notification, or explicitly dequeuing events from the queue.	
Because events are communicated asynchronously to the other applications, the performance of the workspace operation generating the event is not affected.	
Note: To use Workspace Manager events in an application, you must understand the relevant AQ concepts and techniques described in Oracle Streams Advanced Queuing User's Guide.	
This chapter contains the following major sections:	
Table 2-1 lists the Workspace Manager events and when each occurs.	
Table 2-1 Workspace Manager Events	
Event	Occurs
---	---
TABLE_MERGE_W_REMOVE_DATA	When MergeTable is invoked with
TABLE_MERGE_WO_REMOVE_DATA	When MergeTable is invoked with
TABLE_REFRESH	When RefreshTable is invoked.
TABLE_ROLLBACK	When RollbackTable is invoked.
WORKSPACE_COMPRESS	When CompressWorkspace or CompressWorkspaceTree is invoked.
WORKSPACE_CREATE	When CreateWorkspace is invoked.
WORKSPACE_MERGE_W_REMOVE	When MergeWorkspace is invoked with
WORKSPACE_MERGE_WO_REMOVE	When MergeWorkspace is invoked with
WORKSPACE_REFRESH	When RefreshWorkspace is invoked.
WORKSPACE_REMOVE	When RemoveWorkspace or RemoveWorkspaceTree is invoked.
WORKSPACE_ROLLBACK	When RollbackWorkspace is invoked.
WORKSPACE_VERSION	When a new version is created in the workspace as a result of the creation of an explicit or implicit savepoint. (Savepoints are described in Section 1.1.2.)
When an event occurs, information is stored in parameters that are bundled into an object type called WMSYS.WM$EVENT_TYPE	
and enqueued into the event queue. A subscriber can dequeue the event object on receiving notification. Table 2-2 describes the Workspace Manager event parameters.	
Table 2-2 Workspace Manager Event Parameters	
Event Parameter	Data Type
---	---
event_name	
Name indicating the type of event.	
workspace_name	
Workspace that caused the event to occur.	
parent_workspace_name	
Parent workspace of the workspace that caused the event to occur.	
user_name	
User that caused the event to occur.	
table_name	
Version-enabled table on which the event occurred. If this parameter does not apply to an event, it is null.	
aux_params	
A nested table of (name,value) pairs that can contain additional information about the event. For For	
Before you can capture any Workspace Manager events, you must use the SetSystemParameter procedure to set the Workspace Manager system parameter ALLOW_CAPTURE_EVENTS	
to the value ON	
. This does not, however, cause any events to be captured; to capture events, you must use the SetCaptureEvent procedure.	
You can later disallow the capture of Workspace Manager events by using the SetSystemParameter procedure to set ALLOW_CAPTURE_EVENTS	
to the value OFF	
, but you must first ensure that no events are currently being captured. Example 2-1 shows the sequence of procedure calls for enabling and disabling the capture of all events, and starting and stopping the capture all events.	
Example 2-1 Capturing Workspace Manager Events	
This section describes Advanced Queuing objects and techniques relevant to developers of applications that work with captured Workspace Manager events.	
Workspace Manager creates a multiconsumer queue named WMSYS.WM$EVENT_QUEUE	
based on a queue table named WMSYS.WM$EVENT_QUEUE_TABLE	
. The queue payload type is WMSYS.WM$EVENT_TYPE	
, which is an object type.	
AQ creates some views for the queue that can be used for administrative purposes. Table 2-3 describes the views of interest to developers of Workspace Manager applications.	
Table 2-3 AQ Administrative Views for Workspace Manager	
View Name	Description
---	---
WMSYS.AQWMEVENT_QUEUE_TABLE	Describes the queue table in which events are stored. This view can be used for querying the events. The roles
WMSYS.AQWMEVENT_QUEUE_TABLE_S	Displays all the subscribers for the event queue; also displays the transformation for the subscriber if it was created with one. The roles
WMSYS.AQWMEVENT_QUEUE_TABLE_R	Displays only the rule-based subscribers for all queues in a given queue table, as well as the text of the rule defined by each subscriber. Also displays the transformation for the subscriber if one was specified. The roles
The database administrator has several options for granting privileges and access to queues. Some possible scenarios include:	
ENQUEUE ANY QUEUE	
and DEQUEUE ANY QUEUE	
directly to a database user by using the DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE	
procedure, and optionally later revoke privileges by using the DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE	
procedure. ENQUEUE	
and DEQUEUE	
to the event queue WMSYS.WM$EVENT_QUEUE	
to a database user by using the DBMS_AQADM.GRANT_QUEUE_PRIVILEGE	
procedure, and optionally later revoke privileges by using the DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE	
procedure. AQ_ADMINISTRATOR_ROLE	
to a database user to give that user administrative privileges on any queue. Example 2-2 shows privileges being granted for a user to subscribe to the event queue and dequeue events.	
Example 2-2 Granting Privileges for Queue Access	
An event can be delivered to multiple recipients based on event parameters. You can define a rule-based subscription for the event queue as the mechanism for specifying interest in receiving events. Subscriber rules are then used to evaluate recipients for event delivery. A null rule indicates that the subscriber wishes to receive all events.	
Example 2-3 creates a rule-based subscription for user SCOTT to deliver WORKSPACE_MERGE_WO_REMOVE events when the parent workspace is the LIVE	
workspace.	
Example 2-3 Rule-Based Subscription for Workspace Manager Events	
The listen call is a blocking call that can be used to wait for events on a queue or a list of subscriptions. If the listen returns successfully, a dequeue must be used to retrieve the event.	
Example 2-4 listens for events on an event queue.	
Example 2-4 Listening for a Workspace Manager Event	
Asynchronous notification allows clients to receive notification of an event of interest. The client can use it to monitor multiple subscriptions. The client does not have to be connected to the database to receive notifications regarding its subscriptions.	
If an application registers for asynchronous notification of Workspace Manager events using callbacks, the minimum values for the following init.ora	
parameters should be:	
aq_tm_processes	
= 1 job_queue_processes	
= 2 Example 2-5 registers for a callback to receive asynchronous notification of events.	
Example 2-5 Receiving Asynchronous Notification of Events	
This chapter describes the support for valid time, also known as effective dating, with version-enabled tables. It contains the following major sections:	
Some applications need to store data with an associated time range that indicates the validity of the data. That is, each record is valid only within the time range associated with the record.	
You can enable valid time support when you version-enable a table. (You can also add valid time support to an existing version-enabled table, as explained in Section 3.10.) If you enable valid time support, each row contains an added column to hold the valid time period associated with the row. You can specify a valid time range for the session, and Workspace Manager will ensure that queries and insert, update, and delete operations correctly reflect and accommodate the valid time range. The valid time range specified can be in the past or the future, or it can include the past, present, and future.	
Example 3-1 presents a simple example of valid time support. The example does the following:	
WM_VALID	
to be added to the table automatically. Example 3-1 Valid Time Support	
The WM_PERIOD	
data type is used to specify a valid time range for the session or workspace, and for a row in a version-enabled table. The WM_PERIOD	
type is defined as follows:	
The validFrom	
date is inclusive, and the validTill	
period is exclusive; that is, the valid date range starts on the validFrom	
date and extends up to but not including the validTill	
date.	
Example 3-2 sets the session valid time range to 01-Jan-2003.	
Example 3-2 Setting the Session Valid Time to a Specific Date	
Example 3-3 inserts a row that is valid from 01-Jan-2003 until it is changed.	
Example 3-3 Inserting a Row Valid for a Time Range	
If you want the valid time range to be stored, in views created on tables with valid time support, using two columns of type TIMEZONE WITH TIMESTAMP	
instead of a single column of type WM_VALID	
, you can set the Workspace Manager system parameter USE_SCALAR_TYPES_FOR_VALIDTIME	
to ON	
, as explained in Section 1.5.	
Table 3-1 lists constants that can be used in the validFrom	
and validTill	
timestamps of a WM_PERIOD	
specification. (Workspace Manager uses these as constants, but they are implemented as functions.)	
Table 3-1 Constants for Valid Time Support	
Constant	Explanation
---	---
DBMS_WM.MIN_TIME	The minimum (earliest) timestamp value supported by Workspace Manager. Currently the beginning of the day on 01-Jan in the year -4712 (4712 BCE).
DBMS_WM.MAX_TIME	The maximum (latest) timestamp value supported by Workspace Manager. Currently the end of the day (11:59.999999000 pm) on 31-Dec-9999.
DBMS_WM.UNTIL_CHANGED	A timestamp that is treated as DBMS_WM.MAX_TIME until a subsequent modification overrides the value.
Table 3-2 lists DBMS_WM subprograms that are devoted to valid time support or that have parameters related to valid time support.	
Table 3-2 API Features for Valid Time Support	
Subprogram	Valid Time Support
---	---
If the	
The	
Returns the	
Returns the	
Sets the session valid time period to the specified range. You can execute the procedure with no parameters (to have the valid time range set as from the current time and until changed), with only the	
Removes the valid time filter for the current session.	
Sets a valid time filter for the current session (that is, a time to be applied to version-enabled tables.	
Disables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support.	
Enables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support.	
Workspace Manager provides relationship checking operators and set operators that accept two time period parameters and that can be used to apply valid time filters in a query.	
The relationship checking operators return the integer value 1 if the relationship between the two periods exists, and 0 if the relationship does not exist. The following relationship checking operators for are provided for valid time support:	
The set operators return the period reflecting the relationship between the two periods, or a null value if the two periods do not have the specified relationship. The following set operators for are provided for valid time support:	
You can use the relationship checking operators as alternatives to using the wm_valid.validFrom and wm_valid.validTill attributes of the row. For example, the following two queries, which select data valid on 01-Jan-1991, are equivalent:	
The rest of this section contains additional information about each operator. The operators are listed in alphabetical order.	
The WM_CONTAINS operator checks if the first period contains the second period. WM_CONTAINS(p1, p2)	
returns 1	
only if the period p1	
contains the period p2	
; otherwise, it returns 0	
.	
For example:	
Example 3-4 returns all rows in the EMPLOYEES	
table that were valid on 01-Jan-1995 (that is, where the WM_VALID	
column value contains the period for 01-Jan-1995).	
Example 3-4 WM_CONTAINS Operator	
The WM_EQUALS operator checks if the first period is equal to (that is, the same as) the second period. WM_CONTAINS(p1, p2)	
returns 1	
only if the period p1	
is equal to the period p2	
; otherwise, it returns 0	
.	
For example:	
Example 3-5 returns all rows in the EMPLOYEES	
table that are valid from 01-Jan-1990 until 01-Jan-2005 (that is, where the WM_VALID	
column value is equal to that period).	
Example 3-5 WM_EQUALS Operator	
The WM_GREATERTHAN operator checks if the first period is greater than (that is, occurs after) the second period. WM_CONTAINS(p1, p2)	
returns 1	
only if the entire period p1	
is later than the period p2	
; otherwise, it returns 0	
.	
For example:	
Example 3-6 returns all rows in the EMPLOYEES	
table that are valid only after 01-Jan-2001 (that is, where the WM_VALID	
column timestamps are both after 01-Jan-2001).	
Example 3-6 WM_GREATERTHAN Operator	
The WM_INTERSECTION operator returns the intersection of the two periods, that is, the period common to both specified periods. WM_INTERSECTION(p1, p2)	
returns a period that is the intersection of periods p1	
and p2	
.	
The following example returns the period between 01-Jan-1985 to 01-Jan-1988:	
The following example returns the period between 01-Jan-1985 to 01-Jan-1990:	
The following example returns a null value, because there is no intersection of the periods:	
Example 3-7 returns, for each row in the EMPLOYEES	
table, the employee name and the period in which the WM_PERIOD	
column value intersects the period on 01-Jan-1995.	
Example 3-7 WM_INTERSECTION Operator	
As you can see in the output of Example 3-7, only Adams has a row that is valid on 01-Jan-1995.	
The WM_LDIFF operator returns the difference between the two periods on the left (that is, earlier in time). WM_LDIFF(p1, p2)	
returns a period that is the difference between periods p1	
and p2	
on the left.	
The following example returns the period between 01-Jan-1980 to 01-Jan-1985:	
The following example returns a null value because p1.validFrom	
is greater than p2.validFrom	
:	
The following example returns a null value because p2	
is completely outside (in this case, later than) p1	
:	
Example 3-8 returns, for each row in the EMPLOYEES	
table, the employee name and the period in which the WM_PERIOD	
column value is different on the left from 01-Jan-1995.	
Example 3-8 WM_LDIFF Operator	
As you can see in the output of Example 3-8, only Adams has a row that is valid during the period of difference on the left.	
The WM_LESSTHAN operator checks if the first period is less than (that is, occurs before) the second period. WM_CONTAINS(p1, p2)	
returns 1	
only if the entire period p1	
is less than the period p2	
; otherwise, it returns 0	
.	
For example:	
Example 3-9 returns all rows in the EMPLOYEES	
table that are valid only before 01-Jan-2010 (that is, where the WM_VALID	
column timestamps are both before 01-Jan-2001).	
Example 3-9 WM_LESSTHAN Operator	
The WM_MEETS operator checks if the end of the first period is the start of the second period. WM_MEETS(p1, p2)	
returns 1	
only if p1.validTill = p2.validFrom	
; otherwise, it returns 0	
.	
For example:	
Example 3-10 returns all rows in the EMPLOYEES	
table that are valid only if the ending timestamp of the valid date period is the same as the start of the period from 01-Jan-2005 until 01-Jan-2006 (that is, if WM_VALID	
.validTill is equal to the start of the specified period).	
Example 3-10 WM_MEETS Operator	
The WM_OVERLAPS operator checks if two periods overlap. WM_OVERLAPS(p1, p2)	
returns 1	
if the periods p1	
and p2	
overlap; otherwise, it returns 0	
.	
For example:	
Example 3-11 returns all rows in the EMPLOYEES	
table whose valid date range overlaps the period from 01-Jan-1990 until 01-Jan-2000.	
Example 3-11 WM_OVERLAPS Operator	
The WM_RDIFF operator returns the difference between the two periods on the right (that is, later in time). WM_RDIFF(p1, p2)	
returns a period that is the difference between periods p1	
and p2	
on the right.	
The following example returns the period between 01-Jan-1988 to 01-Jan-1990:	
The following example returns a null value because p1.validTill	
is less than p2.validTill	
:	
Example 3-12 returns, for each row in the EMPLOYEES	
table, the employee name and the period in which the WM_PERIOD	
column value is different on the right from 01-Jan-1995.	
Example 3-12 WM_RDIFF Operator	
As you can see in the output of Example 3-12, only Adams and Coleman have rows that are valid during the period of difference on the right.	
This section describes some behaviors and considerations for queries and data manipulation language (insert, update, and delete) operations related to valid time support.	
All queries issued against a version-enabled table with valid time support take into account the current session's valid time setting (set using the SetValidTime or SetValidTimeFilterON procedure). Unless the query specifies otherwise (for example, by using one of the valid time support operators described in Section 3.5), each query displays all rows from the underlying table having a valid time range that overlaps the session valid time or valid time filter, and that satisfy the other conditions of the query.	
By default (that is, if the SetValidTime procedure has not been invoked in the session or if it was invoked with no parameters), all rows that are valid at the current time are considered valid, and the valid time period is considered to be from the current time forward without limit.	
All DML statements (INSERT, UPDATE, and DELETE) issued against a version-enabled table with valid time support take into account the current session's valid time setting and update mode. (The update mode is controlled by the SetWMValidUpdateModeON and SetWMValidUpdateModeOFF procedures.) The DML statements can affect all rows that are valid for the valid time period.	
By default (that is, if the SetValidTime procedure has not been invoked in the session or if it was invoked with no parameters), all rows that are valid at the current time can be affected by DML statements, and all modified rows have their valid time range timestamps set as from the current time until changed.	
The following sections describe additional considerations that apply to specific kinds of DML operations.	
Update operations to version-enabled tables with valid time support can be sequenced or nonsequenced.	
A sequenced update operation occurs when you do not specify a change to the WM_VALID	
column in the UPDATE statement. In a sequenced update operation, the WM_VALID.ValidTill	
value for the row is changed to the ValidFrom	
timestamp of the current session valid time range, and a new row is created in which the WM_VALID	
period reflects the current session valid time range. Sequenced updates ensure that no duplicate records are created by an UPDATE statement, because the WM_VALID	
column values are different.	
Example 3-13 shows a sequenced update operation, in which employee Baxter is given a raise. Before the update, there is one row for Baxter, with a salary of 40000 and a valid time period from 01-Jan-2000 until changed.	
Example 3-13 Sequenced Update Operation	
The update operation in Example 3-13 modifies the WM_VALID	
value of the existing row and creates a new row with the new salary value and the WM_VALID	
value reflecting the session valid time range, as shown by the following statements:	
A sequenced delete operation deletes the portion of a row that falls within the session valid time range; that is, a new row is created in which the WM_VALID	
period reflects the current session valid time range, and then that row is deleted. If the UPDATE statement in Example 3-13 had instead been DELETE FROM employees WHERE name = 'Baxter';	
, the new row for Baxter, valid from 01-Jan-2003 until changed, would have been deleted, but any rows for Baxter valid before 01-Jan-2003 would not be affected. There is no concept of a non-sequenced delete operation; for example, if a valid time was not set in Example 3-13, a delete operation WHERE name = 'Baxter'	
would delete all rows for Baxter.	
Sequenced update and delete operations are enabled when a table is version-enabled with valid time support or when valid time support is added to a version-enabled table. However, you can disable support for sequenced update and delete operations (as well as for nonsequenced update operations) by using the SetWMValidUpdateModeOFF procedure, and you can re-enable support by using the SetWMValidUpdateModeON procedure. (Both procedures are described in Chapter 4.)	
A nonsequenced update operation occurs when you specify a change to the WM_VALID	
column in the UPDATE statement. In a nonsequenced update operation, no additional row is created, and the WM_VALID	
column value of the updated row or rows reflects what you specified in the UPDATE statement. You must ensure that a nonsequenced update operation will not result in multiple rows with the same primary key value being valid in the period specified in the UPDATE statement; otherwise, the update fails because of a primary key constraint violation.	
If the UPDATE statement in Example 3-13 had been a nonsequenced update operation, the result would have been only one row for Baxter: the existing row would have had the salary set to 45000 and the WM_VALID	
column set to the period specified in the UPDATE statement.	
When you insert a row into a version-enabled table with valid time support, you can specify a valid time period for the row. If you specify null timestamps for the period, the session valid time period is used.	
When a row is inserted into a version-enabled table with valid time support, Workspace Manager checks to ensure that no existing rows with the same primary key value have a valid time range that overlaps the valid time range of the newly inserted row. If such a row is found, an exception is raised. Example 3-14 shows an attempted insert operation that violates a primary key constraint because overlapping valid time periods.	
Example 3-14 Insert Operation Failing Because of Overlapping Time Periods	
To make the statement in Example 3-14 succeed, first change the WM_VALID.ValidTill attribute for the Coleman row to a timestamp reflecting 01-Jan-2004 or an earlier date.	
This section describes considerations related to valid time support that affect referential integrity constraints and unique constraints.	
If a referential integrity constraint exists between two version-enabled tables that have valid time support, the valid time periods of rows are considered when the constraint is enforced. For example, assume that a DEPARTMENTS	
table has a MANAGER_ID	
column that is a foreign key referencing the EMPLOYEE_ID	
column in an EMPLOYEES	
table (that is, the department manager must be an existing employee). If both tables are version-enabled with valid time support, and if an insert or update operation would result in a new DEPARTMENTS.MANAGER_ID	
value, the operation will fail if the D	
EPARTMENTS.WM_VALID	
value is not within the range of the EMPLOYEES.WM_VALID	
value for the employee who is being made the department manager. (That is, the operation will fail if the new department manager is not a valid employee for the time period specified or defaulted for the insert or update operation.)	
If either or both tables in a referential integrity constraint are not version-enabled with valid time support, valid time periods are ignored in enforcing the constraint.	
If a unique constraint exists in a version-enabled table with valid time support, the valid time periods of rows are considered when the constraint is enforced. For example, assume that an EMPLOYEES	
table has an EMPLOYEE_ID	
column that has a unique constraint. If an insert or update operation would result in a new EMPLOYEE_ID	
value that is the same as an existing EMPLOYEE_ID	
value, the operation will fail if the WM_VALID	
values of the existing and inserted rows overlap. (That is, the operation will fail if the new employee and an existing employee have the same ID numbers and their rows are both valid at any given time. However, the operation will succeed if the valid time periods for the two employees do not overlap.)	
If a row in a version-enabled table with valid time support is locked, it is automatically locked for its entire valid time period. There is no way to lock a row for a specified time period.	
Any updates in a pessimistically locked workspace will lock the rows seen from an ancestor workspace as the updates are performed in the workspace. The locked rows in ancestor workspaces will not be further updatable in their valid time periods as long as they are locked.	
For an explanation of Workspace Manager locking, see Section 1.3.	
This section describes the effect on valid time support on Workspace Manager static data dictionary views. These views are documented in Chapter 5.	
For a versioned-enabled table with valid time support, the xxx_CONF view (described in Section 5.45) will include any temporal conflicts. Such a conflict results when the valid time of a row in a parent workspace, containing the same key as a row in its child workspace, overlaps with the valid time of that row in the child workspace. Setting the session context valid time has no effect on the results of the xxx_CONF views, because all applicable conflicts are displayed for the entire time dimension.	
For a version-enabled table with valid time support, a column named WM_VALID	
, of type WM_PERIOD	
, is added to the xxx_CONF view, to indicate the time period during which the row is valid. A column named WM_CONFLICTPERIOD	
, of type WM_PERIOD	
, is also added to the view, to indicate the overlapping period of the rows for which conflicts were detected.	
For a version-enabled table with valid time support, the xxx_DIFF view (described in Section 5.46) will include temporal differences for a primary key between two distinct workspaces or savepoints. Such a difference occurs when a row is modified (inserted, updated, or deleted) in either a parent or child workspace. If two rows with the same primary key value are modified in both a parent and child workspace, the two rows are only correlated in the xxx_DIFF view when the valid time ranges of the rows overlap. Setting the session context valid time has no effect on the results of the xxx_DIFF views, because all applicable differences are displayed for the entire time dimension.	
For a version-enabled table with valid time support, a column named WM_VALID	
, of type WM_PERIOD	
, is added to the xxx_DIFF view, to indicate the time period during which the row is valid. A column named WM_DIFFPERIOD	
, of type WM_PERIOD	
, is also added to the view, to indicate the overlapping period of the rows for which a difference was detected.	
The xxx_HIST views (described in Section 5.47) include information about both valid times and transaction times. It also includes audit information, such as the name of the user that created the row. For a version-enabled table with valid time support, a column named WM_VALID	
, of type WM_PERIOD	
, is added to the xxx_HIST view, to indicate the time period during which the row is valid.	
For a version-enabled table with valid time support, a column named WM_VALID	
, of type WM_PERIOD	
, is added to the xxx_LOCK view (described in Section 5.48), to indicate the time period during which the row is valid. The row is locked for its entire valid time period, so this is also the locking period.	
For a version-enabled table with valid time support, a column named WM_VALID	
, of type WM_PERIOD	
, is added to the xxx_MW view (described in Section 5.49), to indicate the time period during which the row is valid. To see only the rows that are valid during a specific period, use the WM_OVERLAPS operator.	
You can add valid time support to an existing version-enabled table by using the AlterVersionedTable procedure. You can specify a valid time period to be set in the WM_VALID column of all existing rows, or you can accept the default period of the current timestamp until changed.	
Example 3-15 creates a table named MY_TABLE	
, version-enables it without valid time support, and then adds valid time support. After the valid time support is added, the WM_VALID	
column contains the default valid time period.	
Example 3-15 Adding Valid Time Support to an Existing Version-Enabled Table	
This document has three parts:	
Part II contains the following chapters with reference information:	
Workspace Manager includes PL/SQL subprograms (procedures and functions), in a package named DBMS_WM	
, that perform the available features of the product. This chapter provides reference information on each subprogram.	
Note: Most Workspace Manager subprograms are procedures, but a few are functions. (A function returns a value; a procedure does not return a value.)Most functions have names starting with Get (such as GetConflictWorkspace and GetWorkspace).	
The subprograms are presented in alphabetical order. For a brief description of subprograms according to their logical groupings, see Section 1.16.	
Errors (exceptions) that can occur with Workspace Manager subprograms are documented in Appendix D, including the cause and suggested user action for each error.	
Syntax notes:	
DBMS_WM	
public synonym for the Workspace Manager PL/SQL package must be used with the subprogram name. The DBMS_WM	
public synonym is included in the format and in any examples. Adds a topology geometry layer from a version-enabled feature table to a topology.	
Format	
DBMS_WM.Add_Topo_Geometry_Layer(
topology IN VARCHAR2,	
table_name IN VARCHAR2,	
column_name IN VARCHAR2,	
tg_layer_type IN VARCHAR2);	
Parameters	
Table 4-1 Add_Topo_Geometry_Layer Procedure Parameters	
Parameter	Description
---	---
topology	Topology to which to add the topology geometry layer containing the topology geometries in the specified column. The topology must have been created using the SDO_TOPO.CREATE_TOPOLOGY procedure.
table_name	Name of the topology geometry layer table containing the column specified in
column_name	Name of the column (of type
tg_layer_type	Type of topology geometry layer:
Usage Notes	
This procedure has the same format and meaning as the SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure, which is documented in Oracle Spatial Topology and Network Data Models Developer's Guide. However, you must use DBMS_WM.Add_Topo_Geometry_Layer, and not SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER, to add a topology geometry layer from a version-enabled feature table to a topology. For information about Workspace Manager support for topologies, see Section 1.14.	
The first call to this procedure for a given topology creates the <topology-name>_RELATION$ table, which is described in Oracle Spatial Topology and Network Data Models Developer's Guide.	
An exception is raised if topology	
, table_name	
, or column_name	
does not exist, if topology	
or table_name	
is not version-enabled, or if tg_layer_type	
is not one of the supported values.	
Examples	
The following example adds a topology geometry layer to the CITY_DATA	
topology. The topology geometry layer consists of polygon geometries in the FEATURE	
column of the LAND_PARCELS	
table.	
Adds a workspace as a parent workspace to a child workspace in a multiparent workspace environment.	
Syntax	
Parameters	
Table 4-2 AddAsParentWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace to which to add the parent workspace. The name is case-sensitive.
parent_workspace	Name of the workspace to add as a parent workspace of
auto_commit	A Boolean value (
Usage Notes	
This procedure is part of the support for the multiparent workspaces feature, which is described in Section 1.1.10. If workspace	
has only one parent workspace, this procedure makes workspace	
a multiparent workspace. If workspace	
is already a multiparent workspace, this procedure adds another parent workspace to workspace	
.	
An exception is raised if one or more of the following apply:	
ALLOW_MULTI_PARENT_WORKSPACES	
is OFF	
. CR_WORKSPACE_MODE	
or NONR_WORKSPACE_MODE	
(whichever is applicable, depending on whether or not workspace	
is a continually refreshed workspace) is OPTIMISTIC_LOCKING	
. workspace	
or parent_workspace	
does not exist. parent_workspace	
is already in the ancestor hierarchy of workspace	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. workspace	
. Examples	
The following example adds Workspace4	
as a parent workspace of Workspace3	
. (See the hierarchy illustration in Figure 1-3 in Section 1.1.10.)	
Adds a user-defined hint: that is, modifies (and thus overrides) a default optimizer hint, with the goal of improving the performance of SQL statements executed by the DBMS_WM package on a specified version-enabled table or all version-enabled tables.	
Syntax	
Parameters	
Table 4-3 AddUserDefinedHint Procedure Parameters	
Parameter	Description
---	---
hint_id	Numeric ID that uniquely identifies the user-defined hint. Must match an existing hint ID used by Workspace Manager for one or more SQL statements.
table_id	Name of the table to which to apply the hint. The name is not case-sensitive. If this value is null, the hint is used with all version-enabled tables for any SQL statements that specify the hint.
hint	The text of the optimizer hint. For an explanation of optimizer hints, see the chapter about using optimizer hints in Oracle Database Performance Tuning Guide.
Usage Notes	
Use this procedure only if you are dissatisfied with the performance of any DBMS_WM package operations, and if you know how to use application tracing and SQL optimizer hints. For information about tracing, see the chapter about application tracing tools in Oracle Database Performance Tuning Guide.	
In the trace output, any SQL statements using the DBMS_WM package that allow a user-defined hint include one or more comments in the following format:	
(hint_id) (table_id)	
*/If you have identified a statement that is performing poorly, and if you know an optimizer hint that will improve performance, you can use the AddUserDefinedHint	
procedure to specify the hint that should be used for the specified hint ID. You can also indicate whether to use the specified hint associated with the hint ID only for a specified table, or for all tables.	
If you specify the table_id	
parameter, the specified hint will be used only when SQL statements that use the hint ID access the specified table, and the default Workspace Manager-supplied hint will be used with other tables. If the table_id	
parameter is null, the specified hint will be used when any DBMS_WM statement use the hint ID.	
If the hint	
parameter specifies an object name (such as an index name), the table_id	
parameter must not be null.	
Any table aliases can be used within user-defined hints; however, standard scoping rules still apply.	
To remove a user-defined hint (that is, to cause the default hint associated with a hint ID to be used), use the RemoveUserDefinedHint procedure.	
Examples	
The following example specifies a full table scan on the TABLE1 table and any associated Workspace Manager infrastructure tables when a SQL statement specifies hint ID 1101 with the SCOTT.TABLE1 table.	
Modifies the description of a savepoint.	
Syntax	
Parameters	
Table 4-4 AlterSavepoint Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace in which the savepoint was created. The name is case-sensitive.
sp_name	Name of the savepoint. The name is case-sensitive.
sp_description	Description of the savepoint.
Usage Notes	
To see the current description of the savepoint, examine the DESCRIPTION	
column value for the savepoint in the ALL_WORKSPACE_SAVEPOINTS metadata view, which is described in Section 5.16.	
An exception is raised if the user is not the workspace owner or savepoint owner or does not have the WM_ADMIN_ROLE	
role.	
Examples	
The following example modifies the description of savepoint SP1	
in the NEWWORKSPACE	
workspace.	
Alters a version-enabled table to add valid time support, rename a constraint, or rename an index.	
Syntax	
Parameters	
Table 4-5 AlterVersionedTable Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table to which to add valid time support. The name is not case-sensitive.
alter_option	One of the following values: See the Usage Notes for information about these options, including when you must and can use this procedure to rename an index or a constraint.
parameter_options	A quoted string (in the general format 'keyword=value, keyword2=value2, ...') containing keywords valid for the specified
ignore_last_error	A Boolean value (
Usage Notes	
Use this procedure to add valid time support, rename a constraint, or rename an index for an existing version-enabled table. For more information about adding valid time support, see Section 3.10.	
If the alter_option	
value is ADD_VALID_TIME	
, you can specify none, one, or more of the following parameter_options	
keywords:	
validFrom	
: Starting time period to be set in the WM_VALID column of all existing rows. The default value is the current timestamp. validTill	
: Ending time period to be set in the WM_VALID column of all existing rows. The default value is UNTIL_CHANGED	
. fmt	
: Date format. The default value is 'mmddyyyyhh24miss'	
. The options are the same as for the TO_TIMESTAMP_TZ function, which is described in Oracle Database SQL Language Reference. nlsparam	
: Globalization support options. The options and default are the same as for the nlsparam	
argument to the TO_CHAR function for date conversion, which is described in Oracle Database SQL Language Reference. If the alter_option	
value is DDL	
, the currently supported operations for this procedure are adding, merging, and splitting table partitions. You must have SYSDBA privileges, and you must specify the following parameter_options	
keywords:	
ddl	
: The DDL (data definition language) statement to be executed. The DDL statement must refer to the fully qualified base table (for example, SCOTT.EMP_LT if SCOTT.EMP is the version-enabled table). force	
: A value of true	
causes Workspace Manager to attempt to execute the DDL statement, regardless of whether the operation is officially supported for this procedure; a value of false	
(the default) causes Workspace Manager not to attempt to execute the DDL statement. Thus, to execute the DDL statement, you must override the default value by explicitly specifying 'force=true'	
; however, do not specify 'force=true'	
unless you know what you are doing. If the alter_option	
value is RENAME_CONSTRAINT	
, you must specify both of the following parameter_options	
keywords:	
constraint_name	
: The current name of the constraint to be renamed. The name is not case-sensitive. new_constraint_name	
: The new name for the constraint. The name is not case-sensitive. If the alter_option	
value is RENAME_INDEX	
, you must specify all of the following parameter_options	
keywords:	
index_owner	
: The name of the schema that owns the index to be renamed. The schema name is not case-sensitive. index_name	
: The current name of the index to be renamed. The name is not case-sensitive. new_index_name	
: The new name for the index. The name is not case-sensitive. If the name of a constraint or index on a version-enabled table is longer than 26 characters, you must use the AlterVersionedTable procedure if you want to rename the constraint or index; you cannot use the ALTER TABLE (for a constraint) or ALTER INDEX (for an index) statement with the RENAME clause. If you use the AlterVersionedTable procedure, you do not need to include it between calls to the BeginDDL and CommitDDL procedures.	
If the name of the constraint or index on a version-enabled table is 26 or fewer characters long, you can do either of the following to rename the constraint or index: use the AlterVersionedTable procedure, or use the ALTER TABLE (for a constraint) or ALTER INDEX (for an index) statement with the RENAME clause between calls to the BeginDDL and CommitDDL procedures (as explained in Section 1.8).	
If the alter_option	
value is REBUILD_INDEX	
, you must specify the index_owner	
and index_name	
keywords to identify the database user that owns the index and the name of the index; and you can specify either the reverse	
or noreverse	
keyword, to specify whether or not to store the bytes of the index block in reverse order, excluding the rowid.	
The alter_option	
values USE_SCALAR_TYPES_FOR_VALIDTIME	
and USE_WM_PERIOD_FOR_VALIDTIME	
can be used only to change the views on an existing version-enabled table to be consistent with the current setting for the Workspace Manager system parameter USE_SCALAR_TYPES_FOR_VALIDTIME	
(described in Section 1.5). For example, if you set the Workspace Manager system parameter USE_SCALAR_TYPES_FOR_VALIDTIME	
to ON	
, but an existing version-enabled table named MYTABLE has views that use a single column named WM_VALID (of type WM_PERIOD	
) to indicate the valid time range, you can change the views on MY_TABLE to use two columns of type TIMESTAMP WITH TIME ZONE by calling the AlterVersionedTable procedure and specifying the alter_option	
value USE_SCALAR_TYPES_FOR_VALIDTIME	
.	
The alter_option	
parameter cannot be used to override the current value of the Workspace Manager system parameter USE_SCALAR_TYPES_FOR_VALIDTIME	
. If the system parameter value is ON	
, the alter_option	
parameter value must be USE_SCALAR_TYPES_FOR_VALIDTIME	
; and if the system parameter value is OFF	
, the alter_option	
parameter value must be USE_WM_PERIOD_FOR_VALIDTIME	
.	
You can use double quotation marks for parameter values within the parameter_options	
string. For example, the following two specifications are semantically identical:	
If a call to the AlterVersionedTable procedure fails, you should try to fix the cause of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS static data dictionary views to see the SQL statement and error message. Fix the cause of the error, and then call the AlterVersionedTable procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you can ignore the error by calling the AlterVersionedTable procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
An exception is raised if one or more of the following apply:	
table_name	
does not exist. alterOptions	
is not ADD_VALID_TIME	
. Examples	
The following example creates a table named MY_TABLE	
, version-enables it without valid time support, and then adds valid time support. After valid time support is added, the WM_VALID	
column contains the default valid time period.	
The following example creates a table named SCOTT.MY_TABLE	
, creates an index named MY_INDEX	
on the VALUE	
column in that table, version-enables the table, and then renames the index to MY_NEW_INDEX	
.	
Modifies the description of a workspace.	
Syntax	
Parameters	
Table 4-6 AlterWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
workspace_description	Description of the workspace.
Usage Notes	
To see the current description of the workspace, examine the DESCRIPTION	
column value for the savepoint in the ALL_WORKSPACES metadata view, which is described in Section 5.17.	
An exception is raised if the user is not the workspace owner or does not have the WM_ADMIN_ROLE	
role.	
Examples	
The following example modifies the description of the NEWWORKSPACE	
workspace.	
Starts the bulk loading process for a version-enabled table.	
Syntax	
Parameters	
Table 4-7 BeginBulkLoading Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table into which data will be bulk loaded. The name is not case-sensitive.
workspace	Name of the workspace in which bulk loading will be performed. The name is case-sensitive.
version	Version number returned by the GetBulkLoadVersion function.
check_for_duplicates	A Boolean value (
ignore_last_error	A Boolean value (
single_transaction	A Boolean value (
See the Usage Notes for more information about this parameter.	
Usage Notes	
Before you can begin bulk loading data into a version-enabled table, you must call the GetBulkLoadVersion and BeginBulkLoading procedures. You must end the bulk loading session by calling either the CommitBulkLoading procedure (to commit changes made when the data was loaded) or the RollbackBulkLoading procedure (to roll back changes made when the data was loaded). For more information about bulk loading with Workspace Manager, see Section 1.7.	
If single_transaction	
is FALSE	
(the default), the BeginBulkLoading procedure drops some internal Workspace Manager views on the table, to prevent DML operations and certain Workspace Manager operations on the table; however, this also prevents any queries from being made using the specified version-enabled table. Regardless of the single_transaction	
parameter value, and especially if it is FALSE	
, you should complete the bulk loading as quickly as possible and at a time when applications and users will not need to access the table. The value of the single_transaction	
parameter must be the same for both the BeginBulkLoading and CommitBulkLoading procedures for a bulk loading session with a specified table.	
A TRUE	
value for the check_for_duplicates	
parameter does not cause any existing data in the version-enabled table to be checked. If an existing row in the version in which data is being bulk loaded (which could be the latest version of a workspace or the root version) has the same primary key values as a row in the data to be bulk loaded, the behavior depends on the history option setting for the table: if VIEW_WO_OVERWRITE	
is set, the newly loaded row is chained to the existing row that has the same primary key values; if VIEW_WO_OVERWRITE	
is not set, the new data is not bulk loaded but is instead moved to the discards table.	
If a call to the BeginBulkLoading procedure fails, you should try to fix the cause of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS static data dictionary views to see the SQL statement and error message. Fix the cause of the error, and then call the BeginBulkLoading procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the BeginBulkLoading procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
If performance is an issue, carefully consider whether or not you need to check for duplicate records, because a check_for_duplicates	
value of TRUE	
(the default) causes Workspace Manager to perform additional internal processing.	
An exception is raised if one or more of the following apply:	
table_name	
does not exist. table_name	
is not version-enabled. WM_ADMIN_ROLE	
role. Examples	
The following example gets a bulk load version number for the W1	
workspace, and starts the bulk load operation into the EMP	
table in that workspace.	
Starts a DDL (data definition language) session for a specified table.	
Syntax	
Parameters	
Table 4-8 BeginDDL Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table. The name is not case-sensitive.
Usage Notes	
This procedure starts a DDL session, and it creates a special table whose name is the same as table_name	
but with _LTS added to the table name. After calling this procedure, you can perform one or more DDL operations on the table or any indexes or triggers that are based on the table, and then call either the CommitDDL or RollbackDDL procedure.	
In addition to creating the special <table-name>_LTS table, the procedure creates other objects:	
For detailed information about performing DDL operations related to version-enabled tables, see Section 1.8; and for DDL operations on version-enabled tables in an Oracle replication environment, see also Section C.3.	
An exception is raised if one or more of the following apply:	
table_name	
does not exist or is not version-enabled. table_name	
has a domain index defined on it, and the user has not been directly granted the CREATE TABLE	
and CREATE SEQUENCE	
privileges. table_name	
. (That is, the BeginDDL procedure has already been called specifying this table, and the CommitDDL or RollbackDDL procedure has not been called specifying this table.) Examples	
The following example begins a DDL session, adds a column named COMMENTS	
to the COLA_MARKETING_BUDGET	
table by using the special table named COLA_MARKETING_BUDGET_LTS	
, and ends the DDL session by committing the change.	
Starts a conflict resolution session.	
Syntax	
Parameters	
Table 4-9 BeginResolve Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
This procedure starts a conflict resolution session. While this procedure is executing, the workspace is frozen in 1WRITER	
mode, as explained in Section 1.1.5.	
After calling this procedure, you can execute the ResolveConflicts procedure as needed for various tables that have conflicts, and then call either the CommitResolve or RollbackResolve procedure. For more information about conflict resolution, see Section 1.1.4.	
An exception is raised if one or more of the following apply:	
workspace	
. workspace	
and its parent workspace. Examples	
The following example starts a conflict resolution session in Workspace1	
.	
Changes a workspace from not continually refreshed to continually refreshed. (Continually refreshed workspaces are explained in Section 1.1.9.)	
Syntax	
Parameters	
Table 4-10 ChangeWorkspaceType Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
workspace_type	Must be
auto_commit	A Boolean value (
Usage Notes	
For this release, you can only change a workspace that is not continually refreshed to continually refreshed; you cannot change a continually refreshed workspace to not continually refreshed.	
An exception is raised if one or more of the following occur:	
workspace	
, and the user does not have the WM_ADMIN_ROLE	
role. workspace_type	
is not valid. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. CR_WORKSPACE_MODE	
is set to PESSIMISTIC_LOCKING	
, but the NONCR_WORKSPACE_MODE	
parameter is set to OPTIMISTIC_LOCKING	
and there is versioned data in any continually refreshed workspace. Examples	
The following example changes the NEWWORKSPACE	
workspace type from not continually refreshed to continually refreshed.	
Ends the bulk loading process for a version-enabled table by committing the bulk load changes.	
Syntax	
Parameters	
Table 4-11 CommitBulkLoading Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table into which data has been bulk loaded. The name is not case-sensitive.
discards_table	Name of the table into which discard records are inserted. The name is not case-sensitive. If the table does not already exist, it is created.
check_for_duplicates	A Boolean value (
enforceUCFlag	A Boolean value (
enforceRICFlag	A Boolean value (
ignore_last_error	A Boolean value (
single_transaction	A Boolean value (
The value of this parameter must be the same as when you called the BeginBulkLoading procedure specifying the table in	
Usage Notes	
For information about the requirements for bulk loading data into version-enabled tables, see Section 1.7.	
This procedure generates versioning metadata for newly loaded data and synchronizes the newly loaded data with the existing versioned data in the table. It can also enforce unique and referential constraints on the newly loaded data. It re-creates all the views that were dropped by the BeginBulkLoading procedure.	
A TRUE	
value for the check_for_duplicates	
parameter does not cause any existing data in the version-enabled table to be checked. If an existing row in the version in which data is being bulk loaded (which could be the latest version of a workspace or the root version) has the same primary key values as a row in the data to be bulk loaded, the behavior depends on the history option setting for the table: if VIEW_WO_OVERWRITE	
is set, the newly loaded row is chained to the existing row that has the same primary key values; if VIEW_WO_OVERWRITE	
is not set, the new data is not bulk loaded but is instead moved to the discards table.	
If a call to the CommitBulkLoading procedure fails, you should try to fix the cause of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS static data dictionary views to see the SQL statement and error message. Fix the cause of the error, and then call the CommitBulkLoading procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the CommitBulkLoading procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
Note the following performance considerations:	
TRUE	
value for check_for_duplicates	
requires additional processing time, and a TRUE	
value for enforceUCFlag	
or enforceRICFlag	
may require additional processing time. enforceUCFlag	
or enforceRICFlag	
parameter to TRUE	
does not have a significant effect on performance. An exception is raised if one or more of the following apply:	
table_name	
does not exist. table_name	
is not version-enabled. WM_ADMIN_ROLE	
role. Examples	
The following example commits changes made to the EMP	
table during a bulk load operation, and specifies DISCARDS	
as the table to hold discard records.	
Commits DDL (data definition language) changes made during a DDL session for a specified table, and ends the DDL session.	
Syntax	
Parameters	
Table 4-12 CommitDDL Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table. The name is not case-sensitive.
ignore_last_error	A Boolean value (
enforce_unique_constraints	A Boolean value (
enforce_RICs	A Boolean value (
Usage Notes	
This procedure commits changes that were made to a version-enabled table and to any indexes, triggers, and referential integrity constraints based on the version-enabled table during a DDL session. It also deletes the special <table-name>_LTS table that was created by the BeginDDL procedure.	
For detailed information about performing DDL operations related to version-enabled tables, see Section 1.8; and for DDL operations on version-enabled tables in an Oracle replication environment, see also Section C.3.	
The enforce_unique_constraints	
and enforce_RICs	
parameter settings apply only to existing versioned data, and do not affect whether or not existing constraints are enforced for future DML operations on the table.	
If a call to the CommitDDL procedure fails, the table is left in an inconsistent state. If this occurs, you should try to fix the cause of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS static data dictionary views to see the SQL statement and error message. For example, the CommitDDL procedure might have failed because the tablespace was not large enough to add a column. Fix the cause of the error, and then call the CommitDDL procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the CommitDDL procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
An exception is raised if one or more of the following apply:	
table_name	
does not exist or is not version-enabled. table_name	
has a domain index defined on it, and the user has not been directly granted the CREATE TABLE	
and CREATE SEQUENCE	
privileges. table_name	
. (That is, the BeginDDL procedure has not been called specifying this table, or the CommitDDL or RollbackDDL procedure was already called specifying this table.) Some invalid DDL operations also cause an exception when CommitDDL procedure is called. See Section 1.8 for information about DDL operations that are supported.	
Examples	
The following example begins a DDL session, adds a column named COMMENTS	
to the COLA_MARKETING_BUDGET	
table by using the special table named COLA_MARKETING_BUDGET_LTS	
, and ends the DDL session by committing the change.	
Ends a conflict resolution session and saves (makes permanent) any changes in the workspace since the BeginResolve procedure was executed.	
Syntax	
Parameters	
Table 4-13 CommitResolve Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
This procedure ends the current conflict resolution session (started by the BeginResolve procedure), and saves all changes in the workspace since the start of the conflict resolution session. Contrast this procedure with the RollbackResolve procedure, which discards all changes.	
For more information about conflict resolution, see Section 1.1.4.	
An exception is raised if one or more of the following apply:	
workspace	
. WM_ADMIN_ROLE	
role or that did not execute the BeginResolve procedure on workspace	
. Examples	
The following example ends the conflict resolution session in Workspace1	
and saves all changes.	
Deletes removable savepoints in a workspace and minimizes the Workspace Manager metadata structures for the workspace. (Removable savepoints are explained in Section 1.1.2.)	
Syntax	
or	
Parameters	
Table 4-14 CompressWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
compress_view_wo_overwrite	A Boolean value (
firstSP	First savepoint. Savepoint names are case-sensitive. If only If If only
secondSP	Second savepoint. All removable savepoints from However, if Savepoint names are case-sensitive.
auto_commit	A Boolean value (
commit_in_batches	A Boolean value (
batch_size	Batch size for internal commit operations if
remove_latest_deleted_rows	A Boolean value (
Usage Notes	
You can compress a workspace when the explicit savepoints (all or some of them) in the workspace are no longer needed. The compression operation is useful for the following reasons:	
This procedure deletes implicit savepoints only if they do not have any child dependencies, and the existence of any such non-removable savepoints will not allow the entire range to be compressed as a single unit. However, you can remove or move such savepoints by using the RemoveWorkspace or RefreshWorkspace procedure, respectively.	
While this procedure is executing, the current workspace is frozen in NO_ACCESS	
mode, as explained in Section 1.1.5.	
A workspace cannot be compressed if there are any sessions in the workspace (except for the LIVE	
workspace), or if any user has executed a GotoDate operation or a GotoSavepoint operation specifying a savepoint in the workspace.	
If the procedure format without the compress_view_wo_overwrite	
parameter is used, a value of FALSE	
is assumed for the parameter.	
For information about VIEW_WO_OVERWRITE	
and other history options, see the information about the EnableVersioning procedure.	
If you expect to purge a subset of your historical data periodically, such as removing historical data older than one year, plan to create a savepoint at each expected deletion point on the day it occurs. For example, if you plan to purge 2005 historical data when it is a year old, you need to create a savepoint on January 1, 2006. Then, on January 1, 2007 you can call the CompressWorkspace procedure, specifying the workspace name and the January 1, 2006 savepoint, to delete all history that occurred before 2006.	
To see if a version-enabled table can be compressed in primary key range batches, check the value of the BATCH_SIZE	
column in the WM_COMPRESS_BATCH_SIZES metadata view, which is described in Section 5.40.	
To specify a batch_size	
value of PRIMARY_KEY_RANGE	
, you must first generate either histogram statistics (for columns of type NUMBER	
, INTEGER	
, DATE	
, TIMESTAMP	
, CHAR	
, or VARCHAR2	
) or general statistics (for columns of type NUMBER	
, INTEGER	
, DATE	
, or TIMESTAMP	
) on the first column of the primary key. The procedure DBMS_STATS.GATHER_TABLE_STATS generates general statistics. If general but not histogram statistics are available for columns of type NUMBER	
, INTEGER	
, DATE	
, or TIMESTAMP	
, the Workspace Manager system parameter NUMBER_OF_COMPRESS_BATCHES	
is used to compute the number of batches when batch_size	
is specified as PRIMARY_KEY_RANGE	
. For more information about statistics, see Oracle Database Performance Tuning Guide.	
An exception is raised if auto_commit	
is TRUE	
and an open transaction exists, if the user does not have sufficient privileges on all tables that need to be modified (including, for example, tables modified by triggers), or if the user does not have the privilege to access and merge changes in workspace	
.	
To compress a workspace and all its descendant workspaces, use the CompressWorkspaceTree procedure.	
Examples	
The following example compresses NEWWORKSPACE	
.	
The following example compresses NEWWORKSPACE	
, deleting all explicit savepoints between the creation of the workspace and the savepoint SP1	
.	
The following example compresses NEWWORKSPACE	
, deleting the explicit savepoint SP1	
and all explicit savepoints up to but not including SP2	
.	
The following example compresses B_focus_1	
, accepts the default values for the firstSP	
and secondSP	
parameters (that is, deletes all explicit savepoints), and specifies FALSE	
for the auto_commit	
parameter.	
The following example analyzes the COLA_MARKETING_BUDGET_LT	
table to generate the necessary histogram statistics for the next statement, and then it compresses B_focus_1	
. The call to the CompressWorkspace	
procedure accepts the default values for the firstSP	
, secondSP	
, and auto_commit	
parameters; specifies TRUE	
for the commit_in_batches	
parameter; and specifies PRIMARY_KEY_RANGE	
for the batch_size	
parameter.	
Deletes removable savepoints in a workspace and all its descendant workspaces. (Removable savepoints are explained in Section 1.1.2.) It also minimizes the Workspace Manager metadata structures for the affected workspaces, and eliminates any redundant data that might arise from the deletion of the savepoints.	
Syntax	
Parameters	
Table 4-15 CompressWorkspaceTree Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
compress_view_wo_overwrite	A Boolean value (
auto_commit	A Boolean value (
commit_in_batches	A Boolean value (
batch_size	Batch size for internal commit operations if
remove_latest_deleted_rows	A Boolean value (
Usage Notes	
You can compress a workspace and all its descendant workspaces when the explicit savepoints in the affected workspaces are no longer needed (for example, if you will not need to go to or roll back to any of these savepoints). For example, in the hierarchy shown in Figure 1-1 in Section 1.1.1, a CompressWorkspaceTree operation specifying Workspace1 compresses Workspace1, Workspace2, and Workspace3. (For an explanation of database workspace hierarchy, see Section 1.1.1.)	
The compression operation is useful for the following reasons:	
While this procedure is executing, the current workspace is frozen in NO_ACCESS	
mode, as explained in Section 1.1.5.	
A workspace cannot be compressed if there are any sessions in the workspace (except for the LIVE	
workspace), or if any user has executed a GotoDate operation or a GotoSavepoint operation specifying a savepoint in the workspace.	
To see if a version-enabled table can be compressed in primary key range batches, check the value of the BATCH_SIZE	
column in the WM_COMPRESS_BATCH_SIZES metadata view, which is described in Section 5.40.	
To specify a batch_size	
value of PRIMARY_KEY_RANGE	
, you must first generate either histogram statistics (for columns of type NUMBER	
, INTEGER	
, DATE	
, TIMESTAMP	
, CHAR,	
or VARCHAR2	
) or general statistics (for columns of type NUMBER	
, INTEGER	
, DATE	
, or TIMESTAMP	
) on the first column of the primary key. The procedure DBMS_STATS.GATHER_TABLE_STATS generates general statistics. If general but not histogram statistics are available for columns of type NUMBER	
, INTEGER	
, DATE	
, or TIMESTAMP	
, the Workspace Manager system parameter NUMBER_OF_COMPRESS_BATCHES	
is used to compute the number of batches when batch_size	
is specified as PRIMARY_KEY_RANGE	
. For more information about statistics, see Oracle Database Performance Tuning Guide.	
An exception is raised if auto_commit	
is TRUE	
and an open transaction exists, if the user does not have sufficient privileges on all tables that need to be modified (including, for example, tables modified by triggers), or if the user does not have the privilege to access and merge changes in workspace	
.	
If the CompressWorkspaceTree operation fails in any affected workspace, the entire operation is rolled back, and no workspaces are compressed.	
To compress a single workspace (deleting all explicit savepoints or just some of them), use the CompressWorkspace procedure.	
Examples	
The following example compresses NEWWORKSPACE	
and all its descendant workspaces.	
The following example compresses NEWWORKSPACE	
and all its descendant workspaces, accepts the default value for the compress_view_wo_overwrite	
parameter, and specifies FALSE	
for the auto_commit	
parameter.	
The following example compresses NEWWORKSPACE	
and all its descendant workspaces; accepts the default value for the compress_view_wo_overwrite	
and auto_commit	
parameters; specifies TRUE	
for the commit_in_batches	
parameter; and specifies PRIMARY_KEY_RANGE	
for the batch_size	
parameter.	
Allows LOB columns (BLOB, CLOB, or NCLOB) in version-enabled tables to be modified. Use this procedure only if a version-enabled table has any LOB columns.	
Syntax	
Parameters	
Table 4-16 CopyForUpdate Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the table containing one or more LOB columns. The name is not case-sensitive.
where_clause	The Only primary key columns can be specified in the If the
Usage Notes	
This procedure is intended for use only with version-enabled tables containing one or more large object (LOB) columns. The CopyForUpdate procedure must be used because updates performed using the DBMS_LOB package do not fire INSTEAD OF	
triggers on the versioning views. Workspace Manager creates INSTEAD OF	
triggers on the versioning views to implement the copy-on-write semantics. (For non-LOB columns, you can directly perform the update operation, and the triggers work.)	
Examples	
The following example updates the SOURCE_CLOB	
column of TABLE1	
for the document with DOC_ID = 1	
.	
Creates a savepoint for the current version.	
Syntax	
Parameters	
Table 4-17 CreateSavepoint Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace in which to create the savepoint. The name is case-sensitive.
savepoint_name	Name of the savepoint to be created. The name is case-sensitive.
description	Description of the savepoint to be created.
auto_commit	A Boolean value (
Usage Notes	
There are no explicit privileges associated with savepoints; any user who can access a workspace can create a savepoint in the workspace.	
This procedure can be performed while there are users in the workspace; there can be open database transactions.	
While this procedure is executing, the current workspace is frozen in READ_ONLY	
mode, as explained in Section 1.1.5.	
An exception is raised if one or more of the following apply:	
workspace	
does not exist. savepoint_name	
already exists. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example creates a savepoint named Savepoint1	
in the NEWWORKSPACE	
workspace.	
Creates a new workspace in the database.	
Syntax	
or	
Parameters	
Table 4-18 CreateWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive, and it must be unique (no other workspace of the same name). The name must not contain any of the following characters:
A Boolean value (
If you use the syntax without the	
description	Description of the workspace.
auto_commit	A Boolean value (
Usage Notes	
The new workspace is a child of the current workspace. If the session has not explicitly entered a workspace, it is in the LIVE	
database workspace, and the new workspace is a child of the LIVE	
workspace. For an explanation of database workspace hierarchy, see Section 1.1.1.	
An implicit savepoint is created in the current version of the current workspace. (The current version does not have to be the latest version in the current workspace.) For an explanation of savepoints (explicit and implicit), see Section 1.1.2.	
While this procedure is executing, the current workspace is frozen in READ_ONLY	
mode, as explained in Section 1.1.5.	
This procedure does not implicitly go to the workspace created. To go to the workspace, use the GotoWorkspace procedure.	
The following rules apply to continually refreshed workspaces (isrefreshed	
value of TRUE	
):	
An exception is raised if one or more of the following apply:	
workspace	
already exists. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example creates a workspace named NEWWORKSPACE	
in the database.	
Deletes a topology geometry layer from a topology.	
Format	
DBMS_WM.Delete_Topo_Geometry_Layer(
topology IN VARCHAR2,	
table_name IN VARCHAR2,	
column_name IN VARCHAR2);	
Parameters	
Table 4-19 Delete_Topo_Geometry_Layer Procedure Parameters	
Parameter	Description
---	---
topology	Topology from which to delete the topology geometry layer containing the topology geometries in the specified column. The topology must have been created using the SDO_TOPO.CREATE_TOPOLOGY procedure.
table_name	Name of the topology geometry layer table containing the column specified in
column_name	Name of the column (of type
Usage Notes	
This procedure has the same format and meaning as the SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER procedure, which is documented in Oracle Spatial Topology and Network Data Models Developer's Guide. However, you must use DBMS_WM.Delete_Topo_Geometry_Layer, and not SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER, to delete a topology geometry layer from a version-enabled feature table from a topology. For information about Workspace Manager support for topologies, see Section 1.14.	
This procedure deletes data associated with the specified topology geometry layer from the edge, node, and face tables (described in Oracle Spatial Topology and Network Data Models Developer's Guide).	
An exception is generated if topology	
or table_name	
is not version-enabled, or if table_name	
is the only feature table in topology	
.	
Examples	
The following example deletes the topology geometry layer that is based on the geometries in the FEATURE	
column of the LAND_PARCELS	
table from the topology named CITY_DATA	
.	
Deletes a savepoint and associated rows in version-enabled tables.	
Syntax	
Parameters	
Table 4-20 DeleteSavepoint Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace in which the savepoint was created. The name is case-sensitive.
savepoint_name	Name of the savepoint to be deleted. The name is case-sensitive.
compress_view_wo_overwrite	A Boolean value (
auto_commit	A Boolean value (
commit_in_batches	A Boolean value (
batch_size	Batch size for internal commit operations if
Usage Notes	
You can delete a savepoint when it is no longer needed (for example, you will not need to go to it or roll back to it).	
Deleting a savepoint is useful for the following reasons:	
While this procedure is executing, the current workspace is frozen in NO_ACCESS	
mode, as explained in Section 1.1.5.	
To delete a savepoint, you must have the WM_ADMIN_ROLE	
role or be the owner of the workspace or the savepoint.	
This procedure cannot be executed if there are any sessions with an open database transaction, or if any user has executed a GotoDate operation or a GotoSavepoint operation specifying a savepoint in the workspace.	
To specify a batch_size	
value of PRIMARY_KEY_RANGE	
, you must first generate either histogram statistics (for columns of type NUMBER	
, INTEGER	
, DATE	
, TIMESTAMP	
, CHAR	
, or VARCHAR2	
) or general statistics (for columns of type NUMBER	
, INTEGER	
, DATE	
, or TIMESTAMP	
) on the first column of the primary key. The procedure DBMS_STATS.GATHER_TABLE_STATS generates general statistics. If general but not histogram statistics are available for columns of type NUMBER	
, INTEGER	
, DATE	
, or TIMESTAMP	
, the Workspace Manager system parameter NUMBER_OF_COMPRESS_BATCHES	
is used to compute the number of batches when batch_size	
is specified as PRIMARY_KEY_RANGE	
. For more information about statistics, see Oracle Database Performance Tuning Guide.	
An exception is raised if one or more of the following apply:	
workspace	
(unless the workspace is LIVE	
). workspace	
does not exist. savepoint_name	
does not exist. savepoint_name	
is not a removable savepoint. (Removable savepoints are explained in Section 1.1.2.) auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example deletes a savepoint named Savepoint1	
in the NEWWORKSPACE	
workspace.	
Deletes all support structures that were created to enable the table to support versioned rows.	
Syntax	
Parameters	
Table 4-21 DisableVersioning Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the table or (if
force	A Boolean value (
ignore_last_error	A Boolean value (
isTopology	A Boolean value (
keepWMValid	A Boolean value (
Usage Notes	
This procedure is used to reverse the effect of the EnableVersioning procedure. It deletes the Workspace Manager infrastructure (support structures) for versioning of rows, but does not affect any user data in the LIVE	
workspace. The workspace hierarchy and any savepoints still exist, but all rows are the same as in the LIVE	
workspace. (If there are multiple versions in the LIVE	
workspace of a row in the table for which versioning is disabled, only the most recent version of the row is kept.)	
If table_name	
has valid time support (described in Chapter 3), this procedure deletes the WM_VALID	
column and all data in that column. If deleting the WM_VALID	
column would cause a primary key constraint violation, only the row valid at the current time is retained.	
If a call to the DisableVersioning procedure fails, the table is left in an inconsistent state. If this occurs, you should try to fix the cause of the error (examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS static data dictionary views to see the SQL statement and error message), and then call the DisableVersioning procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the DisableVersioning procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
Some causes for the failure of the DisableVersioning procedure include the following:	
The DisableVersioning operation fails if the force	
value is FALSE	
and any of the following apply:	
LIVE	
workspace. LIVE	
workspace. Only the owner of a table or a user with the WM_ADMIN_ROLE	
role can disable versioning on the table.	
Tables that are version-enabled and users that own version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or tables.	
An exception is raised if the table is not version-enabled.	
If you want to disable versioning on a table in an Oracle replication environment, see Section C.2 for guidelines and other information.	
For information about Workspace Manager support for tables in an Oracle Spatial topology, see Section 1.14.	
Examples	
The following example disables the EMPLOYEE	
table for versioning.	
The following example disables the EMPLOYEE	
table for versioning and ignores the last error that occurred during the previous call to the DisableVersioning procedure.	
The following example disables the EMPLOYEE	
, DEPARTMENT	
, and LOCATION	
tables (which have multilevel referential integrity constraints) for versioning.	
Deletes replication support objects that were created by the GenerateReplicationSupport procedure.	
Syntax	
Parameters	
None.	
Usage Notes	
To use this procedure, you must understand how replication applies to Workspace Manager objects, as explained in Appendix C. You must also understand the major Oracle replication concepts and techniques, which are documented in Oracle Database Advanced Replication and Oracle Database Advanced Replication Management API Reference.	
You must execute this procedure as the replication administrator user at the writer site.	
This procedure drops replication support for any version-enabled tables at the nonwriter sites; however, it does not version-disable any version-enabled tables.	
Examples	
The following example drops replication support that had previously been enabled using the GenerateReplicationSupport procedure.	
Version-enables a table, creating the necessary structures to enable the table to support multiple versions of rows.	
Syntax	
Parameters	
Table 4-22 EnableVersioning Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the table or (if
hist	History option, for tracking modifications to
isTopology	A Boolean value (
validTime	A Boolean value (
undo_space	A string containing
validTimeRange	An object of type
Usage Notes	
The table that is being version-enabled must have a primary key defined. The primary key can be a composite (multicolumn) primary key.	
Only the owner of a table or a user with the WM_ADMIN	
role can enable versioning on the table.	
Tables that are version-enabled and users that own version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or tables.	
Tables owned by SYS	
cannot be version-enabled, and version-enabled tables cannot have any associated indexes or triggers owned by SYS	
.	
An exception is raised if one or more of the following apply:	
table_name	
is already version-enabled. table_name	
contains a list of tables and any of the tables has a referential integrity constraint with a table that is not in the list. table_name	
contains any columns whose names start with WM_ or WM$. If the table is version-enabled with the VIEW_WO_OVERWRITE	
hist option specified, this option can later be disabled and re-enabled by calling the SetWoOverwriteOFF and SetWoOverwriteON procedures.	
The history option enables you to log and audit modifications.	
The history option affects the behavior of the GotoDate procedure. See the Usage Notes for that procedure.	
If you expect to purge a subset of your historical data periodically, such as removing historical data older than one year, plan to create a savepoint at each expected deletion point on the day it occurs. For example, if you plan to purge 2005 historical data when it is a year old, you need to create a savepoint on January 1, 2006. Then, on January 1, 2007 you can call the CompressWorkspace procedure, specifying the workspace name and the January 1, 2006 savepoint, to delete all history that occurred before 2006	
If you want to version-enable a table in an Oracle replication environment, see Section C.2 for guidelines and other information.	
For information about Workspace Manager support for tables in an Oracle Spatial topology, see Section 1.14.	
Current notes and restrictions include the following:	
ALLOW_NESTED_TABLE_COLUMNS	
Workspace Manager system parameter is set to ON	
. Examples	
The following example enables versioning on the EMPLOYEE	
table.	
The following example enables versioning on the EMPLOYEE	
, DEPARTMENT	
, and LOCATION	
tables, which have multilevel referential integrity constraints.	
Exports data from a version-enabled table (all rows, or as limited by any combination of several parameters) to a staging table.	
Syntax	
Parameters	
Table 4-23 Export Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the table containing the data to be exported. The name is not case-sensitive.
staging_table	Name of the table to hold the exported data. Must not exceed 25 characters. The name is not case-sensitive. If the table does not exist, a new table with this name is created, with a structure suitable for Workspace Manager export and import operations. (See the Usage Notes for more information about the staging table.)
workspace	Name of the workspace from which to export the data. The name is case-sensitive.
where_clause	The Only primary key columns can be specified in the If the
export_scope	The scope (amount of data) for the export operation.
after_savepoint_name	Name of a savepoint: only data inserted, updated, or deleted after this savepoint is exported. If you do not specify See the Usage Notes for guidelines relating to the savepoint-related and instant-related parameters.
as_of_savepoint_name	Name of a savepoint: only data in the workspace at the time the savepoint was created is exported. If you do not specify See the Usage Notes for guidelines relating to the savepoint-related and instant-related parameters.
after_instant	Date/time specification: only data inserted, updated, or deleted after this time is exported. If you do not specify See the Usage Notes for guidelines relating to the savepoint-related and instant-related parameters.
as_of_instant	Date/time specification: only data that was in the workspace at this time is exported. If you do not specify See the Usage Notes for guidelines relating to the savepoint-related and instant-related parameters.
versioned_db	A Boolean value (
overwrite_existing_data	A Boolean value (
auto_commit	A Boolean value (
Usage Notes	
All data that satisfies the where_clause	
in the version-enabled table table_name	
, the export_scope	
parameter, and any parameters relating to a time or a savepoint in workspace	
is exported to the staging table (staging_table	
parameter).	
Each row of data to be exported is considered to be one of the following: inserted, updated, or deleted in workspace	
(that is, modified data); or data that was not modified in workspace	
but can be seen in it (that is, ancestor data). If data is exported from the LIVE	
workspace, it is all modified data. If a workspace is created and no data has yet been versioned in it, and the Export procedure is called, all the data is ancestor data.	
The first time you export data from a version-enabled table, the staging table should not exist; that is, do not try to create a staging table, but let the procedure create one for you using the name specified for the staging_table	
parameter. The staging table will contain all columns in the original table (table_name	
parameter), plus some columns for use by Workspace Manager.	
After the staging table is created, you can use it for subsequent export operations from the original table, as long as you have not done any of the following DDL operations on the original table: altered any column names or data types, or modified or deleted the primary key constraint. If you have made any of these alterations to the original table, drop the staging table before you call the Export procedure, so that Workspace Manager can create a new staging table. (If you want to overwrite data in an existing staging table, you must also specify overwrite_existing_data	
as TRUE	
.)	
The staging table must be in the current user's schema; or if it is in another schema, the current user must have the CREATE ANY TABLE	
and INSERT ANY TABLE	
privileges.	
It is recommended that you specify no more than one of the following savepoint-related and instant-related parameters: after_savepoint_name	
, as_of_savepoint_name	
, after_instant	
, as_of_instant	
. If you specify after_savepoint_name	
and after_instant	
, the interaction of the two parameters can have complex results. You cannot specify the following parameter combinations: after_savepoint_name	
and as_of_savepoint_name	
, after_instant	
and as_of_instant	
, or as_of_savepoint_name	
and as_of_instant	
.	
An exception is raised if one or more of the following apply:	
table_name	
contains a nested table column. table_name	
contains a column named WM_VALID of type WM_PERIOD. (That is, this procedure is not supported for tables with valid time support, which is explained in Chapter 3.) staging_table	
exists but is not in a valid format for the export operation. staging_table	
is not in the current user's schema and the current user does not have the CREATE TABLE	
and INSERT TABLE	
privileges. ACCESS_WORKSPACE	
privilege for workspace	
or the ACCESS_ANY_WORKSPACE	
privilege. overwrite_existing_data	
is FALSE	
and data that needs to be exported already exists in staging_table	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example exports all data from the COLA_MARKETING_BUDGET	
table in workspace B_Focus_2	
into the staging table COLA_MARKETING_BUDGET_STG	
. (The EXECUTE	
statement is actually on a single line.)	
Finds tables that need to be version-enabled along with a specified table, due to referential integrity constraint relationships.	
Syntax	
Parameters	
Table 4-24 FindRICSet Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the table for which to find all other tables that will need to be version-enabled along with it, because of referential integrity constraint relationships. The name is not case-sensitive.
result_table	Name of the table to hold the results. The name is not case-sensitive. This table must have two columns,
Usage Notes	
Workspace Manager has several considerations relating to referential integrity constraints, as explained in Section 1.9.1. Sometimes, before you can version-enable a table, you must version-enable other tables that are in referential integrity constraints affecting the table. The FindRICSet	
procedure enables you to find all these other tables.	
To display the results, use the SET SERVEROUTPUT ON	
statement before calling this procedure.	
If the result table is not in the current user's schema, the following requirements apply:	
CREATE ANY TABLE	
privilege. An exception is raised if one or more of the following apply:	
table_name	
does not exist. result_table	
exists but is not in a valid format. result_table	
exists and the current user does not have the required privileges to insert into the table. result_table	
does not exist, is specified for a schema other than the current user's schema, and the current user does not have the CREATE ANY TABLE	
privilege. Examples	
The following example creates two tables, EMPLOYEES	
and DEPARTMENTS	
, where DEPARTMENTS.MANAGER_ID	
has a foreign key relationship referencing EMPLOYEES.EMPLOYEE_ID	
. The example then finds all tables that would need to be version-enabled if EMPLOYEES	
and DEPARTMENTS	
were version-enabled.	
The results show that if you want to version-enable the EMPLOYEES	
table, you must version-enable both the EMPLOYEES	
and DEPARTMENTS	
tables; but if you want to version-enable the DEPARTMENTS	
table, you do not need to version-enable any other tables.	
Restricts access to a workspace and the ability of users to make changes in the workspace.	
Syntax	
or	
Parameters	
Table 4-25 FreezeWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
session_duration	A Boolean value (
freezemode	Mode for the frozen workspace. Must be one of the following values:
freezewriter	The user that is allowed to make changes in the workspace. Can be specified only if
force	A Boolean value (
Usage Notes	
If you specify the procedure syntax that does not include the session_duration	
parameter, it is equivalent to specifying FALSE	
for that parameter: that is, the workspace is not unfrozen when the session that called the FreezeWorkspace procedure disconnects from the database.	
The operation fails if one or more of the following apply:	
workspace	
is already frozen (unless force	
is TRUE	
). workspace	
and freezemode	
is NO_ACCESS	
(specified or defaulted). session_duration	
is FALSE and freezemode	
is 1WRITER_SESSION	
. If freezemode	
is READ_ONLY	
or 1WRITER	
, the workspace cannot be frozen if there is an active database transaction.	
You can freeze a workspace only if one or more of the following apply:	
WM_ADMIN_ROLE	
, the FREEZE_ANY_WORKSPACE	
privilege, or the FREEZE_WORKSPACE	
privilege for the specified workspace. The LIVE	
workspace can be frozen only if freezemode	
is READ_ONLY	
or 1WRITER	
.	
To reverse the effect of FreezeWorkspace, use the UnfreezeWorkspace procedure.	
Examples	
The following example freezes the NEWWORKSPACE	
workspace.	
Creates necessary structures for multimaster replication of Workspace Manager objects, and starts the master activity for the newly created master group.	
Syntax	
Parameters	
Table 4-26 GenerateReplicationSupport Procedure Parameters	
Parameter	Description
---	---
mastersites	Comma-delimited list of nonwriter site names (database links) to be added to the Workspace Manager replication environment. Do not include the local site (the writer site) in the list.
groupname	Name of the master group to be created. This group will appear as a regular replication master group, and it can be managed from all the Oracle replication interfaces, including Oracle Enterprise Manager.
groupdescription	Description of the new master group. The default is
Usage Notes	
To use this procedure, you must understand how replication applies to Workspace Manager objects, as explained in Appendix C. You must also understand the major Oracle replication concepts and techniques, which are documented in Oracle Database Advanced Replication and Oracle Database Advanced Replication Management API Reference.	
You must execute this procedure as the replication administrator user at the writer site.	
Before executing this procedure, ensure that the following are true:	
mastersites	
list. This procedure performs the following operations:	
mastersites	
list are running the same version of Workspace Manager. mastersites	
list. groupname	
parameter, with the local site as the master definition site and the writer site. mastersites	
list). mastersites	
list and sets them up for replication. To drop replication support for the Workspace Manager environment, use the DropReplicationSupport procedure.	
Examples	
The following example generates replication support for the Workspace Manager environment at a hypothetical company.	
Returns a version number to be specified in the call to the BeginBulkLoading procedure and in the SQL*Loader control file.	
Format	
Parameters	
Table 4-27 GetBulkLoadVersion Function Parameters	
Parameter	Description
---	---
workspace	Name of the workspace for which to return the list of bulk load version. The name is case-sensitive.
savepoint_var	The version in the workspace in which data will be bulk loaded. Must be one of the following:
Usage	
Before you can begin bulk loading data into a version-enabled table, you must call the GetBulkLoadVersion and BeginBulkLoading procedures. You must end the bulk loading session by calling either the CommitBulkLoading procedure (to commit changes made when the data was loaded) or the RollbackBulkLoading procedure (to roll back changes made when the data was loaded). For more information about bulk loading with Workspace Manager, see Section 1.7.	
An exception is raised if one or more of the following apply:	
workspace	
does not exist. savepoint_var	
is not a valid value. savepoint_var	
is ROOT_VERSION	
but workspace	
is not LIVE	
. Examples	
The following example gets a bulk load version number for the W1	
workspace, and starts the bulk load operation into the EMP	
table in that workspace.	
Returns the name of the workspace on which the session has performed the SetConflictWorkspace procedure.	
Format	
Parameters	
None.	
Usage Notes	
If the SetConflictWorkspace procedure has not been executed, the name of the current workspace is returned.	
Examples	
The following example displays the name of the workspace on which the session has performed the SetConflictWorkspace procedure.	
Returns the names of the (workspace, savepoint) pairs on which the session has performed the SetDiffVersions operation.	
Format	
Parameters	
None.	
Usage Notes	
The returned string is in the format '(WS1,SP1), (WS2,SP2)'	
. This format, including the parentheses, is intended to help you if you later want to use parts of the returned string in a call to the SetDiffVersions procedure.	
Examples	
The following example displays the names of the (workspace, savepoint) pairs on which the session has performed the SetDiffVersions operation.	
Returns the locking mode for the current session, which determines whether or not access is enabled to versioned rows and corresponding rows in the previous version.	
Format	
Parameters	
None.	
Usage Notes	
This function returns E	
, S	
, C	
, or NULL	
.	
E	
(exclusive), S	
(shared), and C	
(carry-forward), see the description of the lockmode	
parameter of the SetLockingON procedure. NULL	
indicates that locking is not in effect. (Calling the SetLockingOFF procedure results in this setting.) For an explanation of Workspace Manager locking, see Section 1.3. See also the descriptions of the SetLockingON and SetLockingOFF procedures.	
Examples	
The following example displays the locking mode in effect for the session.	
Returns the names of workspaces visible in the multiworkspace views for version-enabled tables.	
Format	
Parameters	
None.	
Usage Notes	
This procedure returns the names of workspaces visible in the multiworkspace views, which are described in Section 5.49.	
If no workspaces are visible in the multiworkspace views, NULL	
is returned. If more than one workspace name is returned, names are separated by a comma (for example: workspace1,workspace2,workspace3	
).	
To make a workspace visible in the multiworkspace views, use the SetMultiWorkspaces procedure.	
Examples	
The following example displays the names of workspaces visible in the multiworkspace views.	
Returns the context of the current operation for the current session.	
Format	
Parameters	
None.	
Usage Notes	
This function returns one of the following values:	
DML	
: The current operation is driven by data manipulation language (DML) initiated by the user. MERGE_REMOVE	
: The current operation was initiated by a MergeWorkspace procedure call with the remove_workspace	
parameter set to TRUE	
or a MergeTable procedure call with the remove_data	
parameter set to TRUE	
. MERGE_NOREMOVE	
: The current operation was initiated by a MergeWorkspace procedure call with the remove_workspace	
parameter set to FALSE	
or a MergeTable procedure call with the remove_data	
parameter set to FALSE	
. The returned value can be used in user-defined triggers to take appropriate action based on the current operation.	
Examples	
The following example displays the context of the current operation.	
Returns the name (<table_name>_LT form) of the physical table for a version-enabled table.	
Format	
Parameters	
Table 4-28 GetPhysicalTableName Function Parameters	
Parameter	Description
---	---
table_owner	Name of the schema that owns
table_name	Name of the version-enabled table for which to return the name of its associated physical table.
Usage	
If table_name	
is a version-enabled table, this function returns the name of the table, whose name is in the form <table_name>_LT, that was created by Workspace Manager when the EnableVersioning procedure was called. For information about these <table_name>_LT tables, see Section 1.1.11.	
If table_name	
is a not a version-enabled table, this function returns table_name	
. Thus, you can also use this function to check whether or not a table is version-enabled (that is, by checking whether a name in the form <table_name>_LT or the original table name is returned).	
Examples	
The following example displays the physical table name associated with the COLA_MARKETING_BUDGET	
table after that table is version-enabled.	
Returns a comma-delimited list of all privileges that the current user has for the specified workspace.	
Format	
Parameters	
Table 4-29 GetPrivs Function Parameters	
Parameter	Description
---	---
workspace	Name of the workspace for which to return the list of privileges. The name is case-sensitive.
Usage	
For information about Workspace Manager privileges, see Section 1.4.	
Examples	
The following example displays the privileges that the current user has for the B_focus_2	
workspace.	
Retrieves information about the current workspace and session context.	
Format	
Parameters	
Table 4-30 GetSessionInfo Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace that the current session is in.
context	The context of the current session in the workspace, expressed as one of the following:
context_type	The type of context for the current session in the workspace. Specifically, one of the following values:
Usage Notes	
This procedure is useful if you need to know where a session is (workspace and context) -- for example, after you have performed a combination of GotoWorkspace, GotoSavepoint, and GotoDate operations.	
After the procedure successfully executes, the context	
parameter contains one of the following values:	
LATEST	
: The session is currently on the LATEST	
logical savepoint (explained in Section 1.1.2), and it can see changes as they are made in the workspace. The context is automatically set to LATEST	
when the session enters the workspace (using the GotoWorkspace procedure). For detailed information about the session context, see Section 1.2.	
Examples	
The following example retrieves and displays information about the current workspace and context in the session.	
Returns the value of a Workspace Manager system parameter.	
Syntax	
Parameters	
Table 4-31 GetSystemParameter Procedure Parameters	
Parameter	Description
---	---
name	Name of the Workspace Manager system parameter for which to set the value. The name must be one of the following:
Usage Notes	
For information about Workspace Manager system parameters, see Section 1.5.	
An exception is raised if the name	
value is not valid.	
Examples	
The following checks if multiparent workspaces (described in Section 1.1.10) are allowed.	
Returns the ValidFrom	
attribute of the current session valid time. (Valid time support is described in Chapter 3.)	
Format	
Parameters	
None.	
Usage Notes	
To set the session valid time period, use the SetValidTime procedure.	
To get the ValidTill	
attribute of the current session valid time, use the GetValidTill function.	
Examples	
The following example displays the ValidFrom	
attribute of the current session valid time.	
Returns the ValidTill	
attribute of the current session valid time. (Valid time support is described in Chapter 3.)	
Format	
Parameters	
None.	
Usage Notes	
To set the session valid time period, use the SetValidTime procedure.	
To get the ValidFrom	
attribute of the current session valid time, use the GetValidFrom function.	
Examples	
The following example displays the ValidTill	
attribute of the current session valid time.	
Returns the number of bytes currently used to store the Workspace Manager metadata.	
Format	
Parameters	
None.	
Usage Notes	
The Workspace Manager metadata (views, internal tables, and other objects) is by default stored in the default tablespace of the WMSYS	
user. You cannot directly control the size of the Workspace Manager metadata, but you can control its placement by using the Move_Proc procedure to move the metadata to a different tablespace. You can use the GetWMMetadataSpace function to determine the approximate minimum space that you will need to have available in the tablespace into which you are considering moving the Workspace Manager metadata.	
Examples	
The following example displays the number of bytes currently used to store the Workspace Manager metadata.	
Returns the current workspace for the session.	
Format	
Parameters	
None.	
Usage Notes	
None.	
Examples	
The following example displays the current workspace for the session.	
Goes to a point at or near the specified date and time in the current workspace.	
Syntax	
Parameters	
Table 4-32 GotoDate Procedure Parameters	
Parameter	Description
---	---
in_date	Date and time for the read-only view of the workspace. (See the Usage Notes for details.) If
fmt	Date format. The options are the same as for the Default:
nlsparam	Globalization support options. The options are the same as for the
tsWtz	Timestamp with time zone flag. A Boolean value (
Usage Notes	
You are presented a read-only view of the current workspace at or near the specified date and time. The exact time point depends on the history option for tracking changes to data in version-enabled tables, as set by the EnableVersioning procedure or modified by the SetWoOverwriteOFF or SetWoOverwriteON procedure:	
NONE	
: The read-only view reflects the first savepoint after in_date	
. VIEW_W_OVERWRITE	
: The read-only view reflects the data values in effect at in_date	
, except if in_date	
is between two savepoints and data was changed between the two savepoints. In this case, data that had been changed between the savepoints might be seen as empty or as having a previous value. To ensure the most complete and accurate view of the data, specify the VIEW_WO_OVERWRITE	
history option when version-enabling a table. VIEW_WO_OVERWRITE	
: The read-only view reflects the data values in effect at in_date	
. For an explanation of the history options, see the description of the hist	
parameter for the EnableVersioning procedure.	
The following example scenario shows the effect of the VIEW_WO_OVERWRITE	
setting. Assume the following sequence of events:	
MANAGER_NAME	
value in a row is Adams	
. SP1	
is created. MANAGER_NAME	
value is changed to Baxter	
. in_date	
(in step 7) occurs. MANAGER_NAME	
value is changed to Chang	
. (Thus, the value has been changed both before and after in_date	
since the first savepoint and before the second savepoint.) SP2	
is created. in_date	
. In the preceding scenario:	
VIEW_WO_OVERWRITE	
, the MANAGER_NAME	
value after step 7 is Baxter	
. After step 5, the versioned table has three rows, each with a different MANAGER_NAME	
value (Adams	
, Baxter	
, Chang	
), because each change is made in a new copy of the row. VIEW_W_OVERWRITE	
, no value is seen after step 7. The updates in steps 3 and 5 are made in the same copy of the row, and the update in step 5 overwrites the update in step 3. As a result, after step 5 the versioned table has two rows, with MANAGER_NAME	
values Adams	
and Chang	
. Because the MANAGER_NAME	
value (Baxter	
) that was in effect at the specified instant has been overwritten, no row is visible. NONE	
, the MANAGER_NAME	
value after step 7 is Chang	
, because the first savepoint after the specified instant is SP2	
. After step 5, the versioned table has two rows, with MANAGER_NAME	
values Adams	
and Chang	
. The GotoDate procedure should be executed while users exist in the workspace. There are no explicit privileges associated with this procedure.	
Examples	
The following example goes to a point at or near midnight at the start of 08-Jun-2004, depending on the history option currently in effect.	
Goes to the specified savepoint in the current workspace.	
Syntax	
Parameters	
Table 4-33 GotoSavepoint Procedure Parameters	
Parameter	Description
---	---
savepoint_name	Name of the savepoint. The name is case-sensitive. If
Usage Notes	
You are presented a read-only view of the workspace at the time of savepoint creation. This procedure is useful for examining the workspace from different savepoints before performing a rollback to a specific savepoint by calling the RollbackToSP procedure to delete all rows from that savepoint forward.	
This operation can be executed while users exist in the workspace. There are no explicit privileges associated with this operation.	
If you do not want to roll back to the savepoint, you can call the GotoSavepoint procedure with a null parameter to go to the currently active version in the workspace. (This achieves the same result as calling the GotoWorkspace procedure and specifying the workspace.)	
For more information about savepoints, including the LATEST	
savepoint, see Section 1.1.2.	
Examples	
The following example goes to the savepoint named Savepoint1	
.	
Moves the current session to the specified workspace.	
Syntax	
Parameters	
Table 4-34 GotoWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
After a user goes to a workspace, modifications to data can be made there.	
To go to the live database, specify workspace	
as LIVE	
. Because many operations are prohibited when any users (including you) are in the workspace, it is often convenient to go to the LIVE	
workspace before performing operations on created workspaces.	
An exception is raised if one or more of the following apply:	
workspace	
does not exist. ACCESS_WORKSPACE	
privilege for workspace	
. workspace	
has been frozen in NO_ACCESS	
mode (see the FreezeWorkspace procedure). Examples	
The following example includes the user in the NEWWORKSPACE	
workspace. The user will begin to work in the latest version in that workspace.	
The following example includes the user in the LIVE	
database workspace. By default, when users connect to a database, they are placed in this workspace.	
Grants privileges on multiparent graph workspaces to users and roles. The grant_option	
parameter enables the grantee to grant the specified privileges to other users and roles.	
Syntax	
Parameters	
Table 4-35 GrantGraphPriv Procedure Parameters	
Parameter	Description
---	---
priv_types	A string of one or more keywords representing privileges. (Section 1.4 discusses Workspace Manager privileges.) Use commas to separate privilege keywords. The available keywords are
leaf_workspace	Name of the leaf workspace in the directed acyclic graph. (Leaf workspaces, directed acyclic graphs, and other concepts related to multiparent workspaces are explained in Section 1.1.10.) The name is case-sensitive.
grantee	Name of the user (can be the
node_types	List of letters (in parentheses and comma-delimited) representing the types of nodes on which to grant the privileges:
grant_option	Specify
auto_commit	A Boolean value (
Usage Notes	
Contrast this procedure with GrantWorkspacePriv, which grants workspace-level Workspace Manager privileges on workspaces other than multiparent graph workspaces.	
If a user gets a privilege from more than one source and if any of those sources has the grant option for that privilege, the user has the grant option for the privilege. For example, assume that user SCOTT	
has been granted the ACCESS_WORKSPACE	
privilege with grant_option	
as NO	
, but that the PUBLIC	
user group has been granted the ACCESS_WORKSPACE	
privilege with grant_option	
as YES	
. Because user SCOTT	
is a member of PUBLIC	
, user SCOTT	
has the ACCESS_WORKSPACE	
privilege with the grant option.	
The WM_ADMIN_ROLE	
role has all Workspace Manager privileges with the grant option. The WM_ADMIN_ROLE	
role is automatically given to the DBA	
role.	
The ACCESS_WORKSPACE	
or ACCESS_ANY_WORKSPACE	
privilege is needed for all other Workspace Manager privileges.	
To revoke workspace-level privileges on multiparent graph workspaces, use the RevokeGraphPriv procedure.	
An exception is raised if one or more of the following apply:	
grantee	
is not a valid user or role in the database. priv_types	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example enables user Smith	
to access all types of nodes in the directed acyclic graph in which the NEWWORKSPACE	
workspace is the leaf workspace and to merge changes in these workspaces, and it allows Smith	
to grant the two specified privileges on the leaf workspace to other users.	
Grants the privileges required to call the EnableVersioning procedure on a table that contains the specified Oracle Label Security (OLS) policy.	
Syntax	
Parameters	
Table 4-36 GrantPrivsOnPolicy Procedure Parameters	
Parameter	Description
---	---
policy_name	Name of the policy for which privileges need to be granted.
Usage Notes	
This procedure grants the necessary privileges on an OLS policy to the WMSYS schema. These privileges are required when executing workspace operations. If multiple tables protected by the same policy need to be version-enabled, this procedure only needs to be executed once.	
Examples	
The following grants the necessary privileges on a policy named my_policy	
.	
Grants system-level privileges (not restricted to a particular workspace) to users and roles. The grant_option	
parameter enables the grantee to grant the specified privileges to other users and roles.	
Syntax	
Parameters	
Table 4-37 GrantSystemPriv Procedure Parameters	
Parameter	Description
---	---
priv_types	A string of one or more keywords representing privileges. (Section 1.4 discusses Workspace Manager privileges.) Use commas to separate privilege keywords. The available keywords are
grantee	Name of the user (can be the
grant_option	Specify
auto_commit	A Boolean value (
Usage Notes	
Contrast this procedure with GrantWorkspacePriv, which grants workspace-level Workspace Manager privileges with keywords that do not contain ANY	
and which has a workspace	
parameter.	
If a user gets a privilege from more than one source and if any of those sources has the grant option for that privilege, the user has the grant option for the privilege. For example, assume that user SCOTT	
has been granted the ACCESS_ANY_WORKSPACE	
privilege with grant_option	
as NO	
, but that the PUBLIC	
user group has been granted the ACCESS_ANY_WORKSPACE	
privilege with grant_option	
as YES	
. Because user SCOTT	
is a member of PUBLIC	
, user SCOTT	
has the ACCESS_ANY_WORKSPACE	
privilege with the grant option.	
The WM_ADMIN_ROLE	
role has all Workspace Manager privileges with the grant option. The WM_ADMIN_ROLE	
role is automatically given to the DBA	
role.	
The ACCESS_WORKSPACE	
or ACCESS_ANY_WORKSPACE	
privilege is needed for all other Workspace Manager privileges.	
To see which users have been granted Workspace Manager system-level privileges, examine the DBA_WM_SYS_PRIVS metadata view, which is described in Section 5.18.	
To revoke system-level privileges, use the RevokeSystemPriv procedure.	
An exception is raised if one or more of the following apply:	
grantee	
is not a valid user or role in the database. priv_types	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example enables user Smith	
to access any workspace in the database, but does not allow Smith	
to grant the ACCESS_ANY_WORKSPACE	
privilege to other users.	
Grants workspace-level privileges to users and roles. The grant_option	
parameter enables the grantee to grant the specified privileges to other users and roles.	
Syntax	
Parameters	
Table 4-38 GrantWorkspacePriv Procedure Parameters	
Parameter	Description
---	---
priv_types	A string of one or more keywords representing privileges. (Section 1.4 discusses Workspace Manager privileges.) Use commas to separate privilege keywords. The available keywords are
workspace	Name of the workspace. The name is case-sensitive.
grantee	Name of the user (can be the
grant_option	Specify
auto_commit	A Boolean value (
Usage Notes	
Contrast this procedure with GrantSystemPriv, which grants system-level Workspace Manager privileges with keywords in the form xxx_ANY_WORKSPACE (ACCESS_ANY_WORKSPACE	
, MERGE_ANY_WORKSPACE	
, and so on). Contrast this procedure also with GrantGraphPriv, which grants privileges on multiparent graph workspaces to users and roles.	
If a user gets a privilege from more than one source and if any of those sources has the grant option for that privilege, the user has the grant option for the privilege. For example, assume that user SCOTT	
has been granted the ACCESS_WORKSPACE	
privilege with grant_option	
as NO	
, but that the PUBLIC	
user group has been granted the ACCESS_WORKSPACE	
privilege with grant_option	
as YES	
. Because user SCOTT	
is a member of PUBLIC	
, user SCOTT	
has the ACCESS_WORKSPACE	
privilege with the grant option.	
The WM_ADMIN_ROLE	
role has all Workspace Manager privileges with the grant option. The WM_ADMIN_ROLE	
role is automatically given to the DBA	
role.	
The ACCESS_WORKSPACE	
or ACCESS_ANY_WORKSPACE	
privilege is needed for all other Workspace Manager privileges.	
To revoke workspace-level privileges, use the RevokeWorkspacePriv procedure.	
An exception is raised if one or more of the following apply:	
grantee	
is not a valid user or role in the database. priv_types	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example enables user Smith	
to access the NEWWORKSPACE	
workspace and merge changes in that workspace, and allows Smith	
to grant the two specified privileges on NEWWORKSPACE	
to other users.	
Imports data from a staging table (all rows, or as limited by any combination of several parameters) into a version-enabled table in a specified workspace.	
Syntax	
Parameters	
Table 4-39 Import Procedure Parameters	
Parameter	Description
---	---
staging_table	Name of the table that holds the data that had previously been exported using the Export procedure. The name is not case-sensitive.
to_table	Name of the table into which to import the data. The name is not case-sensitive.
to_workspace	Name of the workspace in which to import the data. The name is case-sensitive.
from_workspace	Name of the workspace from which to import the data. The name is case-sensitive. If the staging table contains versioning information, you must specify
where_clause	The Only primary key columns can be specified in the If the
import_scope	The scope (amount of data) for the import operation.
ancestor_savepoint_workspace	Name of the workspace containing the ancestor savepoint specified in If you specify this parameter, you must also specify
ancestor_savepoint_name	Name of a savepoint in If you specify this parameter, you must also specify
apply_locks	A Boolean value (
enforceUCFlag	A Boolean value (
enforceRICFlag	A Boolean value (
auto_commit	A Boolean value (
Usage Notes	
All data that satisfies the where_clause	
parameter value in the staging table named staging_table	
and the import_scope	
parameter value is imported into the version-enabled table named to_table	
.	
The data must have been previously exported to the staging table using the Export procedure.	
Each row of data to be imported is considered to be one of the following: inserted, updated, or deleted in from_workspace	
(that is, modified data); or data that was not modified in from_workspace	
but can be seen in it (that is, ancestor data). If data is exported from the LIVE	
workspace, it is all modified data.	
An exception is raised if one or more of the following apply:	
staging_table	
is not in a valid format for the import operation. to_table	
is not a version-enabled table, or does not have an appropriate definition (for example, contains columns not in the staging table). from_workspace	
is null and staging_table	
contains versioning information. ancestor_savepoint_name	
is not a valid savepoint in ancestor_savepoint_workspace	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example imports modified data from the staging table COLA_MARKETING_BUDGET_STG	
in workspace B_focus_2	
into the COLA_MARKETING_BUDGET	
table in workspace B_Focus_1	
. (The EXECUTE	
statement is actually on a single line.)	
Checks whether or not a workspace has any active sessions.	
Syntax	
Parameters	
Table 4-40 IsWorkspaceOccupied Function Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
This function returns YES	
if the workspace has any active sessions, and it returns NO	
if the workspace has no active sessions.	
An exception is raised if the LIVE	
workspace is specified or if the user does not have the privilege to access the workspace.	
Examples	
The following example checks if any sessions are in the B_focus_2	
workspace.	
Controls access to versioned rows in a specified table and to corresponding rows in the parent workspace.	
Syntax	
Parameters	
Table 4-41 LockRows Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The latest versions of rows visible from the workspace are locked. If a row has not been modified in this workspace, the locked version could be in an ancestor workspace. The name is case-sensitive. A value of
table_name	Name of the table or (if
where_clause	The Only primary key columns can be specified in the If Do not specify the
lock_mode	Mode with which to set the locks:
Xmin, Ymin	For Oracle Spatial topologies only (see Section 1.14.1), the X and Y coordinate values, respectively, of the lower-left corner of the window containing the rows to be locked.You must specify these parameters if you specified a topology name for
Xmax, Ymax	For Oracle Spatial topologies only (see Section 1.14.1), the X and Y coordinate values, respectively, of the upper-right corner of the window containing the rows to be locked.You must specify these parameters if you specified a topology name for
Usage Notes	
This procedure affects Workspace Manager locking, which occurs in addition to any standard Oracle database locking. For an explanation of Workspace Manager locking, see Section 1.3.	
This procedure does not affect whether Workspace Manager locking is set on or off (determined by the SetLockingON and SetLockingOFF procedures).	
To unlock rows, use the UnlockRows procedure.	
For information about Workspace Manager locking for tables in an Oracle Spatial topology, see Section 1.14.1.	
Examples	
The following example locks rows in the EMPLOYEES	
table where last_name = 'Smith'	
in the NEWWORKSPACE	
workspace.	
Applies changes to one or more tables (all rows or as specified in the WHERE	
clause) in a workspace to its parent workspace.	
For a multiparent workspace (explained in Section 1.1.10), applies changes to one or more tables (all rows or as specified in the WHERE	
clause) from all non-root workspaces in the directed acyclic graph to the multiparent root workspace.	
Syntax	
Parameters	
Table 4-42 MergeTable Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
table_id	Name of the table or tables containing rows to be merged into the parent workspace. To specify multiple tables, separate the names with commas (for example,
where_clause	The Only primary key columns can be specified in the If the
create_savepoint	A Boolean value (
remove_data	A Boolean value (
auto_commit	A Boolean value (
Usage Notes	
All data that satisfies the where_clause	
parameter value in the version-enabled table named table_name	
in workspace	
is applied to the parent workspace of workspace	
.	
Any locks that are held by rows being merged are released.	
If there are conflicts between the workspace being merged and its parent workspace, the merge operation fails and the user must manually resolve conflicts using the <table_name>_CONF view. (Conflict resolution is explained in Section 1.1.4.)	
A table cannot be merged in the LIVE	
workspace (because that workspace has no parent workspace).	
A table cannot be merged or refreshed if there is an open database transaction affecting the table.	
An exception is raised if one or more of the following apply:	
table_id	
. MERGE_WORKSPACE	
privilege for workspace	
or the MERGE_ANY_WORKSPACE	
privilege. remove_data	
is TRUE	
and there are any child workspaces of any workspace to be removed. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example merges changes to the EMP	
table (in the USER3	
schema) where last_name = 'Smith'	
in NEWWORKSPACE	
to its parent workspace.	
Applies all changes in a workspace to its parent workspace, and optionally removes the workspace.	
For a multiparent workspace (explained in Section 1.1.10), applies all changes in the workspace to all other workspaces in the directed acyclic graph, and optionally removes the non-root workspaces in the directed acyclic graph.	
Syntax	
Parameters	
Table 4-43 MergeWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
create_savepoint	A Boolean value (
remove_workspace	A Boolean value (
auto_commit	A Boolean value (
Usage Notes	
All data in all version-enabled tables in workspace	
is merged to the parent workspace of workspace	
, and workspace	
is removed if remove_workspace	
is TRUE	
.	
If workspace is a continually refreshed child workspace, an exclusive lock is taken on the parent workspace. This exclusive lock blocks other operations on the parent workspace, such as GotoWorkspace, which would try to take a shared lock.	
Only the current row version for any given row is merged into the parent workspace. To retain all intermediate row versions and historical copies in the child workspace, the value of remove_workspace	
must be FALSE	
(the default). For more information about how Workspace Manager creates row versions and manages historical copies, see Section 1.1.12.	
While this procedure is executing, the current workspace is frozen in NO_ACCESS	
mode and the parent workspace is frozen in READ_ONLY	
mode, as explained in Section 1.1.5.	
If there are conflicts between the workspace being merged and its parent workspace, the merge operation fails and the user must manually resolve conflicts using the <table_name>_CONF view. (Conflict resolution is explained in Section 1.1.4.)	
If the remove_workspace	
parameter value is TRUE	
, the workspace to be merged must be a leaf workspace, that is, a workspace with no descendant workspaces. (For an explanation of workspace hierarchy, see Section 1.1.1.)	
To update rows in the child workspace and merge those changes into the parent workspace in the same transaction, you must specify autocommit=FALSE	
and ensure that no other session (that is, other than the one performing the update transaction) is in the child workspace.	
An exception is raised if one or more of the following apply:	
MERGE_WORKSPACE	
privilege for workspace	
or the MERGE_ANY_WORKSPACE	
privilege. auto_commit	
is TRUE	
and there is an open database transaction in any workspace under workspace	
in the workspace hierarchy. remove_workspace	
is TRUE	
and there are any sessions in any workspaces under workspace	
in the workspace hierarchy. remove_workspace	
is TRUE	
and there are any child workspaces of any workspace to be removed. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example merges changes in NEWWORKSPACE	
to its parent workspace.	
Moves the Workspace Manager metadata to a specified tablespace.	
Syntax	
Parameters	
Table 4-44 Move_Proc Procedure Parameters	
Parameter	Description
---	---
dest_tablespace	The table space to which to move the Workspace Manager metadata. The default value is the
Usage Notes	
The Workspace Manager metadata (views, internal tables, and other objects) is by default stored in the default tablespace of the WMSYS user. You cannot directly control the size of the Workspace Manager metadata, but you can control its placement by using this procedure to move the metadata from its current tablespace to a different tablespace. If you call this procedure without specifying the dest_tablespace	
parameter, the Workspace manager metadata is moved to the SYSAUX tablespace.	
Before you move the metadata, you can use the GetWMMetadataSpace function to determine the approximate minimum space that you will need to have available in the tablespace into which you are considering moving the Workspace Manager metadata.	
Examples	
The following example moves the Workspace Manager metadata to the TBLSP_1	
tablespace.	
Removes rows (all rows, or as limited by any combination of several parameters) from a version-enabled table, and optionally inserts them into an archive table.	
Syntax	
Parameters	
Table 4-45 PurgeTable Procedure Parameters	
Parameter	Description
---	---
table_id	Name of the table containing the data to be exported. The name is not case-sensitive.
archive_table	Name of the table into which to insert the purged rows. If this parameter is not specified, purged rows are not archived. If this parameter is specified and if there is an open transaction, the transaction is committed before the table is created, and a new transaction is opened.
where_clause	The Only primary key columns can be specified in the If the
workspace	Name of the workspace from which to purge the data. The name is case-sensitive.
savepoint_name	Name of a savepoint: only data in the workspace either after or before (depending on the You cannot specify both the
instant	Date/time specification: only data that was in the workspace either after or before (depending on the You cannot specify both the
purgeAfter	A Boolean value (
Usage Notes	
This procedure removes rows from a version-enabled table that is rooted at workspace. If the purgeAfter	
parameter value is TRUE	
(the default), applicable child rows rooted at the specified workspace are removed; if the purgeAfter	
parameter value is FALSE	
, applicable ancestor rows rooted at the specified workspace are removed.	
You can use the where_clause	
parameter and the savepoint_name	
or instant	
parameter to limit the rows that are purged. For most uses of the procedure, you will probably want to specify a where_clause	
value to limit the rows to be purged; otherwise all rows are purged (unless limited by the savepoint_name	
or instant	
parameter).	
An exclusive lock is obtained on the version-enabled table for the duration of the procedure.	
Examples	
The following example purges any rows where the ID	
(primary ley) column value is 20 in the USER2.TEST	
table of the project	
workspace and its descendent workspaces. (The EXECUTE	
statement is actually on a single line.)	
Attempts to complete the migration process on all tables that were left in an inconsistent state after the Workspace Manager migration procedure failed.	
Syntax	
Parameters	
Table 4-46 RecoverAllMigratingTables Procedure Parameters	
Parameter	Description
---	---
ignore_last_error	A Boolean value (
Usage Notes	
If an error occurs while you are upgrading (migrating) to the current Workspace Manager release, one or more version-enabled tables can be left in an inconsistent state. (For information about upgrading to the current release, see Section B.1.) If the upgrade procedure fails, you should try to fix the cause of the error (examine the USER_WM_VT_ERRORS or ALL_WM_VT_ERRORS metadata view to see the SQL statement and error message), and then call the RecoverMigratingTable procedure (for a single table) or RecoverAllMigratingTables procedure (for all tables) with the default ignore_last_error	
parameter value of FALSE	
, to try to complete the upgrade process.	
However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the RecoverMigratingTable or RecoverAllMigratingTables procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
Examples	
The following example attempts to recover all version-enabled tables that were left in an inconsistent state when the upgrade procedure failed.	
The following example attempts to recover all version-enabled tables that were left in an inconsistent state when the upgrade procedure failed, and it ignores the last error that caused the upgrade procedure to fail.	
Performs necessary operations after the dropping of one or more database users that owned one or more version-enabled tables.	
Syntax	
Parameters	
Table 4-47 RecoverFromDroppedUser Procedure Parameters	
Parameter	Description
---	---
ignore_last_error	A Boolean value (
Usage Notes	
If a database user with one or more version-enabled tables is dropped, you must execute this procedure as soon as possible. This procedure removes any foreign key constraints in existing tables that depended on any of the version-enabled tables that were dropped as a result of dropping the user that owned these tables. This procedure also fixes any invalid database metadata.	
If a call to the RecoverFromDroppedUser procedure fails, the table is left in an inconsistent state. If this occurs, you should try to fix the cause of the error (examine the DBA_WM_VT_ERRORS metadata view to see the SQL statement and error message), and then call the RecoverFromDroppedUser procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the RecoverFromDroppedUser procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
To execute this procedure, you must connect to the database instance as a user with SYSDBA privileges.	
Examples	
The following drops a user named HERMAN	
that owns one or more version-enabled tables, and then performs the necessary operations after the drop operation.	
Attempts to complete the migration process on a table that was left in an inconsistent state after the Workspace Manager migration procedure failed.	
Syntax	
Parameters	
Table 4-48 RecoverMigratingTable Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table to be recovered from the migration error. The name is not case-sensitive.
ignore_last_error	A Boolean value (
Usage Notes	
If an error occurs while you are upgrading to the current Workspace Manager release, one or more version-enabled tables can be left in an inconsistent state. (For information about upgrading to the current release, see Section B.1.) If the upgrade procedure fails, you should try to fix the cause of the error (examine the USER_WM_VT_ERRORS or ALL_WM_VT_ERRORS metadata view to see the SQL statement and error message), and then call the RecoverMigratingTable procedure (for a single table) or RecoverAllMigratingTables procedure (for all tables) with the default ignore_last_error	
parameter value of FALSE	
, to try to complete the upgrade process.	
However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the RecoverMigratingTable or RecoverAllMigratingTables procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
An exception is raised if table_name	
does not exist or is not version-enabled.	
Examples	
The following example attempts to recover the COLA_MARKETING_BUDGET	
table from the error that caused the upgrade procedure to fail.	
The following example attempts to recover the COLA_MARKETING_BUDGET	
table and ignores the last error that caused the upgrade procedure to fail.	
Applies to a workspace all changes made to a table (all rows or as specified in the WHERE	
clause) in its parent workspace.	
For a multiparent workspace (explained in Section 1.1.10), applies changes from the non-leaf workspaces in the directed acyclic graph to the specified leaf workspace for a specified table. (The table data in the intermediate workspaces is not changed.)	
Syntax	
Parameters	
Table 4-49 RefreshTable Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
table_id	Name of the table containing the rows to be refreshed using values from the parent workspace. The name is not case-sensitive.
where_clause	The Only primary key columns can be specified in the If
auto_commit	A Boolean value (
Usage Notes	
This procedure applies to workspace	
all changes in rows that satisfy the where_clause	
parameter value in the version-enabled table named table_id	
in the parent workspace since the time when workspace	
was created or last refreshed.	
If there are conflicts between the workspace being refreshed and its parent workspace, the refresh operation fails and the user must manually resolve conflicts using the <table_name>_CONF view. (Conflict resolution is explained in Section 1.1.4.)	
This procedure is ignored if workspace	
is a continually refreshed workspace.	
A table cannot be refreshed in the LIVE	
workspace (because that workspace has no parent workspace).	
A table cannot be merged or refreshed if there is an open database transaction affecting the table.	
An exception is raised if the user does not have access to table_id	
, if the user does not have the MERGE_WORKSPACE	
privilege for workspace	
or the MERGE_ANY_WORKSPACE	
privilege, or if auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified.	
Examples	
The following example refreshes NEWWORKSPACE	
by applying changes made to the EMPLOYEES	
table where last_name = 'Smith'	
in its parent workspace.	
Applies to a workspace all changes made in its parent workspace.	
For a multiparent workspace (explained in Section 1.1.10), applies changes from the non-leaf workspaces in the directed acyclic graph to the specified leaf workspace. The changes are propagated beginning with the multiparent root workspace and continuing with the intermediate workspaces.	
Syntax	
Parameters	
Table 4-50 RefreshWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
auto_commit	A Boolean value (
copy_data	A Boolean value (
Usage Notes	
This procedure applies to workspace	
all changes made to version-enabled tables in the parent workspace since the time when workspace	
was created or last refreshed.	
If there are conflicts between the workspace being refreshed and its parent workspace, the refresh operation fails and the user must manually resolve conflicts using the <table_name>_CONF view. (Conflict resolution is explained in Section 1.1.4.)	
The specified workspace and the parent workspace are frozen in READ_ONLY	
mode, as explained in Section 1.1.5.	
The LIVE	
workspace cannot be refreshed (because it has no parent workspace).	
This procedure is ignored if workspace	
is a continually refreshed workspace.	
An exception is raised if the user does not have the MERGE_WORKSPACE	
privilege for workspace	
or the MERGE_ANY_WORKSPACE	
privilege, if the user does not have sufficient privileges on all tables that need to be modified (including, for example, tables modified by triggers), or if auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified.	
Examples	
The following example refreshes NEWWORKSPACE	
by applying changes made in its parent workspace.	
Makes one of the nonwriter sites the new writer site in a Workspace Manager replication environment. (The old writer site becomes one of the nonwriter sites.)	
Syntax	
Parameters	
Table 4-51 RelocateWriterSite Procedure Parameters	
Parameter	Description
---	---
newwritersite	Name of a current nonwriter site (database link) to be made the new writer site in the Workspace Manager replication environment.
oldwritersiteavailable	A Boolean value (
Usage Notes	
To use this procedure, you must understand how replication applies to Workspace Manager objects, as explained in Appendix C. You must also understand the major Oracle replication concepts and techniques, which are documented in Oracle Database Advanced Replication and Oracle Database Advanced Replication Management API Reference.	
You must execute this procedure as the replication administrator user. You can execute it at any master site.	
You should specify the oldwritersiteavailable	
parameter as TRUE	
if the old writer site is currently available. If you specify the oldwritersiteavailable	
parameter as FALSE	
, you must execute the SynchronizeSite procedure after the old writer site becomes available, to bring that site up to date.	
This procedure performs the following operations:	
oldwritersiteavailable	
is TRUE	
, disables workspace operations and DML and DDL operations for all version-enabled tables on the old writer site. newwritersite	
for the main master group and for the master groups for all the version-enabled tables. Examples	
The following example relocates the writer site for the Workspace Manager environment to BACKUP-SITE1	
at a hypothetical company.	
Removes a workspace as a parent workspace in a multiparent workspace environment.	
Syntax	
Parameters	
Table 4-52 RemoveAsParentWorkspace Procedure Parameters	
Parameter	Description
---	---
mp_leaf_workspace	Name of the child workspace (multiparent leaf workspace) from which to remove
parent_workspace	Name of the workspace to remove as a parent workspace of
auto_commit	A Boolean value (
Usage Notes	
This procedure is part of the support for the multiparent workspaces feature, which is described in Section 1.1.10. This procedure must be used only on a parent workspace that was previously added to the child workspace using the AddAsParentWorkspace procedure.	
This procedure does not remove any workspaces. It only makes parent_workspace	
no longer a parent workspace of mp_leaf_workspace	
.	
An exception is raised if one or more of the following apply:	
mp_leaf_workspace	
or parent_workspace	
does not exist. mp_leaf_workspace	
has versioned any data in parent_workspace	
or an ancestor of parent_workspace	
, and this workspace would no longer be an ancestor of mp_leaf_workspace	
if the operation were to be performed. mp_leaf_workspace	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example removes Workspace4	
as a parent workspace of Workspace3	
. (See the hierarchy illustration in Figure 1-3 in Section 1.1.10.)	
Removes a user-defined hint: that is, causes the default optimizer hint to be used with SQL statements executed by the DBMS_WM package on a specified version-enabled table or all version-enabled tables.	
Syntax	
Parameters	
Table 4-53 RemoveUserDefinedHint Procedure Parameters	
Parameter	Description
---	---
hint_id	Numeric ID that uniquely identifies the user-defined hint. Must match an existing hint ID previously specified in a call to the AddUserDefinedHint procedure.
table_id	Name of the table from which to remove the hint. The name is not case-sensitive. If this value is null and if the However, if this value is null and if the
Usage Notes	
Use this procedure only to remove or modify the effect of a user-defined hint that you previously specified using the AddUserDefinedHint procedure. (See the Usage Notes for that procedure.)	
Examples	
The following example removes, for the SCOTT.TABLE1 table, the user-defined hint from SQL statements associated with the hint with the hint ID 1101, and causes the default hint to be used instead.	
Discards all row versions associated with a workspace and deletes the workspace.	
Syntax	
Parameters	
Table 4-54 RemoveWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
auto_commit	A Boolean value (
Usage Notes	
The RemoveWorkspace operation can only be performed on leaf workspaces (the bottom-most workspaces in a branch in the hierarchy). For an explanation of database workspace hierarchy, see Section 1.1.1.	
If the workspace being removed is a child workspace, its parent workspace is exclusively locked for the duration of the operation.	
There must be no other users in the workspace being removed.	
An exception is raised if the user does not have the REMOVE_WORKSPACE	
privilege for workspace	
or the REMOVE_ANY_WORKSPACE	
privilege, if the user does not have sufficient privileges on all tables that need to be modified (including, for example, tables modified by triggers), or if auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified.	
Examples	
The following example removes the NEWWORKSPACE	
workspace.	
Discards all row versions associated with a workspace and its descendant workspaces, and deletes the affected workspaces.	
Syntax	
Parameters	
Table 4-55 RemoveWorkspaceTree Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
auto_commit	A Boolean value (
Usage Notes	
The RemoveWorkspaceTree operation should be used with extreme caution, because it removes support structures and rolls back changes in a workspace and all its descendants down to the leaf workspace or workspaces. For example, in the hierarchy shown in Figure 1-1 in Section 1.1.1, a RemoveWorkspaceTree operation specifying Workspace1	
removes Workspace1	
, Workspace2	
, and Workspace3	
. (For an explanation of database workspace hierarchy, see Section 1.1.1.)	
There must be no other users in workspace	
or any of its descendant workspaces.	
An exception is raised if the user does not have the REMOVE_WORKSPACE	
privilege for workspace	
or any of its descendant workspaces, if the user does not have sufficient privileges on all tables that need to be modified (including, for example, tables modified by triggers), or if auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified.	
Examples	
The following example removes the NEWWORKSPACE	
workspace and all its descendant workspaces.	
Renames a savepoint in a specified workspace.	
Syntax	
Parameters	
Table 4-56 RenameSavepoint Procedure Parameters	
Parameter	Description
---	---
workspace_name	Name of the existing workspace in which the savepoint to be renamed exists. The name is case-sensitive.
savepoint_name	Name of the existing explicit savepoint to be renamed. (Must not be an implicit savepoint.)
new_savepoint_name	New name to be given to the savepoint. Must not be the name of an existing savepoint.
Usage Notes	
An exception is raised if the user does not own the workspace or savepoint or does not have the WM_ADMIN_ROLE	
role.	
Examples	
The following example renames savepoint SP1	
in the LIVE	
workspace to 2009 milestone	
.	
Renames a workspace.	
Syntax	
Parameters	
Table 4-57 RenameWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace_name	Name of the existing workspace to be renamed. The name is case-sensitive.
new_workspace_name	New name to be given to the workspace. The new name must not be
Usage Notes	
This procedure automatically updates the metadata for existing version-enabled tables to refer to the new workspace name. The time required for the procedure to complete will depend on the number of version-enabled tables.	
An exception is raised if the user does not own the workspace or does not have the WM_ADMIN_ROLE	
role.	
Examples	
The following example renames workspace WS1	
to Construction Project	
.	
Resolves conflicts between workspaces.	
Syntax	
Parameters	
Table 4-58 ResolveConflicts Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace to check for conflicts with other workspaces. The name is case-sensitive.
table_name	Name of the table to check for conflicts. The name is not case-sensitive.
where_clause	The Only primary key columns can be specified in the
keep	Workspace in favor of which to resolve conflicts:
Usage Notes	
This procedure checks the condition identified by the table_name	
and where_clause	
parameters, and it finds any conflicts between row values in workspace	
and its parent workspace. This procedure resolves conflicts by using the row values in the parent or child workspace, as specified in the keep	
parameter; however, the conflict resolution is not actually merged until you commit the transaction (standard database commit operation) and call the CommitResolve procedure to end the conflict resolution session. (For more information about conflict resolution, including an overall view of the process, see Section 1.1.4.)	
For example, assume that for Department 20 (DEPARTMENT_ID = 20	
), the MANAGER_NAME	
in the LIVE	
and Workspace1	
workspaces is Tom	
. Then, the following operations occur:	
manager_name	
for Department 20 is changed in the LIVE	
database workspace from Tom	
to Mary	
. manager_name	
for Department 20 is changed in Workspace1	
from Tom	
to Franco	
. Workspace1	
changes to the LIVE	
workspace. At this point, however, a conflict exists with respect to MANAGER_NAME	
for Department 20 in Workspace1	
(Franco	
, which conflicts with Mary	
in the LIVE	
workspace), and therefore the call to MergeWorkspace does not succeed.	
'Workspace1'	
, 'department'	
, 'department_id = 20'	
, 'child'	
). After the MergeWorkspace operation in step 7, the MANAGER_NAME	
value will be Franco	
in both the Workspace1	
and LIVE	
workspaces.	
Workspace1	
changes to the LIVE	
workspace. The following considerations apply during a conflict resolution session:	
For more information about conflict resolution, see Section 1.1.4.	
Examples	
The following example resolves conflicts involving rows in the DEPARTMENT	
table in Workspace1	
where DEPARTMENT_ID	
is 20, and uses the values in the child workspace to resolve all such conflicts. It then merges the results of the conflict resolution by first committing the transaction (standard commit) and then calling the MergeWorkspace procedure.	
Revokes (removes) privileges on multiparent graph workspaces from users and roles for a specified leaf workspace.	
Syntax	
Parameters	
Table 4-59 RevokeGraphPriv Procedure Parameters	
Parameter	Description
---	---
priv_types	A string of one or more keywords representing privileges. (Section 1.4 discusses Workspace Manager privileges.) Use commas to separate privilege keywords. The available keywords are
leaf_workspace	Name of the leaf workspace in the directed acyclic graph. (Leaf workspaces, directed acyclic graphs, and other concepts related to multiparent workspaces are explained in Section 1.1.10.) The name is case-sensitive.
grantee	Name of the user (can be the
node_types	List of letters (in parentheses and comma-delimited) representing the types of nodes on which to revoke the privileges:
auto_commit	A Boolean value (
Usage Notes	
Contrast this procedure with RevokeWorkspacePriv, which grants workspace-level Workspace Manager privileges on workspaces other than multiparent graph workspaces.	
To grant workspace-level privileges on multiparent graph workspaces, use the GrantGraphPriv procedure.	
An exception is raised if one or more of the following apply:	
grantee	
is not a valid user or role in the database. priv_types	
to grantee	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example disallows user Smith	
from accessing all types of nodes in the directed acyclic graph in which the NEWWORKSPACE	
workspace is the leaf workspace and from merging changes in these workspaces.	
Revokes (removes) system-level privileges from users and roles.	
Syntax	
Parameters	
Table 4-60 RevokeSystemPriv Procedure Parameters	
Parameter	Description
---	---
priv_types	A string of one or more keywords representing privileges. (Section 1.4 discusses Workspace Manager privileges.) Use commas to separate privilege keywords. The available keywords are
grantee	Name of the user (can be the
auto_commit	A Boolean value (
Usage Notes	
Contrast this procedure with RevokeWorkspacePriv, which revokes workspace-level Workspace Manager privileges with keywords in the form xxx_WORKSPACE (ACCESS_WORKSPACE	
, MERGE_WORKSPACE	
, and so on).	
To grant system-level privileges, use the GrantSystemPriv procedure.	
An exception is raised if one or more of the following apply:	
grantee	
is not a valid user or role in the database. priv_types	
to grantee	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example disallows user Smith	
from accessing workspaces and merging changes in workspaces.	
Revokes (removes) workspace-level privileges from users and roles for a specified workspace.	
Syntax	
Parameters	
Table 4-61 RevokeWorkspacePriv Procedure Parameters	
Parameter	Description
---	---
priv_types	A string of one or more keywords representing privileges. (Section 1.4 discusses Workspace Manager privileges.) Use commas to separate privilege keywords. The available keywords are
workspace	Name of the workspace. The name is case-sensitive.
grantee	Name of the user (can be the
auto_commit	A Boolean value (
Usage Notes	
Contrast this procedure with RevokeSystemPriv, which revokes system-level Workspace Manager privileges with keywords in the form xxx_ANY_WORKSPACE (ACCESS_ANY_WORKSPACE	
, MERGE_ANY_WORKSPACE	
, and so on). Also contrast this procedure with RevokeGraphPriv, which grants workspace-level Workspace Manager privileges on multiparent graph workspaces	
To grant workspace-level privileges, use the GrantWorkspacePriv procedure.	
An exception is raised if one or more of the following apply:	
grantee	
is not a valid user or role in the database. priv_types	
to grantee	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example disallows user Smith	
from accessing the NEWWORKSPACE	
workspace and merging changes in that workspace.	
Rolls back changes made to a version-enabled table during a bulk load operation.	
Syntax	
Parameters	
Table 4-62 RollbackBulkLoading Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table into which data will be bulk loaded. The name is not case-sensitive.
ignore_last_error	A Boolean value (
Usage Notes	
For information about the requirements for bulk loading data into version-enabled tables, see Section 1.7.	
This procedure re-creates all the views that were dropped by the BeginBulkLoading procedure.	
If a call to the RollbackBulkLoading procedure fails, you should try to fix the cause of the error. Examine the USER_WM_VT_ERRORS and ALL_WM_VT_ERRORS static data dictionary views to see the SQL statement and error message. Fix the cause of the error, and then call the RollbackBulkLoading procedure again with the default ignore_last_error	
parameter value of FALSE	
. However, if the call still fails and you cannot fix the cause of the error, and if you are sure that it is safe and appropriate to ignore this error, then you have the option to ignore the error by calling the RollbackBulkLoading procedure with the ignore_last_error	
parameter value of TRUE	
. Note that you are responsible for ensuring that it is safe and appropriate to ignore the error.	
An exception is raised if one or more of the following apply:	
table_name	
does not exist. table_name	
is not version-enabled. WM_ADMIN_ROLE	
role. Examples	
The following example rolls back changes made to EMP	
table during a bulk load operation.	
Rolls back (cancels) DDL (data definition language) changes made during a DDL session for a specified table, and ends the DDL session.	
Syntax	
Parameters	
Table 4-63 RollbackDDL Procedure Parameters	
Parameter	Description
---	---
table_name	Name of the version-enabled table. The name is not case-sensitive.
Usage Notes	
This procedure rolls back (cancels) changes that were made to a version-enabled table and to any indexes and triggers based on the version-enabled table during a DDL session. It also deletes the <table-name>_LTS skeleton table that was created by the BeginDDL procedure.	
For detailed information about performing DDL operations related to version-enabled tables, see Section 1.8; and for DDL operations on version-enabled tables in an Oracle replication environment, see also Section C.3.	
An exception is raised if one or more of the following apply:	
table_name	
does not exist or is not version-enabled. table_name	
. (That is, the BeginDDL procedure has not been called specifying this table, or the CommitDDL or RollbackDDL procedure was already called specifying this table.) Examples	
The following example begins a DDL session, adds a column named COMMENTS	
to the COLA_MARKETING_BUDGET	
table by using the skeleton table named COLA_MARKETING_BUDGET_LTS	
, and ends the DDL session by canceling the change.	
Quits a conflict resolution session and discards all changes in the workspace since the BeginResolve procedure was executed.	
Syntax	
Parameters	
Table 4-64 RollbackResolve Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
This procedure quits the current conflict resolution session (started by the BeginResolve procedure), and discards all changes in the workspace since the start of the conflict resolution session. Contrast this procedure with CommitResolve, which saves all changes.	
While the conflict resolution session is being rolled back, the workspace is frozen in 1WRITER	
mode, as explained in Section 1.1.5.	
For more information about conflict resolution, see Section 1.1.4.	
An exception is raised if one or more of the following apply:	
workspace	
. WM_ADMIN_ROLE	
role or that did not execute the BeginResolve procedure on workspace	
. Examples	
The following example quits the conflict resolution session in Workspace1	
and discards all changes.	
Discards all changes made in the workspace to a specified table (all rows or as specified in the WHERE	
clause).	
Syntax	
Parameters	
Table 4-65 RollbackTable Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
table_id	Name of the table containing rows to be discarded. The name is not case-sensitive.
sp_name	Name of the savepoint to which to roll back. The name is case-sensitive. The default is to discard all changes (that is, ignore any savepoints).
where_clause	The Only primary key columns can be specified in the If
remove_locks	A Boolean value (
auto_commit	A Boolean value (
Usage Notes	
You cannot roll back to a savepoint if any implicit savepoints were created since the specified savepoint, unless you first merge or remove the descendant workspaces that caused the implicit savepoints to be created. For example, referring to Figure 1-2 in Section 1.1.2, the user in Workspace1 cannot roll back to savepoint SP1 until Workspace3 (which caused implicit savepoint SPc to be created) is merged or removed.	
An exception is raised if one or more of the following apply:	
workspace	
does not exist. workspace	
or any affected table. table_id	
is open in workspace	
. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. Examples	
The following example rolls back all changes made to the EMP	
table (in the USER3	
schema) in the NEWWORKSPACE	
workspace since that workspace was created.	
Discards all data changes made in the workspace to version-enabled tables since the specified savepoint.	
Syntax	
Parameters	
Table 4-66 RollbackToSP Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
savepoint_name	Name of the savepoint to which to roll back changes. The name is case-sensitive.
auto_commit	A Boolean value (
Usage Notes	
While this procedure is executing, the workspace is frozen in NO_ACCESS	
mode.	
Contrast this procedure with RollbackWorkspace, which rolls back all changes made since the creation of the workspace.	
You cannot roll back to a savepoint if any implicit savepoints were created since the specified savepoint, unless you first merge or remove the descendant workspaces that caused the implicit savepoints to be created. For example, referring to Figure 1-2 in Section 1.1.2, the user in Workspace1	
cannot roll back to savepoint SP1	
until Workspace3	
(which caused implicit savepoint SPc	
to be created) is merged or removed.	
An exception is raised if one or more of the following apply:	
workspace	
does not exist. savepoint_name	
does not exist. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. workspace	
after savepoint_name	
, and the descendant workspaces that caused the implicit savepoints to be created still exist. workspace	
or any affected table. workspace	
. Examples	
The following example rolls back any changes made in the NEWWORKSPACE	
workspace to all tables since the creation of Savepoint1	
.	
Discards all data changes made in the workspace to version-enabled tables.	
Syntax	
Parameters	
Table 4-67 RollbackWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
auto_commit	A Boolean value (
Usage Notes	
Only leaf workspaces can be rolled back. That is, a workspace cannot be rolled back if it has any descendant workspaces. (For an explanation of workspace hierarchy, see Section 1.1.1.)	
Contrast this procedure with RollbackToSP, which rolls back changes to a specified savepoint.	
Like the RemoveWorkspace procedure, RollbackWorkspace deletes the data in the workspace; however, unlike the RemoveWorkspace procedure, RollbackWorkspace does not delete the Workspace Manager workspace structure.	
While this procedure is executing, the specified workspace is frozen in NO_ACCESS	
mode, as explained in Section 1.1.5.	
An exception is raised if one or more of the following apply:	
workspace	
has any descendant workspaces. workspace	
does not exist. auto_commit	
is TRUE	
and an open transaction exists in a parent or child workspace of any table that needs to be modified. workspace	
or any affected table. workspace	
. Examples	
The following example rolls back any changes made in the NEWWORKSPACE	
workspace since that workspace was created.	
Enables or disables the capture of all Workspace Manager events or events of a specific type.	
Syntax	
Parameters	
Table 4-68 SetCaptureEvent Procedure Parameters	
Parameter	Description
---	---
event_name	One of the following values:
capture	
Usage Notes	
For information about Workspace Manager events, see Chapter 2.	
This procedure requires that the Workspace Manager system parameter ALLOW_CAPTURE_EVENTS	
be set to ON	
. To check the value of a Workspace Manager system parameter, use the GetSystemParameter procedure; to set a Workspace Manager system parameter, use the SetSystemParameter procedure.	
You can use this procedure to control which types of events are captured. For example, you can enable the capture of all events, and then disable the capture of a few types of events; or you can disable the capture of all events, and then enable the capture of a few types of events.	
To see which types of events are currently being captured, examine the WM_EVENTS_INFO metadata view, which is described in Section 5.42.	
If this procedure completes successfully, it commits the caller's open database transaction.	
An exception is raised if one or more of the following apply:	
WM_ADMIN_ROLE	
role. ALLOW_CAPTURE_EVENTS	
system parameter is OFF	
and you are trying to set event_name	
to ON	
(the default value for that parameter). event_name	
is not valid. Examples	
The following example captures all Workspace Manager events except workspace compression events, by first specifying that all events are to be captured, and then excluding workspace compression events.	
Creates rows in the WM_COMPRESSIBLE_TABLES metadata view with information about version-enabled tables that need to be compressed if workspace compression operations are performed.	
Syntax	
Parameters	
Table 4-69 SetCompressWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
firstSP	Savepoint on the first version of the compression range. Savepoint names are case-sensitive. If only If If only
secondSP	Savepoint on the first version of the compression range. All rows in version-enabled tables from
Usage Notes	
You can (but do not need to) use this procedure before calling the CompressWorkspace or CompressWorkspaceTree procedure.	
This procedure creates rows in the WM_COMPRESSIBLE_TABLES metadata view (described in WM_COMPRESSIBLE_TABLES) only for version-enabled tables that would need to be compressed during a workspace compression operation.	
Examples	
The following example creates rows in the WM_COMPRESSIBLE_TABLES metadata view for any version-enabled tables that would need to be compressed during an operation that compressed the B_focus_1	
workspace.	
Determines whether or not conflicts exist between a workspace and its parent.	
Syntax	
Parameters	
Table 4-70 SetConflictWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
This procedure checks for any conflicts between workspace	
and its parent workspace, and it modifies the content of the <table_name>_CONF views (explained in Section 5.45) as needed.	
A SELECT	
operation from the <table_name>_CONF views for all tables modified in a workspace displays all rows in the workspace that are in conflict with the parent workspace. (To obtain a list of tables that have conflicts for the current conflict workspace setting, use the SQL statement SELECT * FROM ALL_WM_VERSIONED_TABLES WHERE conflict = 'YES';	
. The SQL statement SELECT * FROM <table_name>_CONF	
displays conflicts for <table_name> between the current workspace and its parent workspace.)	
Any conflicts must be resolved before a workspace can be merged or refreshed. To resolve a conflict, you must use the ResolveConflicts procedure, and then merge the result of the resolution by using the MergeWorkspace procedure.	
Examples	
The following example checks for any conflicts between B_focus_2	
and its parent workspace, and modifies the contents of the <table_name>_CONF views as needed.	
Finds differences in values in version-enabled tables for two savepoints and their common ancestor (base). It modifies the contents of the differences views that describe these differences.	
Syntax	
or	
Parameters	
Table 4-71 SetDiffVersions Procedure Parameters	
Parameter	Description
---	---
workspace1	Name of the first workspace to be checked for differences in version-enabled tables. The name is case-sensitive.
savepoint1	Name of the savepoint in If
workspace2	Name of the second workspace to be checked for differences in version-enabled tables. The name is case-sensitive.
savepoint2	Name of the savepoint in
Usage Notes	
This procedure modifies the contents of the differences views (xxx_DIFF), which are described in Section 5.46. Each call to the procedure populates one or more sets of three rows, each set consisting of:	
workspace1	
(savepoint1	
or LATEST	
savepoint values) workspace2	
(savepoint2	
or LATEST	
savepoint values) You can then select rows from the appropriate xxx_DIFF view or views to check comparable table values in the two savepoints and their common ancestor. The common ancestor (or base) is identified as DiffBase	
in xxx_DIFF view rows.	
Examples	
The following example checks the differences in version-enabled tables for the B_focus_1	
and B_focus_2	
workspaces. (The output has been reformatted for readability.)	
Section 5.46 explains how to interpret and use the information in the differences (xxx_DIFF) views.	
Disables Workspace Manager locking for the current session.	
Syntax	
Parameters	
None.	
Usage Notes	
This procedure turns off Workspace Manager locking that was set on by the SetLockingON procedure. Existing locks applied by this session remain locked. All new changes by this session are not locked.	
Examples	
The following example sets locking off for the session.	
Enables Workspace Manager locking for the current session.	
Syntax	
Parameters	
Table 4-72 SetLockingON Procedure Parameters	
Parameter	Description
---	---
lockmode	Locking mode. Must be
Usage Notes	
This procedure affects Workspace Manager locking, which occurs in addition to any standard Oracle database locking. Workspace Manager locks can be used to prevent conflicts. When a user locks a row, the corresponding row in the parent workspace is also locked. Thus, when this workspace merges with the parent at merge time, it is guaranteed that this row will not have a conflict.	
For information about Workspace Manager lock management, see Section 1.3.	
Exclusive locking (lockmode	
value of E	
) prevents the use of what-if scenarios in which different values for one or more columns are tested. Thus, plan any testing of scenarios when exclusive locking is not in effect.	
Locking is enabled at the user session level, and the locking mode stays in effect until any of the following occurs:	
C	
(carry-forward) unless another locking mode has been specified using the SetWorkspaceLockModeON procedure. The locks remain in effect for the duration of the workspace, unless unlocked by the UnlockRows procedure. (Existing locks are not affected by the SetLockingOFF procedure.)	
There are no specific privileges associated with locking. Any session that can go to a workspace can set locking on.	
Examples	
The following example sets exclusive locking on for the session.	
All rows locked by this user remain locked until the workspace is merged or rolled back.	
Makes the specified workspace or workspaces visible in the multiworkspace views for version-enabled tables.	
Syntax	
Parameters	
Table 4-73 SetMultiWorkspaces Procedure Parameters	
Parameter	Description
---	---
workspaces	The workspace or workspaces for which information is to be added to the multiworkspace views (described in Section 5.49). The workspace names are case-sensitive. To specify more than one workspace (but no more than eight), use a comma to separate workspace names. For example:
Usage Notes	
This procedure adds rows to the multiworkspace views (xxx_MW). See Section 5.49 for information about the contents and uses of these views.	
To see the names of workspaces visible in the multiworkspace views, use the GetMultiWorkspaces function.	
An exception is raised if one or more of the following apply:	
workspaces	
. workspaces	
is not valid. Examples	
The following example adds information to the multiworkspace views for version-enabled tables in the B_focus_1	
workspace.	
The following example shows the use of the SetMultiWorkspaces procedure to view information without leaving the current workspace, and the use of the GotoWorkspace procedure to view the same information.	
To select only the rows modified in myworkspace	
, change the first SELECT	
statement in the preceding example to the following:	
The following example shows the latest rows in the combined ancestor versions of the workspaces named myworkspace	
and yourworkspace	
. If the same row is selected from more than workspace, that row is shown only once. Note that there may be more than one row for a primary key because different workspaces might be selecting different versions of the primary key.	
Sets the value of a Workspace Manager system parameter.	
Syntax	
Parameters	
Table 4-74 SetSystemParameter Procedure Parameters	
Parameter	Description
---	---
name	Name of the Workspace Manager system parameter for which to set the value. The name must be one of the parameter names listed in Table 1-5 in Section 1.5.
value	Value for the specified Workspace Manager system parameter, as explained in Table 1-5 in Section 1.5.
Usage Notes	
For information about Workspace Manager system parameters, see Section 1.5.	
If this procedure completes successfully, it commits the caller's open database transaction.	
An exception is raised if one or more of the following apply:	
WM_ADMIN_ROLE	
role. ALL_EVENTS	
for event_type	
and OFF	
for capture	
). CR_WORKSPACE_MODE	
or NONCR_WORKSPACE_MODE	
to PESSIMISTIC_LOCKING	
, and data exists in a non-LIVE	
workspace for the corresponding type of workspace (continually refreshed or not continually refreshed). Examples	
The following example allows multiparent workspaces (described in Section 1.1.10) to be created.	
Enables the execution of a trigger for a specified set of triggering events. The trigger will not be executed for events not specified	
Syntax	
Parameters	
Table 4-75 SetTriggerEvents Procedure Parameters	
Parameter	Description
---	---
triggerName	Name of the trigger for which to set one or more events.
triggerEvents	A comma-delimited list of trigger event names, where each trigger event name is one of the following string constants:
Usage Notes	
For information about using triggers with Workspace Manager, see Section 1.10.	
By default, user-defined triggers are executed for both DML and workspace events, unless the default behavior is changed by using the Workspace Manager system parameter FIRE_TRIGGERS_FOR_NONDML_EVENTS	
(described in Section 1.5). You can use the SetTriggerEvents	
procedure to override the current FIRE_TRIGGERS_FOR_NONDML_EVENTS	
setting for specific triggers; however, if you later change the value of the FIRE_TRIGGERS_FOR_NONDML_EVENTS	
system parameter, this new value overrides any setting previously specified using the SetTriggerEvents	
procedure.	
If this procedure completes successfully, it commits the caller's open database transaction.	
An exception is raised if one or more of the following apply:	
WM_ADMIN_ROLE	
role. triggerName	
does not exist. triggerEvents	
values are not valid. Examples	
The following example enables the trigger SCOTT.InsertTrigger	
only for DML events.	
The following example enables the trigger SCOTT.InsertTrigger	
for DML events and table merge operations.	
Sets the session valid time period. (Valid time support is described in Chapter 3.)	
Syntax	
Parameters	
Table 4-76 SetValidTime Procedure Parameters	
Parameter	Description
---	---
validFrom	The start of the session valid time period. The default value is the current timestamp value.
validTill	The end of the session valid time period. The default is that the time remains valid until the session valid time is changed.
Usage Notes	
For information about Workspace Manager valid time support, see Chapter 3. Section 3.2 explains how validFrom	
and validTill	
values are interpreted.	
If this procedure is not invoked in the session or if it is invoked with no parameters, all rows that are valid at the current time are considered valid, and the valid time period is considered to be from the current time forward without limit.	
Examples	
The following example sets the session valid time to include all of the year 2003.	
Removes the valid time filter for the current session.	
Syntax	
Parameters	
None.	
Usage Notes	
This procedure reverses the effect of theSetValidTimeFilterON procedure, and causes the previously defined valid time filter to be ignored for queries against tables with valid time support. Workspace Manager valid time support is explained in Chapter 3.	
See also the Usage Notes for the SetValidTimeFilterON procedure.	
Examples	
The following example removes the valid time filter for the current session.	
Sets a valid time filter for the current session (that is, a time to be applied to version-enabled tables.	
Syntax	
Parameters	
Table 4-77 SetValidTimeFilterON Procedure Parameters	
Parameter	Description
---	---
filtertime	Date to be used as a filter when querying version-enabled tables that have valid time support. The default value is the current time; that is, each select operation on a version-enabled table with valid time support returns data that is valid as of the current time.
Usage Notes	
A valid time filter is a time that is applied to queries against version-enabled tables that have valid time support. When a valid time filter is set for the current session, only rows that are valid for the specified time are returned. Workspace Manager valid time support is explained in Chapter 3.	
The purpose for setting a valid time filter is usually to work with only one row for a given primary key value. For example, assume that for the current valid time period, the session has two rows for employee Adams: the first row is valid from 01-Mar-2004 to 30-Apr-2005, and the second row is valid from 01-May-2005 until it is changed. If you set the valid time filter to 01-Jan-2005 and select all rows for Adams, only the first row (the one valid from 01-Mar-2004 to 30-Apr-2005) is returned. If you remove the valid time filter and select all rows for Adams, both rows are returned.	
The filtertime	
value must be in the valid time range for the session. You can set the valid time range using the SetValidTime procedure.	
Examples	
The following example sets a valid time filter so that for queries against version-enabled tables with valid time support, only rows that are valid on January 1, 2005 are returned.	
Disables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support.	
Syntax	
Parameters	
None.	
Usage Notes	
This procedure disables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support. Workspace Manager valid time support is explained in Chapter 3; sequenced and nonsequenced update operations and sequenced delete operations are explained in Section 3.6.2.1.	
When sequenced update and delete operations are enabled, when an update or delete operation is performed on a table with valid time support, the session's current valid time period is used so that only rows valid during that period are updated or deleted. However, calling the SetWMValidUpdateModeOFF procedure enables all row data to be updated or deleted, regardless of the valid time period, and causes WM_VALID column values in the table not to be updated. (This procedure does not affect insert or query operations on tables with valid time support.)	
See also the Usage Notes for the SetWMValidUpdateModeON procedure.	
Examples	
The following example disables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support.	
Enables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support.	
Syntax	
Parameters	
None.	
Usage Notes	
This procedure enables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support. Sequenced update and delete operations are enabled when a table is version-enabled with valid time support or when valid time support is added to a version-enabled table; however, sequenced update and delete operations can be disabled using the SetWMValidUpdateModeOFF procedure.	
Workspace Manager valid time support is explained in Chapter 3; sequenced and nonsequenced update operations and sequenced delete operations are explained in Section 3.6.2.2.	
Examples	
The following example enables sequenced and nonsequenced update operations and sequenced delete operations on tables that have valid time support. It reverses the effect of the SetWMValidUpdateModeOFF procedure.	
Disables the VIEW_WO_OVERWRITE	
history option that was enabled by the EnableVersioning or SetWoOverwriteON procedure, changing the option to VIEW_W_OVERWRITE	
(with overwrite).	
Syntax	
Parameters	
None.	
Usage Notes	
This procedure affects the recording of history information in the views named <table_name>_HIST by changing the VIEW_WO_OVERWRITE	
option to VIEW_W_OVERWRITE	
. That is, from this point forward, the views show only the most recent modifications to the same version of the table. A history of modifications to the version is not maintained; that is, subsequent changes to a row in the same version overwrite earlier changes.	
This procedure affects only tables that were version-enabled with the hist	
parameter set to VIEW_WO_OVERWRITE	
in the call to the EnableVersioning procedure.	
The <table_name>_HIST views are described in Section 5.47. The VIEW_WO_OVERWRITE	
and VIEW_W_OVERWRITE	
options are further described in the description of the EnableVersioning procedure.	
The history option affects the behavior of the GotoDate procedure. See the Usage Notes for that procedure.	
The result of the SetWoOverwriteOFF procedure remains in effect only for the duration of the current session. To reverse the effect of this procedure, use the SetWoOverwriteON procedure.	
Examples	
The following example disables the VIEW_WO_OVERWRITE	
history option.	
Enables the VIEW_WO_OVERWRITE	
history option that was disabled by the SetWoOverwriteOFF procedure.	
Syntax	
Parameters	
None.	
Usage Notes	
This procedure affects the recording of history information in the views named <table_name>_HIST by changing the VIEW_W_OVERWRITE	
option to VIEW_WO_OVERWRITE	
(without overwrite). That is, from this point forward, the views show all modifications to the same version of the table. A history of modifications to the version is maintained; that is, subsequent changes to a row in the same version do not overwrite earlier changes.	
This procedure affects only tables that were affected by a previous call to the SetWoOverwriteOFF procedure.	
The <table_name>_HIST views are described in Section 5.47. The VIEW_WO_OVERWRITE	
and VIEW_W_OVERWRITE	
options are further described in the description of the EnableVersioning procedure.	
The VIEW_WO_OVERWRITE	
history option can be overridden when a workspace is compressed by specifying the compress_view_wo_overwrite	
parameter as TRUE	
with the CompressWorkspace or CompressWorkspaceTree procedure.	
The history option affects the behavior of the GotoDate procedure. See the Usage Notes for that procedure.	
To reverse the effect of this procedure, use the SetWoOverwriteOFF procedure.	
Examples	
The following example enables the VIEW_WO_OVERWRITE	
history option.	
Disables Workspace Manager locking for the specified workspace.	
Syntax	
Parameters	
Table 4-78 SetWorkspaceLockModeOFF Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace for which to set the locking mode off. The name is case-sensitive.
auto_commit	A Boolean value (
Usage Notes	
This procedure turns off Workspace Manager locking that was set on by the SetWorkspaceLockModeON procedure. Existing locks applied by this session remain locked. All new changes by this session or a subsequent session are not locked, unless the session turns locking on by executing the SetLockingON procedure.	
An exception is raised if any of the following occurs:	
WM_ADMIN_ROLE	
role or is not the owner of workspace	
. auto_commit	
is TRUE	
and an open transaction exists. workspace	
is a continually refreshed workspace (see the description of the isrefreshed	
parameter of the CreateWorkspace procedure). Examples	
The following example sets locking off for the workspace named NEWWORKSPACE	
.	
Enables Workspace Manager locking for the specified workspace.	
Syntax	
Parameters	
Table 4-79 SetWorkspaceLockModeON Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace for which to enable Workspace Manager locking. The name is case-sensitive.
lockmode	Default locking mode for row-level locking. Must be
override	A Boolean value (
auto_commit	A Boolean value (
Usage Notes	
This procedure affects Workspace Manager locking, which occurs in addition to any standard Oracle database locking. Workspace Manager locks can be used to prevent conflicts. When a user locks a row, the corresponding row in the parent workspace is also locked. Thus, when this workspace merges with the parent at merge time, it is guaranteed that this row will not have a conflict.	
For information about Workspace Manager lock management, see Section 1.3.	
Exclusive locking (lockmode	
value of E	
) prevents the use of what-if scenarios in which different values for one or more columns are tested. Thus, plan any testing of scenarios when exclusive locking is not in effect.	
If the override parameter value is TRUE	
, locking can also be enabled and disabled at the user session level with the SetLockingON and SetLockingOFF procedures, respectively.	
All new changes by this session or a subsequent session are locked, unless the session turns locking off by executing the SetLockingOFF procedure.	
An exception is raised if any of the following occurs:	
WM_ADMIN_ROLE	
role or is not the owner of workspace	
. auto_commit	
is TRUE	
and an open transaction exists. workspace	
is a continually refreshed workspace (see the description of the isrefreshed	
parameter of the CreateWorkspace procedure). Examples	
The following example sets exclusive locking on for the workspace named NEWWORKSPACE	
.	
All locked rows remain locked until the workspace is merged or rolled back.	
Brings the local site (the old writer site) up to date in the Workspace Manager replication environment after the writer site was moved using the RelocateWriterSite procedure.	
Syntax	
Parameters	
Table 4-80 SynchronizeSite Procedure Parameters	
Parameter	Description
---	---
newwritersite	Name of the new writer site (database link) with which the local site needs to be brought up to date.
Usage Notes	
To use this procedure, you must understand how replication applies to Workspace Manager objects, as explained in Appendix C. You must also understand the major Oracle replication concepts and techniques, which are documented in Oracle Database Advanced Replication and Oracle Database Advanced Replication Management API Reference.	
You must execute this procedure as the replication administrator user.	
You must execute this procedure on the old writer site if you specified the oldwritersiteavailable	
parameter as FALSE	
when you executed the RelocateWriterSite procedure.	
Examples	
The following example brings the local system up to date with the new writer site (BACKUP-SITE1.EXAMPLE.COM	
) in the Workspace Manager replication environment.	
Enables access and changes to a workspace, reversing the effect of the FreezeWorkspace procedure.	
Syntax	
Parameters	
Table 4-81 UnfreezeWorkspace Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace. The name is case-sensitive.
Usage Notes	
The operation fails if any sessions are in workspace	
.	
You can unfreeze a workspace only if one or more of the following apply:	
WM_ADMIN_ROLE	
, the FREEZE_ANY_WORKSPACE	
privilege, or the FREEZE_WORKSPACE	
privilege for the specified workspace. Examples	
The following example unfreezes the NEWWORKSPACE	
workspace.	
Enables access to versioned rows in a specified table and to corresponding rows in the parent workspace.	
Syntax	
Parameters	
Table 4-82 UnlockRows Procedure Parameters	
Parameter	Description
---	---
workspace	Name of the workspace: locked rows in this workspace and corresponding rows in the parent workspace will be unlocked, as specified in the remaining parameters. The name is case-sensitive. A value of
table_name	Name of the table or (if
where_clause	The Only primary key columns can be specified in the If the Do not specify the
all_or_user	Scope of the request:
lock_mode	Locking mode:
Xmin, Ymin	For Oracle Spatial topologies only (see Section 1.14.1), the X and Y coordinate values, respectively, of the lower-left corner of the window containing the rows to be locked.You must specify these parameters if you specified a topology name for
Xmax, Ymax	For Oracle Spatial topologies only (see Section 1.14.1), the X and Y coordinate values, respectively, of the upper-right corner of the window containing the rows to be locked.You must specify these parameters if you specified a topology name for
Usage Notes	
This procedure affects Workspace Manager locking, which occurs in addition to any standard Oracle database locking. For an explanation of Workspace Manager locking, see Section 1.3.	
This procedure unlocks rows that were previously locked (see the LockRows procedure). It does not affect whether Workspace Manager locking is set on or off (determined by the SetLockingON and SetLockingOFF procedures).	
For information about Workspace Manager locking for tables in an Oracle Spatial topology, see Section 1.14.1.	
Examples	
The following example unlocks the EMPLOYEES	
table where last_name = 'Smith'	
in the NEWWORKSPACE	
workspace.	
Determines whether or not Workspace Manager, for the current session, uses the default value for a column when the user specifies a null value for the column in an insert operation on a version-enabled table.	
Syntax	
Parameters	
Table 4-83 UseDefaultValuesForNulls Procedure Parameters	
Parameter	Description
---	---
mode_var	Mode for handling the insertion of null values:
Usage Notes	
This procedure affects what Workspace Manager does only if an INSERT statement into a version-enabled table explicitly specifies NULL	
for a column when the column has been defined as having a default value. For example, assume the following table definition:	
If the PLAYERS	
table is version-enabled and if you have not executed this procedure with a mode_val	
parameter value of OFF	
, the following statement inserts a row for Smith	
with a null RATING	
value:	
However, if you have executed the UseDefaultValuesForNulls procedure with a mode_val	
parameter value of ON	
, that statement inserts a row for Smith	
with a RATING	
value of 10.	
If the INSERT statement does not specify a value for a column that has a default value, the default value is inserted regardless of whether or not you previously called the UseDefaultValuesForNulls procedure or what the mode_val	
parameter value was. For example, the following statement always inserts a row for Smith	
with a RATING	
value of 10:	
Examples	
The following example causes the column default value to be used during the rest of the current session whenever an INSERT statement into a version-enabled table specifies a null value for a column that has a default value.	
Workspace Manager creates and maintains static data dictionary views to hold information about such things as version-enabled tables, workspaces, savepoints, users, privileges, locks, and conflicts. These views are read-only to users. You can use the information in these views to help administer the Workspace Manager environment and diagnose problems.	
There are also views created for each version-enabled table, as follows:	
ALL_MP_GRAPH_WORKSPACES contains information about multiparent graph workspaces (explained in Section 1.1.10) for which the leaf workspace can be accessed by the current user.	
Related View	
Column	Datatype
---	---
MP_LEAF_WORKSPACE	VARCHAR2(30)
GRAPH_WORKSPACE	VARCHAR2(30)
GRAPH_FLAG	VARCHAR2(22)
ALL_MP_PARENT_WORKSPACES contains information about parent workspaces of multiparent workspaces (explained in Section 1.1.10) that the current user can access.	
Related View	
Column	Datatype
---	---
MP_LEAF_WORKSPACE	VARCHAR2(30)
PARENT_WORKSPACE	VARCHAR2(30)
CREATOR	VARCHAR2(30)
CREATETIME	DATE
ISREFRESHED	VARCHAR2(3)
PARENT_FLAG	VARCHAR2(17)
ALL_REMOVED_WORKSPACES contains information about workspaces that have been removed during a RemoveWorkspace operation or a MergeWorkspace operation in which the remove_workspace	
parameter value was true	
, and while the value of the Workspace Manager system parameter KEEP_REMOVED_WORKSPACES_INFO	
was ON	
. (This system parameter is described in Section 1.5.)	
Related Views	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
WORKSPACE_NAME	VARCHAR2(30)
WORKSPACE_ID	NUMBER(38)
PARENT_WORKSPACE_NAME	VARCHAR2(30)
PARENT_WORKSPACE_ID	NUMBER(38)
CREATETIME	DATE
RETIRETIME	DATE
DESCRIPTION	VARCHAR2(1000)
MP_ROOT_WORKSPACE_ID	NUMBER(38)
CONTINUALLY_REFRESHED	VARCHAR2(3)
ALL_VERSION_HVIEW	
contains information about the version hierarchy. It is used by Workspace Manager to perform queries against the xxx_HIST views (described in Section 5.47).	
Column	Datatype
---	---
VERSION	NUMBER(38)
PARENT_VERSION	NUMBER(38)
WORKSPACE	VARCHAR2(30)
ALL_WM_CONS_COLUMNS contains information about columns in unique constraints on version-enabled tables on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, UPDATE	
, or DELETE	
.	
Related View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
CONSTRAINT_NAME	VARCHAR2(30)
TABLE_NAME	VARCHAR2(30)
COLUMN_NAME	VARCHAR2(4000)
POSITION	NUMBER
ALL_WM_CONSTRAINTS contains information about constraints on version-enabled tables on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, UPDATE	
, or DELETE	
. It provides information about the following kinds of constraints: UNIQUE	
constraint, unique index, PRIMARY KEY	
constraints, and CHECK	
constraints.	
Related View	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
CONSTRAINT_NAME	VARCHAR2(30)
CONSTRAINT_TYPE	VARCHAR2(2)
TABLE_NAME	VARCHAR2(30)
SEARCH_CONDITION	CLOB
STATUS	VARCHAR2(8)
INDEX_OWNER	VARCHAR2(30)
INDEX_NAME	VARCHAR2(30)
INDEX_TYPE	VARCHAR2(40)
ALL_WM_IND_COLUMNS contains information about indexes used for enforcing unique constraints on version-enabled tables on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, UPDATE	
, or DELETE	
.	
Related View	
Column	Datatype
---	---
INDEX_OWNER	VARCHAR2(30)
INDEX_NAME	VARCHAR2(30)
OWNER	VARCHAR2(30)
TABLE_NAME	VARCHAR2(30)
COLUMN_NAME	VARCHAR2(4000)
COLUMN_POSITION	NUMBER
COLUMN_LENGTH	NUMBER
DESCEND	VARCHAR2(4)
ALL_WM_IND_EXPRESSIONS contains information about functional expressions on functional unique indexes on version-enabled tables on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, UPDATE	
, or DELETE	
.	
Related View	
Column	Datatype
---	---
INDEX_OWNER	VARCHAR2(30)
INDEX_NAME	VARCHAR2(30)
OWNER	VARCHAR2(30)
TABLE_NAME	VARCHAR2(30)
COLUMN_EXPRESSION	VARCHAR2(4000)
COLUMN_POSITION	NUMBER
ALL_WM_LOCKED_TABLES contains information about Workspace Manager locks on rows in version-enabled tables that the current user can access.	
Related View	
Column	Datatype
---	---
TABLE_OWNER	VARCHAR2(40)
TABLE_NAME	VARCHAR2(40)
LOCK_MODE	VARCHAR2(9)
LOCK_OWNER	VARCHAR2(4000)
LOCKING_WORKSPACE	VARCHAR2(4000)
ALL_WM_MODIFIED_TABLES contains information about all version-enabled tables that have been modified and on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, DELETE	
, UPDATE	
.	
Related View	
Column	Datatype
---	---
TABLE_NAME	VARCHAR2(61)
WORKSPACE	VARCHAR2(30)
SAVEPOINT	VARCHAR2(30)
ALL_WM_RIC_INFO contains information about referential integrity constraints in version-enabled tables that the current user can access. Workspace Manager uses this information to provide referential integrity support, which is described in Section 1.9.1.	
Related View	
Column	Datatype
---	---
CT_OWNER	VARCHAR2(40)
CT_NAME	VARCHAR2(40)
PT_OWNER	VARCHAR2(40)
PT_NAME	VARCHAR2(40)
RIC_NAME	VARCHAR2(40)
CT_COLS	VARCHAR2(4000)
PT_COLS	VARCHAR2(4000)
R_CONSTRAINT_NAME	VARCHAR2(40)
DELETE_RULE	VARCHAR2(2)
STATUS	VARCHAR2(8)
ALL_WM_TAB_TRIGGERS contains information about triggers that the current user created and for version-enabled tables owned by the current user that have triggers defined on them. If the current user has the CREATE ANY TRIGGER	
privilege, trigger information is displayed for all version-enabled tables.	
Related View	
Column	Datatype
---	---
TRIGGER_OWNER	VARCHAR2(50)
TRIGGER_NAME	VARCHAR2(50)
TABLE_OWNER	VARCHAR2(50)
TABLE_NAME	VARCHAR2(50)
TRIGGER_TYPE	VARCHAR2(3)
STATUS	VARCHAR2(10)
WHEN_CLAUSE	VARCHAR2(4000)
DESCRIPTION	VARCHAR2(4000)
TRIGGER_BODY	CLOB
TAB_MERGE_WO_REMOVE	VARCHAR2(4)
TAB_MERGE_W_REMOVE	VARCHAR2(4)
WSPC_MERGE_WO_REMOVE	VARCHAR2(4)
WSPC_MERGE_W_REMOVE	VARCHAR2(4)
DML	VARCHAR2(4)
TABLE_IMPORT	VARCHAR2(4)
TRIGGER_TYPE	
is one of the following values:	
BIR	
: before insert for each row AIR	
: after insert for each row BUR	
: before update for each row AUR	
: after update for each row BDR	
: before delete for each row ADR	
: after delete for each row BIS	
: before insert for each statement AIS	
: after insert for each statement BUS	
: before update for each statement AUS	
: after update for each statement BDS	
: before delete for each statement ADS	
: after delete for each statement ALL_WM_VERSIONED_TABLES contains information about all version-enabled tables on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, DELETE	
, UPDATE	
.	
Related View	
Column	Datatype
---	---
TABLE_NAME	VARCHAR2(30)
OWNER	VARCHAR2(30)
STATE	VARCHAR2(13)
HISTORY	VARCHAR2(50)
NOTIFICATION	VARCHAR2(3)
NOTIFYWORKSPACES	VARCHAR2(3999)
CONFLICT	VARCHAR2(4000)
DIFF	VARCHAR2(4000)
STATE	
is one of the following values:	
VERSIONED	
: The table has been version-enabled. DV	
: The table is being version-disabled. EV	
: The table is being version-enabled. DDL	
: The table is active in a DDL session. BDDL	
: The BeginDDL procedure is being performed on the table. CDDL	
: The CommitDDL procedure is being performed on the table. LWDV	
: The table is being lightweight version-disabled (an internal operation). LWEV	
: The table is being lightweight version-enabled (an internal operation). LW_DISABLED	
: The table has been lightweight version-disabled (an internal operation). ALL_WM_VT_ERRORS contains information about the error that occurred during the last call to the DisableVersioning or CommitDDL procedure that specified a table on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, DELETE	
, UPDATE	
.	
Related View	
SELECT	
, INSERT	
, DELETE	
, UPDATE	
. Column	Datatype
---	---
OWNER	VARCHAR2(30)
TABLE_NAME	VARCHAR2(30)
STATE	VARCHAR2(13)
SQL_STR	VARCHAR2(4000)
STATUS	VARCHAR2(100)
ERROR_MSG	VARCHAR2(200)
ALL_WORKSPACE_PRIVS contains information about Workspace Manager privileges in all workspaces that the current user can access.	
Related View	
Column	Datatype
---	---
GRANTEE	VARCHAR2(30)
WORKSPACE	VARCHAR2(30)
PRIVILEGE	VARCHAR2(22)
GRANTOR	VARCHAR2(30)
GRANTABLE	VARCHAR2(3)
ALL_WORKSPACE_SAVEPOINTS contains information about savepoints in all workspaces that the current user can access.	
Related View	
Column	Datatype
---	---
SAVEPOINT	VARCHAR2(30)
WORKSPACE	VARCHAR2(30)
IMPLICIT	VARCHAR2(3)
POSITION	NUMBER(38)
OWNER	VARCHAR2(30)
CREATETIME	DATE
DESCRIPTION	VARCHAR2(1000)
CANROLLBACKTO	VARCHAR2(3)
REMOVABLE	VARCHAR2(3)
ALL_WORKSPACES contains information about all workspaces that the current user can access.	
Its columns are the same as those for the DBA_WORKSPACES view, except for the following:	
Related Views	
WM_ADMIN_ROLE	
role. Column	Datatype
---	---
WORKSPACE	VARCHAR2(30)
WORKSPACE_ID	NUMBER(38)
PARENT_WORKSPACE	VARCHAR2(30)
PARENT_SAVEPOINT	VARCHAR2(30)
OWNER	VARCHAR2(30)
CREATETIME	DATE
DESCRIPTION	VARCHAR2(1000)
FREEZE_STATUS	VARCHAR2(8)
FREEZE_MODE	VARCHAR2(20)
FREEZE_WRITER	VARCHAR2(30)
FREEZE_OWNER	VARCHAR2(30)
SESSION_DURATION	VARCHAR2(3)
CURRENT_SESSION	VARCHAR2(3)
RESOLVE_STATUS	VARCHAR2(8)
RESOLVE_USER	VARCHAR2(30)
CONTINUALLY_REFRESHED	VARCHAR2(3)
WORKSPACE_LOCKMODE	VARCHAR2(19)
WORKSPACE_LOCKMODE_OVERRIDE	VARCHAR2(3)
MP_ROOT_WORKSPACE	VARCHAR2(30)
DBA_WM_SYS_PRIVS contains information about all users that have Workspace Manager system-level privileges (that is, privilege names containing _ANY_WORKSPACE, as explained in Section 1.4). This view is only available to users with the WM_ADMIN_ROLE	
role.	
Column	Datatype
---	---
GRANTEE	VARCHAR2(30)
PRIVILEGE	VARCHAR2(22)
GRANTOR	VARCHAR2(30)
GRANTABLE	VARCHAR2(3)
DBA_WM_VT_ERRORS contains information about the error that occurred during the last call to the DisableVersioning, CommitDDL, or RecoverFromDroppedUser procedure. Its columns are the same as those in ALL_WM_VT_ERRORS in Section 5.14. This view is only available to users with the WM_ADMIN_ROLE	
role.	
DBA_WORKSPACE_SESSIONS contains information about all users and workspaces (except for the LIVE	
workspace). This view is only available to users with the WM_ADMIN_ROLE	
role. It is useful for monitoring users in the different workspaces.	
Column	Datatype
---	---
USERNAME	VARCHAR2(30)
WORKSPACE	VARCHAR2(30)
SID	NUMBER
STATUS	VARCHAR2(8)
DBA_WORKSPACES contains information about all workspaces. This view is only available to users with the WM_ADMIN_ROLE	
role.	
Its columns are the same as those for the ALL_WORKSPACES view, except for the following:	
Related Views	
Column	Datatype
---	---
WORKSPACE	VARCHAR2(30)
WORKSPACE_ID	NUMBER(38)
PARENT_WORKSPACE	VARCHAR2(30)
PARENT_SAVEPOINT	VARCHAR2(30)
OWNER	VARCHAR2(30)
CREATETIME	DATE
DESCRIPTION	VARCHAR2(1000)
FREEZE_STATUS	VARCHAR2(8)
FREEZE_MODE	VARCHAR2(20)
FREEZE_WRITER	VARCHAR2(30)
SID	VARCHAR2(30)
SERIAL#	VARCHAR2(30)
FREEZE_OWNER	VARCHAR2(30)
SESSION_DURATION	VARCHAR2(3)
CURRENT_SESSION	VARCHAR2(3)
RESOLVE_STATUS	VARCHAR2(8)
RESOLVE_USER	VARCHAR2(30)
MP_ROOT_WORKSPACE	VARCHAR2(30)
ROLE_WM_PRIVS contains information about privileges that all roles granted to the current user have in each workspace.	
Related View	
Column	Datatype
---	---
ROLE	VARCHAR2(30)
WORKSPACE	VARCHAR2(30)
PRIVILEGE	VARCHAR2(22)
GRANTABLE	VARCHAR2(3)
USER_MP_GRAPH_WORKSPACES contains information about multiparent graph workspaces (explained in Section 1.1.10) for which the leaf workspace is owned by the current user. Its columns are the same as those in ALL_MP_GRAPH_WORKSPACES in Section 5.1.	
USER_MP_PARENT_WORKSPACES contains information about parent workspaces of multiparent workspaces (explained in Section 1.1.10) that the current user owns. Its columns are the same as those in ALL_MP_PARENT_WORKSPACES in Section 5.2.	
USER_REMOVED_WORKSPACES	
contains information about workspaces, that the current user owns, that have been removed during a RemoveWorkspace operation or a MergeWorkspace operation in which the remove_workspace	
parameter value was true	
, and while the value of the Workspace Manager system parameter KEEP_REMOVED_WORKSPACES_INFO	
was ON	
. (This system parameter is described in Section 1.5.) Its columns are the same as those in ALL_REMOVED_WORKSPACES in Section 5.3.	
USER_WM_CONS_COLUMNS contains information about columns in unique constraints on version-enabled tables that the current user owns. Its columns are the same as those in ALL_WM_CONS_COLUMNS in Section 5.5, except it does not contain an OWNER	
column.	
USER_WM_CONSTRAINTS contains information about constraints on version-enabled tables that the current user owns. It provides information about the following kinds of constraints: UNIQUE	
constraint, unique index, PRIMARY KEY	
constraints, and CHECK	
constraints. Its columns are the same as those in ALL_WM_CONSTRAINTS in Section 5.6, except it does not contain an OWNER	
or INDEX_OWNER	
column.	
USER_WM_IND_COLUMNS contains information about indexes used for enforcing unique constraints on version-enabled tables that the current user owns. Its columns are the same as those in ALL_WM_IND_COLUMNS in Section 5.7, except it does not contain an OWNER	
column.	
USER_WM_IND_EXPRESSIONS contains information about indexes used for enforcing unique constraints on version-enabled tables that the current user owns. Its columns are the same as those in ALL_WM_IND_EXPRESSIONS in Section 5.8, except it does not contain an OWNER	
column.	
USER_WM_LOCKED_TABLES contains information about Workspace Manager locks on rows in version-enabled tables that the current user owns. Its columns are the same as those in ALL_WM_LOCKED_TABLES in Section 5.9.	
USER_WM_MODIFIED_TABLES contains information about version-enabled tables that have been modified and that the current user owns. Its columns are the same as those in ALL_WM_MODIFIED_TABLES in Section 5.10.	
USER_WM_PRIVS contains information about privileges that the current user has in each workspace.	
Related View	
Column	Datatype
---	---
WORKSPACE	VARCHAR2(30)
PRIVILEGE	VARCHAR2(22)
GRANTOR	VARCHAR2(30)
GRANTABLE	VARCHAR2(3)
USER_WM_RIC_INFO contains information about referential integrity constraints in version-enabled tables that the current user owns. Its columns are the same as those in ALL_WM_RIC_INFO in Section 5.11.	
Workspace Manager uses this information to provide referential integrity support, which is described in Section 1.9.1.	
USER_WM_TAB_TRIGGERS contains information about triggers that are owned by the current user and that are on version-enabled tables. Its columns are the same as those in ALL_WM_TAB_TRIGGERS in Section 5.12, except that it does not contain the TRIGGER_OWNER	
column.	
USER_WM_VERSIONED_TABLES contains information about version-enabled tables that the current user owns. Its columns are the same as those in ALL_WM_VERSIONED_TABLES in Section 5.13.	
USER_WM_VT_ERRORS contains information about the error that occurred during the last call to the DisableVersioning or CommitDDL procedure that specified a table that the current user owns and on which the current user has one or more of the following privileges: SELECT	
, INSERT	
, DELETE	
, UPDATE	
. Its columns are the same as those in ALL_WM_VT_ERRORS in Section 5.14.	
USER_WORKSPACE_PRIVS contains information about Workspace Manager privileges in workspaces created by the current user. Its columns are the same as those in ALL_WORKSPACE_PRIVS in Section 5.15.	
USER_WORKSPACE_SAVEPOINTS contains information about savepoints in workspaces created by the current user. Its columns are the same as those in ALL_WORKSPACE_SAVEPOINTS in Section 5.16.	
USER_WORKSPACES contains information about workspaces created by the current user. Its columns are the same as those in ALL_WORKSPACES in Section 5.17.	
WM_COMPRESS_BATCH_SIZES contains information related to compression capabilities for version-enabled tables. This view is only available to users with the WM_ADMIN_ROLE	
role.	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
TABLE_NAME	VARCHAR2(30)
BATCH_SIZE	VARCHAR2(23)
NUM_BATCHES	NUMBER
WM_COMPRESSIBLE_TABLES contains information about version-enabled tables that need to be compressed (if compression is to be performed) between two savepoints in a workspace. To create rows in this view, use the SetCompressWorkspace procedure.	
Column	Datatype
---	---
OWNER	VARCHAR2(30)
TABLE_NAME	VARCHAR2(30)
WORKSPACE	VARCHAR2(256)
BEGIN_SAVEPOINT	VARCHAR2(256)
END_SAVEPOINT	VARCHAR2(256)
WM_EVENTS_INFO contains information about the capture of Workspace Manager events. For information about Workspace Manager events, see Chapter 2.	
Column	Datatype
---	---
EVENT_NAME	VARCHAR2(30)
CAPTURE	VARCHAR2(30)
WM_INSTALLATION contains information about the installed release of Workspace Manager. The information includes the Workspace Manager version number (OWM_VERSION	
) and the Workspace Manager system parameters.	
Column	Datatype
---	---
NAME	VARCHAR2(100)
VALUE	VARCHAR2(4000)
WM_REPLICATION_INFO contains information about the Workspace Manager replication environment. For information about using Oracle replication with Workspace Manager, see Appendix C.	
Column	Datatype
---	---
GROUPNAME	VARCHAR2(30)
WRITERSITE	VARCHAR2(128)
There is one conflict view for each version-enabled table. Each conflict view has a name in the form <table_name>_CONF. For example, if the EMPLOYEE	
table is version-enabled, the EMPLOYEE_CONF	
metadata view exists.	
Each conflict view contains the columns shown in Table 5-1.	
Table 5-1 Columns in the xxx_CONF Views	
Column	Datatype
---	---
Workspace in which the conflict exists.	
(One column for each column in original table)	(Same as column in original table)
Time period during which the row is valid, if the table has valid time support (described in Chapter 3). If you set the	
Overlapping period of the rows for which conflicts were detected, if the table has valid time support (described in Chapter 3).	
A SELECT operation from a conflict view uses the workspace conflict context established by the GotoWorkspace procedure, unless you have specified a workspace conflict context for the session by using the SetConflictWorkspace procedure. Selecting from the conflict view finds rows in that table that are changed in the current workspace context, and compares their values with corresponding rows in the parent workspace to identify conflicts. If the current workspace conflict context is the LIVE	
workspace, all rows in the table are selected and no conflicts are found.	
The following example lists the key value and all column values of conflicting rows in the EMPLOYEE	
table in the current workspace and its parent workspace. The conflict view reflects the context established by a previous call to the GetWorkspace or SetConflictWorkspace procedure to set the workspace conflict context (the current workspace in this case).	
If ID	
, NAME	
, and CITY	
are the columns in the EMPLOYEE	
table, then assume the following values:	
The database row identified by ID = 12	
was changed in NEWWORKSPACE	
and LIVE	
workspaces. In NEWWORKSPACE	
the city was changed to NASHUA	
, and in the LIVE	
workspace the city was changed to BOSTON	
. When NEWWORKSPACE	
is merged into LIVE	
, this row will show up as a conflict. The application must pick between the choices and resolve conflicts in favor of the workspace with the desired value.	
Note that DiffBase	
refers to the common ancestor (or base), as explained in the Usage Notes for the SetDiffVersions procedure.	
The following example begins a conflict resolution session, calls the ResolveConflicts procedure to delete the conflicting row from the NEWWORKSPACE	
workspace and to insert the value in the parent workspace (LIVE	
) into both workspaces, commits the transaction, and ends the conflict resolution session.	
For additional information about conflict resolution, see Section 1.1.4.	
There is one difference view for each version-enabled table. Each difference view has a name in the form <table_name>_DIFF. For example, if the EMPLOYEE	
table is version-enabled, the EMPLOYEE_DIFF	
metadata view exists. Rows are added to one or more xxx_DIFF views each time the SetDiffVersions procedure is executed.	
Each difference view contains the columns shown in Table 5-2.	
Table 5-2 Columns in the xxx_DIFF Views	
Column	Datatype
---	---
(One column for each column in original table)	(Same as column in original table)
Time period during which the row is valid, if the table has valid time support (described in Chapter 3). If you set the	
Branch from which the values in the preceding columns are taken. (See the explanation following this table.)	
One of the following codes describing the change:	
Overlapping period of the rows for which a difference was detected, if the table has valid time support (described in Chapter 3).	
The WM_DIFFVER	
value is in one of the following formats:	
'<workspace1>, <savepoint1>'	
'<workspace2>, <savepoint2>'	
'DiffBase'	
If the two-parameter version of the SetDiffVersions procedure was used, the value of savepoint1	
or savepoint2	
is LATEST	
.	
Note the following about the possible values for WM_CODE	
:	
NC	
will appear for rows in workspaces that did not change the value when another workspace did change the value. For example, if '<workspace2>, <savepoint2>'	
updated the row, the code for that row is U	
, but the code for the '<workspace1>, <savepoint1>'	
and 'DiffBase'	
rows is NC	
if they did not modify the row. NE	
will appear for 'DiffBase'	
if a row is inserted in one or more branches, and NE	
will appear for 'DiffBase'	
and a branch if only one branch has had any insert operations. For more information, including an example showing rows being added to a differences view, see the section on the SetDiffVersions procedure in Chapter 4.	
There is one history view for each version-enabled table if the table was version-enabled with the hist	
parameter set to VIEW_W_OVERWRITE	
or VIEW_WO_OVERWRITE	
in the call to the EnableVersioning procedure. Each history view has a name in the form <table_name>_HIST. For example, if the EMPLOYEE	
table is version-enabled with the hist	
parameter set to VIEW_W_OVERWRITE	
or VIEW_WO_OVERWRITE	
, the EMPLOYEE_HIST	
metadata view exists.	
You can use the history views to log and audit modifications to version-enabled tables.	
Each history view contains the columns shown in Table 5-3.	
Table 5-3 Columns in the xxx_HIST Views	
Column	Datatype
---	---
(One column for each column in original table)	(Same as column in original table)
Time period during which the row is valid, if the table has valid time support (described in Chapter 3). If you set the	
Name of the workspace containing the row.	
Version number of the row with which the data is associated.	
Name of the user that created the row.	
Type of change operation that was performed on the row:	
Time when the row was created or updated.	
Time when the row was deleted or modified.	
There is one lock view for each version-enabled table. Each lock view has a name in the form <table_name>_LOCK. For example, if the EMPLOYEE	
table is version-enabled, the EMPLOYEE_LOCK	
metadata view exists. (For an explanation of Workspace Manager locking, see Section 1.3.)	
Each lock view contains the columns shown in Table 5-4.	
Table 5-4 Columns in the xxx_LOCK Views	
Column	Datatype
---	---
(One column for each column in original table)	(Same as column in original table)
Time period during which the row is valid, if the table has valid time support (described in Chapter 3). If you set the	
Type of lock:	
User name of the owner of the lock.	
Name of the workspace in which the lock was placed.	
There is one multiworkspace view for each version-enabled table. Each multiworkspace view has a name in the form <table_name>_MW. For example, if the EMPLOYEE	
table is version-enabled, the EMPLOYEE_MW	
metadata view exists. Rows are added to one or more xxx_MW views each time the SetMultiWorkspaces procedure (described in Chapter 4) is executed.	
Each multiworkspace view contains the columns shown in Table 5-5.	
Table 5-5 Columns in the xxx_MW Views	
Column	Datatype
---	---
(One column for each column in original table)	(Same as column in original table)
Time period during which the row is valid, if the table has valid time support (described in Chapter 3). If you set the	
Workspace containing the row that was modified.	
Comma-delimited list of workspaces from which the row is visible.	
One of the following codes describing the change:	
You can use the <table_name>_MW view to see changes in another workspace without leaving the current workspace (for example, to check if there is a conflict with the other workspace). Each row in the view shows the data as it would be in that workspace if the workspace had been merged when the row was inserted in the view.
You can also use the <table_name>_DIFF view (see Section 5.46) to see changes in another workspace without leaving the current workspace; however, the <table_name>_DIFF view can be used for only two workspaces, whereas the <table_name>_MW view can be used for any number of workspaces. In addition, the <table_name>_DIFF view shows deleted rows, whereas the <table_name>_MW view does not show deleted rows.
For more information and several examples, see the information about the SetMultiWorkspaces procedure in Chapter 4.
This document has three parts:
Part III contains the following:
Workspace Manager is installed by default in the seed database and in all databases created by the Database Configuration Assistant (DBCA). However, in all other Oracle databases, such as those you create with a customized procedure, you must install Workspace Manager before you can use its features.
To install Workspace Manager in a custom database, do the following:
SYS
to the Oracle instance with a command in the following format: Enter the password for the SYS
account when you are prompted.
owminst.plb
script: This appendix describes how to migrate version-enabled tables from one release of Workspace Manager to another release. You can either upgrade to the current release or downgrade to a previous major release (no earlier than release 9.0.1). For example:
For an upgrade or downgrade operation, the tables can remain version-enabled. You do not need to disable versioning before performing an upgrade or downgrade.
To upgrade Workspace Manager from an earlier release to the highest current release number for a given major release, ensure that you have the appropriate patch set for the release to which you want to upgrade. You can find the latest patch set on My Oracle Support (formerly called MetaLink). To perform the upgrade, follow these steps.
$ORACLE_HOME/rdbms/admin
. SYSDBA
privileges. OWM_VERSION
in the WM_INSTALLATION view: If the OWM_VERSION
value is NOT_INSTALLED
, Workspace Manager is not currently installed.
If the OWM_VERSION
value is BETA_RELEASE
, the upgrade is not supported. Use DisableVersioning on all version-enabled tables, uninstall the old release of Workspace Manager using the old uninstall script, and install the new release of the Workspace Manager software.
If the WM_INSTALLATION view does not exist, run the following script to create the view.
owmupgrd.plb
upgrade script: This view should be empty. If it has any rows, the upgrade did not complete successfully. To recover one or more tables that were left in an inconsistent state because of the upgrade failure, use the RecoverAllMigratingTables or RecoverAllMigratingTables procedure, both of which are described in Chapter 4.
The value of OWM_VERSION
is the new version of Workspace Manager.
RESTRICTED SESSION
feature for the instance: Downgrading is strongly discouraged, except for rare cases where it is necessary. If you downgrade to a previous release, you will not benefit from bug fixes and enhancements that have been made in intervening releases.
To downgrade from the current Workspace Manager release to a previous major release, ensure that you have the appropriate patch set for the release to which you want to downgrade. You can find Workspace Manager patch sets on My Oracle Support (formerly called MetaLink). The following downgrade options are supported:
To perform a Workspace Manager downgrade, follow these steps. (The main steps are running the appropriate .sql
and .plb
files.)
.plb
file from the patch set for the latest installed Workspace Manager release to the $ORACLE_HOME/rdbms/admin
directory for the patch set of the Workspace Manager release to which you want to downgrade. This file has a name in the form owmd
nnn
.plb
, where nnn
reflects the number of the latest installed Workspace Manager release. For example, for downgrading from release 9.2.0.5.1, the name of the file is owmd920.plb
.
owme
nnn
.sql
file, where nnn
reflects the number of the latest installed Workspace Manager release. For example, for downgrading from release 9.2.0.5.1, the name of the file is owme920.sql
. SYS AS SYSDBA
. (You can connect as another user, but it must be AS SYSDBA
.) RESTRICT
mode: .sql
file that you noted in step 2. For example: .plb
file that you copied in step 1. For example: $ORACLE_HOME
\rdbms\admin\owmd920.plbThis table should not exist. If it exists and has any rows, the downgrade did not complete successfully; contact Oracle Support Services.
The value of OWM_VERSION
is the new version of Workspace Manager.
RESTRICTED SESSION
feature for the instance: For Oracle Database release 10.1, Workspace Manager implemented history management changes that are especially of interest if you want to perform an upgrade or downgrade operation. Workspace Manager uses the TIMESTAMP WITH TIME ZONE
type with history data, whereas before release 10.1 it used the DATE
type.
Using a timestamp with a time zone has several benefits:
DATE
type the granularity is seconds. The following considerations apply to the history management changes for release 10.1:
TIMESTAMP WITH TIME ZONE
type is used only in Oracle9i and higher releases. In release 8.1.7, Workspace Manager uses the DATE type for history management. fmt
parameter) that enables you to specify a timestamp or a date, with the same options as for the TO_DATE
function, described in Oracle Database SQL Language Reference. The in_date
parameter is of type VARCHAR2
to support Workspace Manager on all relevant Oracle releases (because the TIMESTAMP WITH TIME ZONE
type is not available on Oracle releases before Oracle9i). DATE
and TIMESTAMP WITH TIME ZONE
types to coexist, so that data exported from release 8.1.7 can be imported into Oracle9i. Tables that are version-enabled using the release 10.1 or higher will use the TIMESTAMP WITH TIME ZONE
type for history management. WMSYS.OWM_MIG_PKG.UpgradeHistoryColumns
with no parameters upgrades the history columns of all version-enabled tables
WMSYS.OWM_MIG_PKG.UpgradeHistoryColumns(owner_var VARCHAR2, table_name_var VARCHAR2)
upgrades the history column of a specified version-enabled table.
Workspace Manager supports replication of all workspace-related entities (such as workspaces and savepoints), operations (such as CreateWorkspace and MergeWorkspace), and DML and DDL operations on version-enabled tables. To use replication in a Workspace Manager environment, you must understand the major replication concepts and techniques, as documented in Oracle Database Advanced Replication and Oracle Database Advanced Replication Management API Reference. However, some special guidelines and procedures apply to replication with Workspace Manager, as described in this appendix.
Workspace Manager supports multimaster replication in an asynchronous mode with certain restrictions. The main restriction imposed on the replication sites is that only the master definition site in the multimaster setup can perform workspace operations and DML and DDL operations on version-enabled tables. All other sites are disallowed from performing any write operations. All read operations, such as GotoWorkspace or SELECT queries on version-enabled tables, are allowed on all sites in the replication environment.
In a Workspace Manager replication environment, the master definition site is referred to as the writer site, and all other master sites in the multimaster group are referred to as nonwriter sites.
To call any of the Workspace Manager replication support subprograms, you must be the replication administrator at all the master sites. You must also be registered as the receiver for all groups at the local master definition site. If the master definition site is changed using the RelocateWriterSite procedure, you must be registered as the receiver for all groups at the new writer site.
This section describes the typical steps for setting up a replication environment for a database with workspaces and version-enabled tables.
OWM-GROUP
and designates BACKUP-SITE1.EXAMPLE.COM
and BACKUP-SITE2.EXAMPLE.COM
as nonwriter sites. If you need to drop replication support for the Workspace Manager environment, execute the DropReplicationSupport procedure.
For reference and usage information about these procedures, see the sections on the GenerateReplicationSupport and DropReplicationSupport procedures in Chapter 4.
After replication is set up, the specified group appears as a regular group in the Replication catalog. In addition, for each version-enabled table at the local master definition site, Workspace Manager creates a group with a name in the form WM$<object-id>, where <object-id> is the object ID of the table <table-name>_LT at the local site. The groups that you specify and the groups created by Workspace Manager can be managed using standard the replication API or Oracle Enterprise Manager.
After Workspace Manager replication support has been set up (as described in Section C.1), you can version-enable a table to be replicated by executing the EnableVersioning procedure on the writer site, as long as the table is defined in exactly the same way on all the nonwriter sites. For example, to enable versioning on the SCOTT.EMP
table on all master sites, execute the following as the replication administrator on the writer site:
This example performs the following operations:
SCOTT.EMP
at the local (writer) site and at all remote (nonwriter) sites. SCOTT.EMP_LT
. This is a regular replication group that can be managed through the Oracle Enterprise Manager Replication tool. To disable versioning on a table in a Workspace Manager replication environment, execute the DisableVersioning procedure on the writer site. For example, to disable versioning on the SCOTT.EMP
table on all master sites, execute the following as the replication administrator on the writer site:
This example performs the following operations:
SCOTT.EMP
at the local (writer) site and at all remote (nonwriter) sites. To perform DDL operations on any version-enabled table, you must follow the guidelines in Section 1.8. If the version-enabled table is replicated, the following additional guidelines apply:
The writer site in a Workspace Manager replication environment can be changed after the environment is set up without quiescing the master groups. Relocating the writer site is especially useful when the writer site becomes unavailable and a new writer site needs to be specified.
To relocate the writer site, execute the RelocateWriterSite procedure. For guidelines and an example, see the reference information about the RelocateWriterSite procedure in Chapter 4.
If the old writer site is not available when you relocate the writer site, you must execute the SynchronizeSite procedure after the old writer site becomes available. For guidelines and an example, see the reference information about the SynchronizeSite procedure in Chapter 4.
This appendix lists the Workspace Manager error messages, including the cause and recommended user action for each.
LIVE
workspaces in the workspace hierarchy or explicit savepoints in the LIVE
workspace.LIVE
workspace and there may be no explicit savepoints. A clean install of Workspace Manager is needed on the import platform.LATEST
version of a workspace.LATEST
version in the workspace by using the GotoWorkspace or GotoSavepoint procedures.LATEST
version of a workspace.LATEST
version in the workspace by using the GotoWorkspace or GotoSavepoint procedures.LATEST
version of a workspace.LATEST
version in the workspace by using the GotoWorkspace or GotoSavepoint procedures.WM_ADMIN_ROLE
role can version-disable a table in another schema.WM_ADMIN_ROLE
can version-enable a table in another schema.WM_ADMIN_ROLE
or the owner of the workspace can alter workspace attributes.WM_ADMIN_ROLE
or the owner of the workspace can freeze a workspace.WM_ADMIN_ROLE
role or the owner of the workspace can set the workspace lock mode.WM_ADMIN_ROLE
role or the owner of the workspace or savepoint can alter the savepoint attributes.WM_ADMIN_ROLE
role or the owner of the workspace or savepoint can delete the savepoint.LIVE
workspace. The LIVE
workspace is the root workspace in the workspace hierarchy tree.LIVE
.LIVE
workspace. The LIVE
workspace is the root workspace in the workspace hierarchy tree.LIVE
.LIVE
workspaces.FORCE
option of DisableVersioning.SYS
.SYS
.ACCESS
and MERGE
privileges on the workspace on which it was invoked; or, in a multiparent workspace environment, the user does not have both ACCESS
and MERGE
privileges on the non-root workspaces and ACCESS
privilege on the root workspace of the multiparent workspace graph.ACCESS
privileges on the parent workspace of the workspace it was invoked on.ACCESS
and MERGE
privileges on the workspace on which it was invoked.ACCESS
privileges on the workspace on which it was invoked.ACCESS
privileges on the workspace on which it was invoked.ACCESS
and REMOVE
privileges on the workspace on which it was invoked.WM_ADMIN_ROLE
role.LATEST
version of the workspace.LATEST
version in the workspace by using the GotoWorkspace or GotoSavepoint procedures.LATEST
version of the workspace.LATEST
version in the workspace by using the GotoWorkspace or GotoSavepoint procedures.VIEW_WO_OVERWRITE
or VIEW_W_OVERWRITE
option and the cumulative length of the names of the primary key columns was greater than 600.PUBLIC
. Verify correct spelling of the grantee parameter.grant_option
parameter may only be YES
or NO
.in_date
time less than the create time of the current workspace.in_date
parameter for GotoDate must be greater than or equal to the create time for the current workspace.SELECT
, INSERT
, UPDATE
and DELETE
privileges on the versioned table.SELECT
, INSERT
, UPDATE
and DELETE
privileges on the versioned table being conflict resolved.CREATE
privileges on a workspace to be allowed to create a workspace off of it. Privileges can be granted using the grantWorkspacePriv or the grantSystemPriv procedures. Use the function GetPrivs to see which privileges you have on a workspace.GRANT
option to be able to grant it to others.SELECT
, INSERT
, UPDATE
and DELETE
privileges on all versioned tables that were modified in the input workspace.SELECT
, INSERT
, UPDATE
and DELETE
privileges on all versioned tables that were modified in the input workspace.hist
parameter of procedure EnableVersioning.hist
parameter are NONE
, VIEW_W_OVERWRITE
, and VIEW_WO_OVERWRITE
.where_clause
parameter as input.where_clause
parameter contains only valid column names and has proper syntax.ACCESS_WORKSPACE
, MERGE_WORKSPACE
, ROLLBACK_WORKSPACE
, REVOKE_WORKSPACE
, and CREATE_WORKSPACE
.freezewriter
parameter.lock_mode
parameter of procedure LockRows.lock_mode
are E
and S
(default is E
).lock_mode
parameter (fifth parameter) of procedure UnlockRows.lock_mode
are E
, S
, and ES
(default is ES
).all_or_user
parameter (fourth parameter) of procedure UnlockRows.all_or_user
. The valid values for all_or_user
are ALL
and USER
(default is USER
).LIVE
workspace.LIVE
. The LIVE
workspace is the default workspace for any session that is connected and Workspace Manager does not monitor users in the LIVE
workspace. Do not invoke this method on the LIVE
workspace.ACCESS
privilege.ACCESS
privilege.LIVE
workspace in NO_ACCESS
mode. Workspace Manager does not support this mode for the LIVE
workspace.READ_ONLY
, 1WRITER
, 1WRITER_SESSION
, WM_ONLY
) modes to freeze the LIVE
workspace.ACCESS
privilege on the parent workspace of the workspace for which lockRows in invoked.ACCESS
privilege on the workspace for which LockRows in invoked.ACCESS
privilege.ACCESS
privilege can be passed to SetMultiWorkspaces.LIVE
workspaces and then version-disable the table without the FORCE option.SELECT
privilege on the parent table.SELECT
privilege on the parent table. Grant the required privilege before version-enabling.SELECT
or DELETE
privilege on the child table.SELECT
and DELETE
privileges on the child table. Grant SELECT
and DELETE
privileges on the child table to the owner of the table being version-enabled.SELECT
privilege on the child table.SELECT
and DELETE
privileges on the child table. Grant SELECT
and DELETE
privileges on the child table to the owner of the table being version-enabled.ACCESS
and MERGE
privileges on the child workspace on which it was invoked; or, in a multiparent workspace environment, the user does not have both ACCESS
and MERGE
privileges on the non-root workspaces and ACCESS
privilege on the root workspace of the multiparent workspace graph.ACCESS
privilege on the parent workspace.ACCESS
privilege on the parent workspace before invoking RefreshTable or RefreshWorkspace. Privileges can be granted using the GrantWorkspacePriv or the GrantSystemPriv procedures. Use the GetPrivs function to see which privileges the current user has on a workspace.LIVE
workspace.LIVE
workspace. The user needs to be in the LIVE
workspace before invoking CreateWorkspace for creating a continually refreshed workspace.BASE
.BASE
. Choose another workspace name.LIVE
.LIVE
. Choose another workspace name.freezemode
parameter.NO_ACCESS
, READ_ONLY
, 1WRITER
, 1WRITER_SESSION
, WM_ONLY
). Ensure that FreezeWorkspace is invoked with the correct parameters.freezewriter
parameter.freezewriter
parameter for the FreezeWorkspace procedure can be non-null only when the freezemode
parameter is 1WRITER
. Ensure that FreezeWorkspace is invoked with the correct parameters.keep
parameter.keep
parameter to the ResolveConflicts procedure is one of (CHILD
,PARENT
,BASE
). This parameter is not case-sensitive. See the Resolving Conflicts section of the Workspace Manager documentation for details on the process of conflict resolution.LIVE
workspace. Workspace Manager only supports the RollbackToSP operation for the LIVE
workspace.LIVE
workspace.LIVE
workspace. Do not invoke MergeWorkspace on the LIVE
workspace.LIVE
workspace.LIVE
workspace, use the RollbackToSP operation. To remove descendants to the LIVE
workspace, use the RemoveWorkspace operation on the child workspaces.LIVE
workspace.LIVE
workspace. Do not invoke RefreshWorkspace on the LIVE
workspace.lockmode
parameter.E
(exclusive) or S
(shared). For a discussion of the differences and similarities between these two modes, see the Workspace Manager documentation.WM_ADMIN_ROLE
using the UnfreezeWorkspace procedure.where_clause
parameter as input.where_clause
parameter contains only valid column names and has proper syntax. The where_clause
parameter for this Workspace Manager operation can contain only columns that are part of the primary key.LATEST
savepoints in the workspace. CompressWorkspace requires that all sessions in the specified workspace be on the LATEST
version of the workspace.LATEST
savepoint using GotoSavepoint. Privileged users can view all the sessions in a workspace using the DBA_WORKSPACE_USERS view.LIVE
workspace.LIVE
workspaces.ACCESS
privileges on the workspace.ACCESS
privileges on the workspace. Invoke the UnlockRows operation only on workspaces that you have ACCESS
privileges for.WM_ADMIN_ROLE
or the user who initiated the BeginResolve operation on the workspace can issue a CommitResolve or RollbackResolve call for that workspace.force
parameter.WM_ADMIN_ROLE
.WM_ADMIN_ROLE
.lockMode
parameter have a non-null value.lockmode
parameter for this operation to succeed.WM_ADMIN_ROLE
role or the owner of the workspace can unfreeze a frozen workspace.where_clause
parameter of LockRows to specify those rows that have not already been versioned.LIVE
workspace.LIVE
workspace.freezewriter
parameter.freezewriter
parameter of the FreezeWorkspace procedure must be null whenever the session_duration
parameter is TRUE. The freezewriter
is implicitly assumed to be the currently connected session. Ensure that FreezeWorkspace is invoked with the correct parameters.session_duration
parameter.session_duration
parameter of the FreezeWorkspace must be TRUE when attempting to freeze a workspace in 1WRITER_SESSION mode. Ensure that FreezeWorkspace is invoked with the correct parameters.FREEZE_WORKSPACE
privilege on the workspace, or FREEZE_ANY_WORKSPACE
or WM_ADMIN_ROLE
system privilege, to the user trying the operation.LIVE
workspaces.FORCE
option of DisableVersioning.SQL> EXECUTE WMSYS.OWM_MIG_PKG.AllFixSentinelVersion;
ignore_last_error => TRUE
' with DisableVersioning.)auto_commit
value of TRUE
is invalid if the current session has an open database transaction on that workspace.auto_commit
value of FALSE
.NONCR_WORKSPACE_MODE
is set to PESSIMISTIC_LOCKING
.NONCR_WORKSPACE_MODE
is set to OPTIMISTIC_LOCKING
. To see the current Workspace Manager system parameter settings, use the WM_INSTALLATION metadata view.WE
mode can further edit the row in the same workspace.VE
mode can further edit the row.NONE
for the workspace
parameter is permitted only with VE
as the value for lock_mode
.lock_mode
value other than VE
.CR_WORKSPACE_MODE
or NONCR_WORKSPACE_MODE
is set to PESSIMISTIC_LOCKING
and the DML operation violates the system setting.LIVE
workspaces, you can change the PESSIMISTIC_LOCKING
setting to OPTIMISTIC_LOCKING.
To see the current Workspace Manager system parameter settings, use the WM_INSTALLATION metadata view.WHERE
clause.WHERE
clause in conjunction with the parameters for the operation.LIVE
workspaces.LIVE
workspaces for the workspace type (continually refreshed or not continually refreshed) for which the parameter is being set.ALLOW_CAPTURE_EVENTS
was set to OFF
.ALLOW_CAPTURE_EVENTS
to ON
, and retry the operation.SetCaptureEvents('ALL_EVENTS','OFF')
, and retry the operation.ON
or OFF
for the capture parameter.ALLOW_MULTI_PARENT_WORKSPACES
to OFF
when one or more multiparent workspaces existed in the system.ALLOW_NESTED_TABLE_COLUMNS
to OFF
when one or more version-enabled tables contained a nested table column.ALLOW_NESTED_TABLE_COLUMNS
was set to OFF
.ALLOW_NESTED_TABLE_COLUMNS
to ON
, and retry the operation.PRIMARY_KEY_RANGE
.TABLE
.batch_size
parameter value as TABLE
or PRIMARY_KEY_RANGE
.NUMBER_OF_COMPRESS_BATCHES
was invalid.active version
See current version.
child workspace
A workspace created from its parent workspace.
See also parent workspace and workspace hierarchy.
conflicts
Differences in data values resulting from changes to rows in the child and parent workspace. Conflicts are detected at merge time and presented to the user in conflict views.
See also merging (a workspace).
context
Information about the workspace that determines what data the session can see in the workspace. The context can be retrieved using the GetSessionInfo procedure
current version
The version in which the changes are currently being made.
exclusive locking
A Workspace Manager lock mode that prevents any other user from changing a locked row.
See also locks.
explicit savepoint
A savepoint that is explicitly created. It can later be used to perform partial rollbacks in workspaces.
See also savepoint, implicit savepoint, and removable savepoint.
freezing (a workspace)
Causing the condition in which no changes can be made to data in version-enabled rows in a workspace, and access to the workspace is restricted.
implicit savepoint
A savepoint that is created automatically whenever a new workspace is created.
See also savepoint, explicit savepoint, and removable savepoint.
LATEST
The name of the logical savepoint that refers to the latest version in the workspace.
See also savepoint.
locks
Version locks provided by Workspace Manager, separate from locks provided by conventional Oracle database transactions. These locks are primarily intended to eliminate row conflicts between a parent workspace and a child workspace. Locking is enabled at a session level and is a session property independent of the workspace in which the session is. When locking is enabled for a session, it locks rows in all workspaces in which it participates.
merging (a workspace)
Applying changes made in a workspace to its parent workspace.
nonwriter site
A master site in a multimaster group in a Workspace Manager replication environment that is not the writer site. A nonwriter site cannot perform any write operations, but can perform all read operations, such as CreateSavepoint or SELECT queries on version-enabled tables.
See also writer site.
parent workspace
A workspace from which another workspace (a child workspace) was created.
See also child workspace and workspace hierarchy.
privileges
A set of privileges for Workspace Manager that are separate from standard Oracle database privileges. Workspace-level privileges (with names in the form xxx_WORKSPACE) that allow the user to affect a specified workspace. System-level privileges (with names in the form xxx_ANY_WORKSPACE) that allow the user to affect any workspace.
removable savepoint
A workspace that can be deleted by the CompressWorkspace, CompressWorkspaceTree, and DeleteSavepoint procedures. A savepoint is removable if it is an explicit savepoint or if it is an implicit savepoint that does not have any child dependencies.
See also savepoint, explicit savepoint, and implicit savepoint.
rolling back (a workspace)
Deleting either all changes made in the workspace or all changes made after a savepoint (that is, an explicit savepoint).
savepoint
A point in the workspace to which operations can be rolled back. It is analogous to a firewall, in that by creating a savepoint you can prevent any damage to the "other side" of the wall (that is, operations performed in the workspace before the savepoint was created).
See also explicit savepoint, implicit savepoint, and removable savepoint.
session context
See context.
shared locking
A Workspace Manager lock mode that allows only users in the workspace in which the row was locked to modify the row.
See also locks.
unfreezing (a workspace)
Reversing the effect of a freeze operation.
See also freezing (a workspace).
valid time
The time during which a record is valid, or the ability to specify the time for which a record is valid. Also called effective dating.
valid time filter
A time that is applied to queries against version-enabled tables that have valid time support. When a valid time filter is set for the current session, only rows that are valid for the specified time are returned.
version-enabled table
A table in the database in which all rows in the table can now support multiple versions of data. The versioning infrastructure is not visible to the database users. After a table has been version-enabled, users automatically see the correct version of the record in which they are interested.
workspace
A virtual environment that one or more users can share to make changes to the data in the database. Workspace management involves managing one or more workspaces that can be shared by many users.
workspace hierarchy
The hierarchy of workspaces in the database. For example, a workspace can be a parent to one or more workspaces. By default, when a workspace is created, it is created from the topmost, or LIVE
, database workspace.
workspace management
The ability of the database to hold different versions of the same record (that is, row) in one or more workspaces.
writer site
The master definition site in a Workspace Manager replication environment. Only the writer site can perform workspace operations and DML and DDL operations on version-enabled tables. All other sites in the multimaster group are nonwriter sites.
See also nonwriter site.
 Copyright © 2000, 2010, Oracle and/or its affiliates. All rights reserved. |