C Developer's Guide
Release 11.2.1
E13066-08
January 2011
Oracle TimesTen In-Memory Database C Developer's Guide, Release 11.2.1
E13066-08
Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle TimesTen In-Memory Database is a memory-optimized relational database. Deployed in the application tier, TimesTen operates on databases that fit entirely in physical memory using standard SQL interfaces. High availability for the in-memory database is provided through real-time transactional replication.
TimesTen supports a variety of programming interfaces, including ODBC (Open Database Connectivity), OCI (Oracle Call Interface), Oracle Pro*C/C++ (precompiler for embedded SQL and PL/SQL instructions in C or C++ code), and PL/SQL (Oracle procedural language extension for SQL).
This preface covers the following topics:
This guide is for anyone developing or supporting applications that use TimesTen through ODBC, OCI, or Pro*C/C++.
In addition to familiarity with the particular programming interface you use, you should be familiar with TimesTen, SQL (Structured Query Language), and database operations.
TimesTen documentation is available on the product distribution media and on the Oracle Technology Network:
Oracle documentation is also available on the Oracle Technology network. This may be especially useful for Oracle features that TimesTen supports but does not attempt to fully document, such as OCI and Pro*C/C++:
In particular, the following Oracle documents may be of interest.
This manual frequently refers to ODBC API reference documentation for further information. This is available from Microsoft or a variety of third parties. For example:
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
TimesTen supports multiple platforms. Unless otherwise indicated, the information in this guide applies to all supported platforms. The term Windows refers to Windows 2000, Windows XP, and Windows Server 2003. The term UNIX refers to Solaris, Linux, HP-UX, and AIX.
Note: In TimesTen documentation, the terms "data store" and "database" are equivalent. Both terms refer to the TimesTen database unless otherwise noted. |
This document uses the following text conventions:
Convention	Meaning
italic	Italic type indicates terms defined in text, book titles, or emphasis.
monospace	Monospace type indicates code, commands, URLs, function names, attribute names, directory names, file names, text that appears on the screen, or text that you enter.
italic monospace	Italic monospace type indicates a placeholder or a variable in a code example for which you specify or use a particular value. For example:
Replace	
[]	Square brackets indicate that an item in a command line is optional.
{ }	Curly braces indicated that you must choose one of the items separated by a vertical bar (
	A vertical bar (or pipe) separates alternative arguments.
. . .	An ellipsis (. . .) after an argument indicates that you may use more than one argument on a single command line. An ellipsis in a code example indicates that what is shown is only a partial example.
%	The percent sign indicates the UNIX shell prompt.
In addition, TimesTen documentation uses the following special conventions:	
Convention	Meaning
---	---
install_dir	The path that represents the directory where TimesTen is installed.
TTinstance	The instance name for your specific installation of TimesTen. Each installation of TimesTen must be identified at installation time with a unique instance name. This name appears in the installation path.
bits or bb	Two digits, either 32 or 64, that represent either a 32-bit or 64-bit operating system.
release or rr	Numbers that represent a major TimesTen release, with or without dots. For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.
DSN	TimesTen data source name (for the TimesTen database).
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/	
.	
Accessibility of Code Examples in Documentation	
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.	
Accessibility of Links to External Web Sites in Documentation	
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.	
Access to Oracle Support	
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html	
or visit http://www.oracle.com/accessibility/support.html	
if you are hearing impaired.	
For information about obtaining technical support for TimesTen products, go to the following Web address:	
This section summarizes new features and functionality of Oracle TimesTen In-Memory Database Release 11.2.1 that are documented in this guide, providing links into the guide for more information.	
CALL	
for PL/SQL procedures and functions TimesTen now supports CALL	
syntax from any of its programming interfaces to call PL/SQL procedures and functions (in addition to CALL	
syntax to call TimesTen built-in procedures, which was already supported).	
For applications that have very predictable transactional dependencies and do not require the commit order on the replica database to be the same as that on the originating database, TimesTen supports parallel replication. This feature allows replication of multiple user-specified tracks of transactions in parallel.	
TimesTen supports private and public synonyms (aliases) for database objects such as tables, views, sequences, and PL/SQL objects.	
This release includes an optional Quick Start feature with introductory information, tutorials, and new or reworked demo applications. Note that the demos have mostly the same names as in earlier releases, but in a different location.	
See "About the TimesTen C demos" and install_dir	
/quickstart.html	
in your installation.	
OCI is an API that provides functions you can use to access the database server and control SQL execution. OCI supports the data types, calling conventions, syntax, and semantics of the C and C++ programming languages. You compile and link an OCI program much as you would any C or C++ program. There is no preprocessing or precompilation step.	
See Chapter 3, "TimesTen Support for Oracle Call Interface."	
The Oracle Pro*C/C++ Precompiler enables you to embed SQL statements or PL/SQL blocks directly into C or C++ code. You use a precompilation step to convert the Pro*C/C++ source file into a C or C++ source file.	
See Chapter 4, "TimesTen Support for Oracle Pro*C/C++ Precompiler."	
Perhaps the most significant overall change to previous functionality in this release is access control. TimesTen has new features to control database access with object-level resolution for database objects such as tables, views, materialized views, and sequences. This also affects access to certain TimesTen built-in procedures, utilities, and connection attributes.	
See "Considering TimesTen features for access control". For general information, see "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide.	
Discussion of binding parameters includes new support for binding OUT	
and IN OUT	
parameters.	
See appropriate subsections under "Binding parameters and executing statements".	
TimesTen now supports either of two modes for binding duplicate parameters in a SQL statement. Use the DuplicateBindMode	
general connection attribute to choose between the Oracle mode (now the default) and the traditional TimesTen mode.	
REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over a SQL result set and can be passed between PL/SQL and an application.	
Automatic client failover, used in High Availability scenarios when failure of a TimesTen node results in failover (transfer) to an alternate node, automatically reconnects applications to the new node. TimesTen provides features that allow applications to be alerted when this happens, so they can take any appropriate action.	
To make its behavior consistent with OCI expectations and to avoid unwanted round trips between client and server, the TimesTen client library implementation of SQLPrepare	
performs what is referred to as a deferred prepare, where the request is not sent to the server until required.	
As a result of new multistrand functionality of the log manager, some terminology has changed in Chapter 5, "XLA and TimesTen Event Management," and Chapter 9, "XLA Reference." For discussion in those chapters, the term "log sequence number" (LSN) is replaced by "log record identifier". There are still LSNs, but in a more limited and specific context. Only some of what used to be called LSNs are still LSNs in the new usage. Names of functions, data structures, and so on where "LSN" appears are not changed due to backward compatibility considerations.	
In particular, note that the multistrand functionality affects the tt_XlaLsn_t	
structure used by XLA functions ttXlaGetLSN	
and ttXlaSetLSN	
. It also affects the tt_LSN_t	
structure that is a field of the ttXlaUpdateDesc_t	
structure. See "ttXlaGetLSN", "ttXlaSetLSN", and "ttXlaUpdateDesc_t".	
Each row in a TimesTen database table has a unique identifier known as its rowid. TimesTen now supports Oracle-style rowids. An application can retrieve the rowid of a row from the ROWID	
pseudocolumn. Rowids can be represented in either binary or character format.	
TimesTen now supports the RETURNING INTO	
clause, referred to as DML returning, with an INSERT	
, UPDATE	
, or DELETE	
statement to return specified items from a row that was affected by the action.	
You can configure TimesTen to write a warning to the support log and throw an SNMP trap when the execution of a SQL statement exceeds a specified time duration, in seconds. This feature was added in a 7.0.x maintenance release but not documented in this manual. Note that this feature is similar to but differs from the previously existing timeout value for SQL statements.	
See "Setting a timeout or threshold for executing SQL statements".	
The ttRepDuplicateEx	
function in particular is affected by access control. See "ttRepDuplicateEx".	
If you are using an active standby pair replication scheme, you now have the option of using replicated bookmarks. For a replicated bookmark, operations on the bookmark are replicated to the standby database as appropriate. This allows more efficient recovery of your bookmark positions in the event of failover.	
See the section on replicated bookmarks under "About XLA bookmarks".	
ttXlaRowidToCString	
. flags	
field in the ttXlaUpdateDesc_t	
structure. See "ttXlaUpdateDesc_t".	
This chapter provides information about the C development environment and related considerations. The following topics are covered:	
Environment variable settings for TimesTen are discussed in "Environment variables" in the Oracle TimesTen In-Memory Database Installation Guide.	
On UNIX platforms, set the environment for TimesTen by executing one of the following scripts:	
On Windows, set the environment during installation or run the following:	
Notes:	
A TimesTen application can link with the TimesTen ODBC direct driver or ODBC client driver, or can link with a driver manager.	
Applications to be used solely with TimesTen can directly link with either the TimesTen ODBC direct driver or the ODBC client driver. Direct linking avoids the performance overhead of a driver manager and is the simplest way to access TimesTen. However, developers of direct-linked applications should be aware of the following issues associated with direct linking.	
SQLDataSources	
and SQLDrivers	
. SQLCancel	
to close a cursor instead of SQLFreeStmt(..., SQL_CLOSE)	
will receive a return code of SQL_SUCCESS_WITH_INFO	
and a SQL state of 01S05	
. This warning is intended to be used by the driver manager to manage its internal state. Applications should treat this warning as success. Applications that link with the ODBC driver manager on Windows can connect to any DSN that references an ODBC driver and can even connect simultaneously to multiple DSNs that use different ODBC drivers. Note, however, that driver managers are not available by default on most non-Windows platforms. In addition, using a driver manager may add significant synchronization overhead to every ODBC function call and has the following limitations:	
TT_PREFETCH_COUNT	
cannot be used with applications that link with a driver manager. For more information on using TT_PREFETCH_COUNT	
, see "Prefetching multiple rows of data". TT_PREFETCH_CLOSE	
connection option. For more information about using the TT_PREFETCH_CLOSE	
connection option, see "Enable TT_PREFETCH_CLOSE for serializable transactions" in the Oracle TimesTen In-Memory Database Operations Guide. SQLBIGINT	
, SQLTINYINT	
, and SQLWCHAR	
are not supported for an application linked with a driver manager when used with TimesTen. You cannot call methods that have any of these types in their signatures. Note: Though it is not yet formally supported, TimesTen supplies a driver manager for both Windows and UNIX with the Quick Start sample applications. This driver manager is limited to support for the TimesTen direct driver and client driver only, but does not have the functionality or performance limitations described above. Applications that must concurrently use both direct connections and client/server connections can use this driver manager to achieve this with very little impact on performance and no impact on functionality.	
To test whether an application was directly linked, you can call SQLGetInfo	
to examine the driver release of the database connection handle, as shown in Example 1-1.	
For direct-linked applications, the call to SQLGetInfo	
returns the unchanged connection handle. For applications that use a driver manager, the returned connection handle differs from the passed-in handle.	
Example 1-1 Testing whether an application is directly linked	
This section discusses compiling and linking C applications on Windows or UNIX.	
To compile TimesTen applications on Windows, you are not required to specify the location of the ODBC #include	
files. These files are included with Microsoft Visual C++. However, you must indicate the location of TimesTen #include	
files by using the /I	
compiler option.	
The Makefile in Example 1-2 shows how to build a TimesTen application on Windows systems. This example assumes that install_dir	
\lib	
has already been added to the LIB environment variable.	
Example 1-2 Building a TimesTen application in Windows	
On UNIX platforms:	
On UNIX, applications using the ULONG	
, SLONG	
, USHORT	
or SSHORT	
ODBC data types must specify the TT_USE_ALL_TYPES	
preprocessor option while compiling. This is typically done using the -DTT_USE_ALL_TYPES	
C compiler option.	
To use the TimesTen #include	
files, add the following to the C compiler command, where install_dir	
is the TimesTen installation directory path:	
To link with the TimesTen ODBC direct driver, add the following to the link command:	
The -L	
option tells the linker to search the TimesTen lib	
directory for library files. The -ltten	
option links in the TimesTen ODBC direct driver.	
To link with the TimesTen ODBC client driver, add the following to the link command:	
On Solaris, the default TimesTen ODBC client driver was compiled with Studio 11. The library enables you to link an application compiled with the Sun Studio 11 C/C++ compiler directly with the TimesTen client.	
On AIX, when linking applications with the TimesTen ODBC client driver, the C++ runtime library must be included in the link command (because the client driver is written in C++ and AIX does not link it automatically) and must follow the client driver:	
You can use Makefiles in subdirectories under the quickstart/sample_code	
directory, or you can use Example 1-3 to guide you in creating your own Makefile.	
Example 1-3 Makefile to link the application	
Notes:	
After you have configured your C environment, you can confirm that everything is set up correctly by compiling and running TimesTen Quick Start demo applications. Refer to the Quick Start welcome page at install_dir	
/quickstart.html	
, especially the links under SAMPLE PROGRAMS, for information on the following topics.	
The build_sampledb	
script creates a sample database and demo schema. You must run this before you start using the demos.	
The ttquickstartenv	
script, a superset of the ttenv	
script generally used for TimesTen setup, sets up the demo environment. You must run this each time you enter a session where you want to compile and run any of the demos.	
TimesTen provides demos for ODBC, XLA, OCI, and Pro*C/C++ in subdirectories under the quickstart/sample_code	
directory. For instructions on compiling and running the demos, see the README files in the subdirectories.	
A synopsis of each demo is provided when you click the categories under SAMPLE PROGRAMS.	
This chapter describes how to use ODBC to connect to and use Oracle TimesTen In-Memory Database. It includes the following topics:	
The Oracle TimesTen In-Memory Database Operations Guide contains information about creating a DSN for the database. The type of DSN you create depends on whether your application will connect directly to the database or will connect by a client.	
If you intend to connect directly to the database, refer to "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations Guide. There are sections on creating a DSN for a direct connection from UNIX or Windows.	
If you intend to create a client connection to the database, refer to "Working with the TimesTen Client and Server" in Oracle TimesTen In-Memory Database Operations Guide. There are sections on creating a DSN for a client/server connection from UNIX or Windows.	
Notes:	
The rest of this section covers the following topics:	
The following ODBC functions are available for connecting to a database and related functionality:	
SQLConnect	
: Loads a driver and connects to the database. The connection handle points to where information about the connection is stored, including status, transaction state, results, and error information. SQLDriverConnect	
: This is an alternative to SQLConnect	
when more information is required than what is supported by SQLConnect	
, which is just data source (the database), user name, and password. SQLAllocConnect	
: Allocates memory for a connection handle within the specified environment. SQLDisconnect	
: Disconnect from the database. Takes the existing connection handle as its only argument. Refer to ODBC API reference documentation for details about these functions.	
This section provides examples of connecting to and disconnecting from the database.	
Example 2-1 Connect and disconnect (excerpt)	
This code fragment invokes SQLConnect	
and SQLDisconnect	
to connect to and disconnect from the database named FixedDs	
. The first invocation of SQLConnect	
by any application causes the creation of the FixedDs	
database. Subsequent invocations of SQLConnect	
would connect to the existing database.	
Example 2-2 Connect and disconnect (complete program)	
This example contains a complete program that creates, connects to, and disconnects from a database. The example uses SQLDriverConnect	
instead of SQLConnect	
to set up the connection, and uses SQLAllocConnect	
to allocate memory. It also shows how to get error messages. (In addition, you can refer to "Handling Errors".)	
You can set or override connection attributes programmatically by specifying a connection string when you connect to a database.	
Refer to Oracle TimesTen In-Memory Database Operations Guide for general information about connection attributes. General connection attributes require no special privilege. First connection attributes are set when the database is first loaded, and persist for all connections. Only the instance administrator can load a database with changes to first connection attribute settings. Refer to "Connection Attributes" in Oracle TimesTen In-Memory Database Reference for additional information, including specific information about any particular connection attribute.	
Example 2-3 Connect and use store-level locking	
This code fragment connects to a database named mydsn	
and indicates in the SQLDriverConnect	
call that the application should use database-level locking rather than the default row-level locking. Note that LockLevel	
is a general connection attribute.	
Note: Each connection to a database opens several files. An application with many threads, each with a separate connection, has several files open for each thread. Such an application can exceed the maximum number of file descriptors that may be simultaneously open on the operating system. In this case, configure your system to allow a larger number of open files. See "Limits on number of open files" in Oracle TimesTen In-Memory Database System Tables and Limits Reference.	
Privilege to connect to the database must be explicitly granted to every user other than the instance administrator, through the CREATE SESSION	
privilege. This is a system privilege. It must be granted by an administrator to the user, either directly or through the PUBLIC	
role. Refer to "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide for additional information and examples.	
This section provides detailed information on working with data in a TimesTen database. It includes the following topics:	
In addition to standard C #include	
files, your application must include the following TimesTen #include	
files.	
Include file	Description
---	---
timesten.h	TimesTen ODBC #include file.
tt_errCode.h	TimesTen native error codes.
"Working with Data in a TimesTen Database" in Oracle TimesTen In-Memory Database Operations Guide describes how to use SQL to manage data. This section describes general formats used to execute a SQL statement within a C application. The following topics are covered:	
Note: Access control privileges are checked both when SQL is prepared and when it is executed in the database. Refer to "Considering TimesTen features for access control" for related information.	
There are two ODBC functions to execute SQL statements:	
SQLExecute	
: Executes a statement that has been prepared. This is used together with SQLPrepare	
. After the application is done with the results, they can be discarded and SQLExecute	
can be run again using different parameter values. This is typically used for DML statements with bind parameters, or statements that are being executed a relatively large number of times.	
SQLExecDirect	
: Prepares and executes a statement. This is typically used for DDL statements or for DML statements that would execute only a relatively small number of times and without bind parameters.	
Refer to ODBC API reference documentation for details about these functions.	
You can use the SQLExecDirect	
function as shown in Example 2-4.	
The next section, "Preparing and executing queries and working with cursors", shows usage of the SQLExecute	
and SQLPrepare	
functions.	
Example 2-4 Executing a SQL statement with SQLExecDirect	
This code sample creates a table, NameID	
, with two columns: CustID	
and CustName	
. The table maps character names to integer identifiers.	
This section shows the basic steps of preparing and executing a query and working with cursors. Applications use cursors to scroll through the results of a query, examining one result row at a time.	
In the ODBC setting, a cursor is always associated with a result set. This association is made by the ODBC driver. The application can control cursor characteristics, such as number of rows to fetch at one time, using SQLSetStmtOption	
options documented in "Option support for SQLSetStmtOption and SQLGetStmtOption". The steps involved in executing a query typically include the following.	
SQLPrepare	
to prepare the SELECT	
statement for execution. SQLBindParameter	
, if the statement has parameters, to bind each parameter to an application address. See "SQLBindParameter function". (Note that Example 2-5 below does not bind parameters.) SQLExecute	
to initiate the SELECT	
statement. See "SQLExecDirect and SQLExecute functions". SQLBindCol	
to assign the storage and data type for a column of results, binding column results to local variable storage in your application. SQLFetch	
to fetch the results. Specify the statement handle. SQLFreeStmt	
to free the statement handle. Specify the statement handle and either SQL_CLOSE	
, SQL_DROP	
, SQL_UNBIND	
, or SQL_RESET_PARAMS	
. Refer to ODBC API reference documentation for details on these ODBC functions.	
Note: Access control privileges are checked both when SQL is prepared and when it is executed in the database. Refer to "Considering TimesTen features for access control" for related information.	
Example 2-5 Executing a query and working with the cursor	
This example illustrates how to prepare and execute a query using ODBC calls. Error checking has been omitted to simplify the example. In addition to ODBC functions mentioned previously, this example uses SQLNumResultCols	
to return the number of columns in the result set, SQLDescribeCol	
to return a description of one column of the result set (column name, type, precision, scale, and nullability), and SQLBindCol	
to assign the storage and data type for a column in the result set. These are all described in detail in ODBC API reference documentation.	
In standard ODBC, a SQLPrepare	
call is expected to be compiled by the SQL engine so that information about the SQL statement, such as column descriptions for the result set, is available to the application and accessible through calls such as SQLDescribeCol	
. To achieve this functionality, the SQLPrepare	
call must be sent to the server for processing.	
This is in contrast, for example, to expected behavior under Oracle Call Interface (OCI), where a prepare call is expected to be a lightweight operation performed on the client to simply extract names and positions of parameters.	
To avoid unwanted round trips between client and server, and also to make the behavior consistent with OCI expectations, the TimesTen client library implementation of SQLPrepare	
performs what is referred to as a "deferred prepare", where the request is not sent to the server until required. Examples of when the round trip would be required:	
SQLExecute	
call. Note that if there is a deferred prepare call that has not yet been sent to the server, a SQLExecute	
call on the client is converted to a SQLExecDirect	
call. SQLDescribeCol	
call, for example. Many such calls in standard ODBC can access information previously returned by a SQLPrepare	
call, but with the deferred prepare functionality the SQLPrepare	
call is sent to the server and the information is returned to the application only as needed. Note: Deferred prepare functionality is not implemented, and not relevant, with the TimesTen direct driver.	
The deferred prepare implementation requires no changes at the application or user level; however, be aware that calling any of the following functions may result in a round trip to the server if the required information from a previously prepared statement has not yet been retrieved:	
SQLColAttributes	
SQLDescribeCol	
SQLDescribeParam	
SQLNumResultCols	
SQLNumParams	
SQLGetStmtOption	
(for options that depend on the statement having been compiled by the SQL engine) Also be aware that when calling any of these functions, any error from an earlier SQLPrepare	
call may be deferred until one of these calls is executed. In addition, these calls may return errors specific to SQLPrepare	
as well as errors specific to themselves.	
A TimesTen extension to ODBC allows applications to prefetch multiple rows of data into the ODBC driver buffer. This can increase the performance of applications that use the Read Committed or Serializable isolation level.	
The TT_PREFETCH_COUNT	
connection option determines how many rows a SQLFetch	
call will prefetch. This option is available for both direct access and client/server applications.	
TT_PREFETCH_COUNT	
can be set in a call to either SQLSetConnectOption	
or SQLSetStmtOption	
. The value can be any integer from 0 to 128, inclusive. Following is an example.	
With this setting, the first SQLFetch	
call will prefetch 100 rows. Subsequent SQLFetch	
calls will fetch from the ODBC buffer instead of from the database, until the buffer is depleted. After it is depleted, the next SQLFetch	
call will fetch another 100 rows into the buffer, and so on.	
To disable prefetch, set TT_PREFETCH_COUNT	
to 1.	
When the prefetch count is set to 0, TimesTen uses a default value, depending on the isolation level you have set for the database. With Read Committed isolation level, the default prefetch value is 5. With Serializable isolation level, the default is 128. The default prefetch value is the optimum setting for most applications. Generally, a higher value may result in better performance for larger result sets, at the expense of slightly higher resource use.	
You can set the isolation level as follows:	
Or:	
This sections discusses how to bind input or output parameters for SQL statements. The following topics are covered:	
The ODBC SQLBindParameter	
function is used to bind parameters for SQL statements. This could include IN	
, OUT	
, or IN OUT	
parameters.	
To bind an input parameter through ODBC, use the SQLBindParameter	
function with a setting of SQL_PARAM_INPUT	
for the fParamType	
argument. Refer to ODBC API reference documentation for details about the SQLBindParameter	
function. Table 2-1 provides a brief summary of its arguments.	
To bind an output or input-output parameter through ODBC, use the SQLBindParameter	
function with a setting of SQL_PARAM_OUTPUT	
or SQL_PARAM_INPUT_OUTPUT	
, respectively, for the fParamType	
argument. As with input parameters, use the fSqlType	
, cbColDef	
, and ibScale	
arguments (as applicable) of the ODBC SQLBindParameter	
function to specify data types. In addition, use the rgbValue	
, cbValueMax	
, and pcbValue	
arguments of SQLBindParameter	
.	
Table 2-1 SQLBindParameter arguments	
Note: Refer to "Data Types" in Oracle TimesTen In-Memory Database SQL Reference for information about precision and scale of TimesTen data types.	
Bind parameter type assignments are determined as follows.	
SQLBindParameter	
function, according to the fSqlType	
, cbColDef	
, and ibScale	
arguments of that function, as applicable. SQLBindParameter	
(the same as for SQL statements that execute within Oracle). So regarding host binds for PL/SQL (the variables, or parameters, that are preceded by a colon within a PL/SQL block), note that the type of a host bind is effectively declared by the call to SQLBindParameter	
, according to fSqlType	
and the other arguments as applicable, and is not declared within the PL/SQL block.	
The ODBC driver performs any necessary type conversions between C values and SQL or PL/SQL types. For any C-to-SQL or C-to-PL/SQL combination that is not supported, an error will occur. These conversions can be from a C type to a SQL or PL/SQL type (IN	
parameter), from a SQL or PL/SQL type to a C type (OUT	
parameter), or both (IN OUT	
parameter).	
Table 2-2 documents the mapping between ODBC types and SQL or PL/SQL types.	
Table 2-2 ODBC SQL to TimesTen SQL or PL/SQL type mappings	
ODBC type (fSqlType)	SQL or PL/SQL type
---	---
Notes:	
For IN	
parameters for use with PL/SQL in TimesTen, use the fSqlType	
, cbColDef	
, and ibScale	
arguments (as applicable) of the ODBC SQLBindParameter	
function to specify data types. This is in contrast to how SQL input parameters are supported, as noted in the preceding section, "Determination of parameter type assignments and type conversions".	
In addition, the rgbValue	
, cbValueMax	
, and pcbValue	
arguments of SQLBindParameter	
are used as follows for IN	
parameters:	
rgbValue	
: Before statement execution, points to the buffer where the application places the parameter value to be passed to the application. cbValueMax	
: For character and binary data, indicates the maximum length of the incoming value that rgbValue	
points to, in bytes. For all other data types, cbValueMax	
is ignored, and the length of the value that rgbValue	
points to is determined by the length of the C data type specified in the fCType	
argument of SQLBindParameter	
. pcbValue	
: Points to a buffer that contains one of the following before statement execution: rgbValue	
points to. For IN	
parameters, this would be valid only for character or binary data. SQL_NTS	
for a null-terminated string. SQL_NULL_DATA	
for a null value. For OUT	
parameters for use with PL/SQL in TimesTen, as noted for IN	
parameters previously, use the fSqlType	
, cbColDef	
, and ibScale	
arguments (as applicable) of the ODBC SQLBindParameter	
function to specify data types.	
In addition, the rgbValue	
, cbValueMax	
, and pcbValue	
arguments of SQLBindParameter	
are used as follows for OUT	
parameters:	
rgbValue	
: During statement execution, points to the buffer where the value returned from the statement should be placed. cbValueMax	
: For character and binary data, indicates the maximum length of the outgoing value that rgbValue	
points to, in bytes. For all other data types, cbValueMax	
is ignored, and the length of the value that rgbValue	
points to is determined by the length of the C data type specified in the fCType	
argument of SQLBindParameter	
. Note that ODBC null-terminates all character data, even if the data is truncated. Therefore, when an OUT	
parameter has character data, cbValueMax	
must be large enough to accept the maximum data value plus a null terminator (one additional byte for CHAR	
and VARCHAR	
parameters, or two additional bytes for NCHAR	
and NVARCHAR	
parameters).	
pcbValue	
: Points to a buffer that contains one of the following after statement execution: rgbValue	
points to (for all C types, not just character and binary data). This is the length of the full parameter value, regardless of whether the value can fit in the buffer that rgbValue	
points to. SQL_NULL_DATA	
for a null value. Example 2-6 Binding output parameters	
This example shows how to prepare, bind, and execute a PL/SQL anonymous block. The anonymous block assigns bind variable a	
the value 'abcde	
' and bind variable b	
the value 123	
.	
SQLPrepare	
prepares the anonymous block. SQLBindParameter	
binds the first parameter (a	
) as an output parameter of type SQL_VARCHAR	
and binds the second parameter (b	
) as an output parameter of type SQL_INTEGER	
. SQLExecute	
executes the anonymous block.	
For IN OUT	
parameters for use with PL/SQL in TimesTen, as noted for IN	
parameters previously, use the fSqlType	
, cbColDef	
, and ibScale	
arguments (as applicable) of the ODBC SQLBindParameter	
function to specify data types.	
In addition, the rgbValue	
, cbValueMax	
, and pcbValue	
arguments of SQLBindParameter	
are used as follows for IN OUT	
parameters:	
rgbValue	
: This is first used before statement execution as described in "Binding IN parameters". Then it is used during statement execution as described in the preceding section, "Binding OUT parameters". Note that for an IN OUT	
parameter, the outgoing value from a statement execution will be the incoming value to the statement execution that immediately follows, unless that is overridden by the application. Also, for IN OUT	
values bound when you are using data-at-execution, the value of rgbValue	
serves as both the token that would be returned by the ODBC SQLParamData	
function and as the pointer to the buffer where the outgoing value will be placed. cbValueMax	
: For character and binary data, this is first used as described in "Binding IN parameters". Then it is used as described in the preceding section, "Binding OUT parameters". For all other data types, cbValueMax	
is ignored, and the length of the value that rgbValue	
points to is determined by the length of the C data type specified in the fCType	
argument of SQLBindParameter	
. Note that ODBC null-terminates all character data, even if the data is truncated. Therefore, when an IN OUT	
parameter has character data, cbValueMax	
must be large enough to accept the maximum data value plus a null terminator (one additional byte for CHAR	
and VARCHAR	
parameters, or two additional bytes for NCHAR	
and NVARCHAR	
parameters).	
pcbValue	
: This is first used before statement execution as described in "Binding IN parameters". Then it is used after statement execution as described in the preceding section, "Binding OUT parameters". Important:	
TimesTen supports either of two modes for binding duplicate parameters in a SQL statement. (Regarding PL/SQL statements, see "Binding duplicate parameters in PL/SQL".)	
You can choose the desired mode through the DuplicateBindMode	
general connection attribute. DuplicateBindMode=0	
(the default) is for the Oracle mode, and DuplicateBindMode=1	
is for the TimesTen mode. Because this is a general connection attribute, different concurrent connections to the same database can use different values. Refer to "DuplicateBindMode" in Oracle TimesTen In-Memory Database Reference for additional information about this attribute.	
The rest of this section provides details for each mode, considering the following query:	
Notes:	
In Oracle mode, where DuplicateBindMode=0	
, multiple occurrences of the same parameter name in a SQL statement are considered to be different parameters. When parameter position numbers are assigned, a number is given to each parameter occurrence without regard to name duplication. The application must, at a minimum, bind a value for the first occurrence of each parameter name. For any subsequent occurrence of a given parameter name, the application has the following choices.	
In either case, each occurrence still has a distinct parameter position number.	
To use a different value for the second occurrence of a	
in the SQL statement above:	
To use the same value for both occurrences of a	
:	
Parameter b	
is considered to be in position 3 regardless.	
In Oracle mode, the SQLNumParams	
ODBC function returns 3 for the number of parameters in the example.	
In TimesTen mode, where DuplicateBindMode=1	
, SQL statements containing duplicate parameters are parsed such that only distinct parameter names are considered as separate parameters.	
Binding is based on the position of the first occurrence of a parameter name. Subsequent occurrences of the parameter name are not given their own position numbers. All occurrences of the same parameter name take on the same value.	
For the SQL statement above, the two occurrences of a	
are considered to be a single parameter, so cannot be bound separately:	
Note that in TimesTen mode, parameter b	
is considered to be in position 2, not position 3.	
In TimesTen mode, the SQLNumParams	
ODBC function returns 2 for the number of parameters in the example.	
The preceding discussion does not apply within PL/SQL. Instead, PL/SQL semantics apply, whereby you bind a value for each unique parameter. An application executing the following block, for example, would bind only one parameter, corresponding to :a	
.	
An application executing the following block would also bind only one parameter:	
And the same for the following CALL	
statement:	
An application executing the following block would bind two parameters, with :a	
as parameter #1 and :b	
as parameter #2. The second parameter in each INSERT	
statement would take the same value as the first parameter in the first INSERT	
statement:	
The BINARY_DOUBLE	
and BINARY_FLOAT	
data types store and retrieve the IEEE floating point values Inf	
, -Inf	
, and NaN	
. If an application uses a C language facility such as printf	
, scanf	
, or strtod	
that requires conversion to character data, the floating point values are returned as "INF", "-INF", and "NAN". These character strings cannot be converted back to floating point values.	
Applications using the Windows driver manager may encounter errors from SQLBindParameter	
with SQL state S1004	
(SQL data type out of range) when passing an fSqlType	
value of SQL_WCHAR	
or SQL_WVARCHAR	
. This problem can be avoided by passing one of the following values for fSqlType	
instead:	
SQL_WCHAR_DM_SQLBINDPARAMETER_BYPASS	
instead of SQL_WCHAR	
SQL_WVARCHAR_DM_SQLBINDPARAMETER_BYPASS	
instead of SQL_WVARCHAR	
These type codes are semantically identical to SQL_WCHAR	
and SQL_WVARCHAR	
but avoid the error from the Windows driver manager. They can be used in applications that link with the driver manager or link directly with the TimesTen ODBC direct driver or ODBC client driver.	
See "SQLBindParameter function" for information about that ODBC function.	
REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over a SQL result set and can be passed between PL/SQL and an application. In TimesTen, the cursor can be opened in PL/SQL then the REF CURSOR can be passed to the application. The results can be processed in the application using ODBC calls. This is an OUT	
REF CURSOR (an OUT	
parameter with respect to PL/SQL). The REF CURSOR is attached to a statement handle, allowing applications to describe and fetch result sets using the same APIs as for any result set.	
Take the following steps to use a REF CURSOR. Assume a PL/SQL statement that returns a cursor through a REF CURSOR OUT	
parameter. Note the same basic steps of prepare, bind, execute, and fetch as in the cursor example in "Preparing and executing queries and working with cursors".	
SQLPrepare	
, to be associated with the first statement handle. SQLBindParameter	
. When binding the REF CURSOR output parameter, use an allocated second statement handle as rgbValue	
, the pointer to the data buffer. The pcbValue	
, ibScale	
, cbValueMax	
, and pcbValue	
arguments are ignored for REF CURSORs.	
See "SQLBindParameter function" and "Binding OUT parameters" for information about these and other SQLBindParameter	
arguments.	
SQLExecute	
to execute the statement. SQLBindCol	
to bind result columns to local variable storage. SQLFetch	
to fetch the results. After a REF CURSOR is passed from PL/SQL to an application, the application can describe and fetch the results as it would for any result set. SQLFreeStmt	
to free the statement handle. These steps are demonstrated in the example that follows. Refer to ODBC API reference documentation for details on these functions.	
Important: For passing REF CURSORs between PL/SQL and an application, TimesTen supports onlyOUT REF CURSORs, from PL/SQL to the application, and supports a statement returning only a single REF CURSOR.	
Example 2-7 Executing a query and working with a REF CURSOR	
This example uses a REF CURSOR and demonstrates the basic steps of preparing a query, binding parameters, executing the query, binding results to local variable storage, and fetching the results. Error handling omitted for simplicity. In addition to ODBC functions summarized earlier, this example uses SQLAllocStmt	
to allocate memory for a statement handle.	
You can use a RETURNING INTO	
clause, referred to as DML returning, with an INSERT	
, UPDATE	
, or DELETE	
statement to return specified items from a row that was affected by the action. This eliminates the need for a subsequent SELECT	
statement and separate round trip in case, for example, you want to confirm what was affected by the action.	
With ODBC, DML returning is limited to returning items from a single-row operation. The clause returns the items into a list of OUT	
parameters. Bind the OUT	
parameters as discussed in "Binding parameters and executing statements".	
SQL syntax and restrictions for the RETURNING INTO	
clause in TimesTen are documented as part of "INSERT", "UPDATE", and "DELETE" in Oracle TimesTen In-Memory Database SQL Reference.	
Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for details about DML returning.	
Example 2-8 DML returning	
This example is adapted from Example 2-9 in the previous section.	
This returns "King" as the recipient of the raise.	
Each row in a database table has a unique identifier known as its rowid. An application can retrieve the rowid of a row from the ROWID	
pseudocolumn. Rowids can be represented in either binary or character format.	
An application can specify literal rowid values in SQL statements, such as in WHERE	
clauses, as CHAR	
constants enclosed in single quotes.	
As noted in Table 2-2, the ODBC SQL type SQL_ROWID	
corresponds to the SQL type ROWID	
.	
For parameters and result set columns, rowids are convertible to and from the C types SQL_C_BINARY	
, SQL_C_WCHAR	
, and SQL_C_CHAR	
. SQL_C_CHAR	
is the default C type for rowids. The size of a rowid would be 12 bytes as SQL_C_BINARY	
, 18 bytes as SQL_C_CHAR	
, and 36 bytes as SQL_C_WCHAR	
.	
Refer to "ROWID data type" and "ROWID specification" in Oracle TimesTen In-Memory Database SQL Reference for additional information about rowids and the ROWID	
data type, including usage and life.	
Note: Oracle TimesTen In-Memory Database does not support the PL/SQL typeUROWID .	
TimesTen supports private and public synonyms (aliases) for database objects such as tables, views, sequences, and PL/SQL objects. Synonyms are often used for security to mask object names and object owners, or for convenience to simplify SQL statements.	
To create a private synonym for table foo	
in your schema:	
To create a public synonym for foo	
:	
A private synonym exists in the schema of a specific user and shares the same namespace as database objects such as tables, views, and sequences. A private synonym cannot have the same name as a table or other object in the same schema.	
A public synonym does not belong to any particular schema, is accessible to all users, and can have the same name as any private object.	
To create a synonym you must have the CREATE SYNONYM	
or CREATE PUBLIC SYNONYM	
privilege, as applicable. To use a synonym you must have appropriate privileges to access the underlying object.	
For general information about synonyms, see "Understanding synonyms" in Oracle TimesTen In-Memory Database Operations Guide. For information about the CREATE SYNONYM	
and DROP SYNONYM	
statements, see "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.	
By default in TimesTen, autocommit is enabled, so that any DML change you make (update, insert, or delete) is committed automatically. It is recommended, however, that you disable this feature and commit (or roll back) your changes explicitly. You can refer to "Transaction semantics" in Oracle TimesTen In-Memory Database Operations Guide for information about autocommit.	
With autocommit disabled, you can commit or roll back a transaction using the SQLTransact	
ODBC function. Refer to ODBC API reference documentation for details about this function.	
Notes:	
Example 2-9 Updating the database and committing the change	
This example prepares and executes a statement to give raises to selected employees, then manually commits the changes. Assume autocommit has been previously disabled.	
Preceding sections discussed key features for managing TimesTen data. This section covers the additional features listed here.	
TimesTen supports each of the following syntax formats from any of its programming interfaces to call PL/SQL procedures (procname	
) or PL/SQL functions (funcname	
) that are standalone or part of a package, or to call TimesTen built-in procedures (procname	
):	
TimesTen ODBC also supports each of the following syntax formats:	
The following ODBC example calls the TimesTen ttCkpt	
built-in procedure.	
These examples call a PL/SQL procedure myproc	
with two parameters:	
The following shows several ways to call a PL/SQL function myfunc	
:	
See "CALL" in Oracle TimesTen In-Memory Database SQL Reference for details about CALL	
syntax.	
Note:	
TimesTen offers two ways to limit the time for SQL statements or procedure calls to execute, applying to any SQLExecute	
, SQLExecDirect	
, or SQLFetch	
call.	
For the former, if the timeout duration is reached, the statement stops executing and an error is thrown. For the latter, if the threshold is reached, an SNMP trap is thrown but execution continues.	
To control how long SQL statements should execute before timing out, you can set the SQL_QUERY_TIMEOUT	
option using a SQLSetStmtOption	
or SQLSetConnectOption	
call to specify a timeout value, in seconds. Despite the name, this timeout value applies to any executable SQL statement, not just queries.	
In TimesTen you can specify this timeout value for any connection, and hence for any statement, by using the SqlQueryTimeout	
general connection attribute. If you set SqlQueryTimeout	
in the DSN specification, its value becomes the default value for all subsequent connections to the database. A call to SQLSetConnectOption	
with the SQL_QUERY_TIMEOUT	
option overrides any default value that a connection may have inherited and applies to any statement from that connection. A call to SQLSetStmtOption	
with the SQL_QUERY_TIMEOUT	
option overrides any default value inherited from the connection and any value set using SQLSetConnectOption	
, but applies only to the statement.	
The query timeout limit has effect only when a SQL statement is actively executing. A timeout does not occur during commit or rollback. For transactions that execute a large number of UPDATE	
, DELETE	
or INSERT	
statements, the commit or rollback phases may take a long time to complete. During that time the timeout value is ignored.	
Note: If both a lock timeout and aSqlQueryTimeout value are specified, the lesser of the two values causes a timeout first. Regarding lock timeouts, you can refer to "ttLockWait" (built-in procedure) or "LockWait" (general connection attribute) in Oracle TimesTen In-Memory Database Reference, or to "Check for deadlocks and timeouts" in Oracle TimesTen In-Memory Database Troubleshooting Procedures Guide.	
You can configure TimesTen to write a warning to the support log and throw an SNMP trap when the execution of a SQL statement exceeds a specified time duration, in seconds. Execution continues and is not affected by the threshold.	
The name of the SNMP trap is ttQueryThresholdWarnTrap	
. See Oracle TimesTen In-Memory Database Error Messages and SNMP Traps for information about configuring SNMP traps. Despite the name, this threshold applies to any executable SQL statement.	
By default, the application obtains the threshold from the QueryThreshold	
general connection attribute setting (refer to "QueryThreshold" in Oracle TimesTen In-Memory Database Reference). Setting the TT_QUERY_THRESHOLD	
option in a SQLSetConnectOption	
call overrides the connection attribute setting for the current connection.	
To set the threshold with SQLSetConnectOption	
:	
Setting the TT_QUERY_THRESHOLD	
option in a SQLSetStmtOption	
call overrides the connection attribute setting, and any setting through SQLSetConnectOption	
, for the statement. It applies to SQL statements executed using the ODBC statement handle.	
To set the threshold with SQLSetStmtOption	
:	
You can retrieve the current value of TT_QUERY_THRESHOLD	
by using the SQLGetConnectOption	
or SQLGetStmtOption	
ODBC function:	
This section discusses features related to the use of IMDB Cache:	
See Oracle In-Memory Database Cache User's Guide for information about IMDB Cache.	
TimesTen provides the ttOptSetFlag	
built-in procedure for setting various flags, including the PassThrough	
flag to temporarily set the passthrough level. You can use ttOptSetFlag	
to set PassThrough	
in a C application as in the following example, which sets the passthrough level to 1. The setting affects all statements that are prepared until the end of the transaction.	
Also see "ttOptSetFlag" in Oracle TimesTen In-Memory Database Reference for more information about that built-in procedure, and "Setting a passthrough level" in Oracle In-Memory Database Cache User's Guide for information about the meaning and effect of each passthrough level.	
You can call the SQLGetStmtOption	
ODBC function with the TT_STMT_PASSTHROUGH_TYPE	
statement option to determine whether a SQL statement is to be executed in the TimesTen database or passed through to the Oracle database for execution. For example:	
You can make this call after preparing the SQL statement. It is useful with PassThrough	
settings of 1, 2, 4, or 5, where the determination of whether a statement will actually be passed through is not made until compilation time. If TT_STMT_PASSTHROUGH_NONE	
is returned, the statement is to be executed in TimesTen. If TT_STMT_PASSTHROUGH_ORACLE	
is returned, the statement is to be passed through to Oracle for execution.	
See "Setting a passthrough level" in Oracle In-Memory Database Cache User's Guide for information about passthrough settings.	
Note: TT_STMT_PASSTHROUGH_TYPE is supported with SQLGetStmtOption only, not with SQLSetStmtOption .	
In IMDB Cache, following the execution of a FLUSH CACHE GROUP	
, LOAD CACHE GROUP	
, REFRESH CACHE GROUP	
, or UNLOAD CACHE GROUP	
statement, the ODBC function SQLRowCount	
returns the number of cache instances that were flushed, loaded, refreshed, or unloaded.	
For related information, see "Determining the number of cache instances affected by an operation" in Oracle In-Memory Database Cache User's Guide.	
Refer to ODBC API reference documentation for general information about SQLRowCount	
.	
TimesTen extensions to ODBC enable an application to set options for linguistic sorts, length semantics for character columns, and error reporting during character set conversion. These options can be used in a call to SQLSetConnectOption	
. The options are defined in the timesten.h	
#include	
file (noted in "TimesTen #include files").	
For more information about linguistic sorts, length semantics, and character sets, see "Globalization Support" in Oracle TimesTen In-Memory Database Operations Guide.	
This section includes the following TimesTen ODBC globalization options:	
This option specifies the collating sequence used for linguistic comparisons. See "Monolingual linguistic sorts" and "Multilingual linguistic sorts" in Oracle TimesTen In-Memory Database Operations Guide for supported linguistic sorts.	
It takes a string value. The default is "BINARY".	
Also see the description of the NLS_SORT	
general connection attribute, which has the same functionality, in "NLS_SORT" in Oracle TimesTen In-Memory Database Reference. Note that TT_NLS_SORT	
, being a runtime option, takes precedence over the NLS_SORT	
connection attribute.	
This option specifies whether byte or character semantics is used. The possible values are:	
TT_NLS_LENGTH_SEMANTICS_BYTE	
(default) TT_NLS_LENGTH_SEMANTICS_CHAR	
Also see the description of the NLS_LENGTH_SEMANTICS	
general connection attribute, which has the same functionality, in "NLS_LENGTH_SEMANTICS" in Oracle TimesTen In-Memory Database Reference. Note that TT_NLS_LENGTH_SEMANTICS	
, being a runtime option, takes precedence over the NLS_LENGTH_SEMANTICS	
connection attribute.	
This option specifies whether an error is reported when there is data loss during an implicit or explicit character type conversion between NCHAR	
or NVARCHAR2	
data and CHAR	
or VARCHAR2	
data during SQL operations. The option does not apply to conversions done by ODBC as a result of binding.	
The possible values are:	
TRUE	
: Errors during conversion are reported. FALSE	
: Errors during conversion are not reported (default). Also see the description of the NLS_NCHAR_CONV_EXCP	
general connection attribute, which has the same functionality, in "NLS_NCHAR_CONV_EXCP" in Oracle TimesTen In-Memory Database Reference. Note that TT_NLS_NCHAR_CONV_EXCP	
, being a runtime option, takes precedence over the NLS_NCHAR_CONV_EXCP	
connection attribute.	
For applications that have very predictable transactional dependencies and do not require the commit order on the replica database to be the same as that on the originating database, TimesTen supports parallel replication. This feature allows replication of multiple user-specified tracks of transactions in parallel. See "Increasing replication throughput for other replication schemes" in Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for general information about parallel replication.	
User-specified parallel replication is enabled through the TimesTen data store attributes ReplicationParallelism	
and ReplicationApplyOrdering	
, as described in "Data store attributes" in Oracle TimesTen In-Memory Database Reference. The track number for transactions on a connection can be specified through the TimesTen general connection attribute ReplicationTrack	
, the ALTER SESSION	
parameter REPLICATION_TRACK	
, or in ODBC through the TT_REPLICATION_TRACK	
connection option, as noted in "Option support for SQLSetConnectOption and SQLGetConnectOption".	
Note: The track number setting will hold for the lifetime of the connection, unless it is specifically reset.You can call the TimesTen built-in procedure	
The data types used in ODBC 2.0 and prior have been renamed in ODBC 3.0 for ISO 92 standards compliance. The sample programs shipped with TimesTen have been written using SQL 3.0 data types. The following table maps 2.0 types to their 3.0 equivalents.	
ODBC 2.0 data type	ODBC 3.0 data type
---	---
HDBC	SQLHDBC
HENV	SQLHENV
HSTMT	SQLHSTMT
HWND	SQLHWND
LDOUBLE	SQLDOUBLE
RETCODE	SQLRETURN
SCHAR	SQLSCHAR
SDOUBLE	SQLFLOATS
SDWORD	SQLINTEGER
SFLOAT	SQLREAL
SWORD	SQLSMALLINT
UCHAR	SQLCHAR
UDWORD	SQLUINTEGER
UWORD	SQLUSMALLINT
Either version of data types may be used with TimesTen without restriction.	
Note also that the FAR	
modifier that is mentioned in ODBC 2.0 documentation is not required.	
TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide for introductory information about these features.	
This section introduces access control as it relates to SQL operations, database connections, XLA, and C utility functions.	
For any query, SQL DML statement, or SQL DDL statement discussed in this document or used in an example, it is assumed that the user has appropriate privileges to execute the statement. For example, a SELECT	
statement on a table requires ownership of the table, SELECT	
privilege granted for the table, or the SELECT ANY TABLE	
system privilege. Similarly, any DML statement requires table ownership, the applicable DML privilege (such as UPDATE	
) granted for the table, or the applicable ANY TABLE	
privilege (such as UPDATE ANY TABLE	
).	
For DDL statements, CREATE TABLE	
requires the CREATE TABLE	
privilege in the user's schema, or CREATE ANY TABLE	
in any other schema. ALTER TABLE	
requires ownership or the ALTER ANY TABLE	
system privilege. DROP TABLE	
requires ownership or the DROP ANY TABLE	
system privilege. There are no object-level ALTER	
or DROP	
privileges.	
Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for the privilege required for any given SQL statement.	
Privileges are granted through the SQL statement GRANT	
and revoked through the statement REVOKE	
. Some privileges are granted to all users through the PUBLIC	
role, of which each user is a member. See "The PUBLIC role" in Oracle TimesTen In-Memory Database SQL Reference for information about that role.	
In addition, access control affects the following topics covered in this document:	
Notes:	
This section includes the following topics:	
An application should check for errors and warnings on every call. This saves considerable time and effort during development and debugging. The demo programs provided with TimesTen show examples of error checking.	
Errors can be checked using either the TimesTen error code (error number) or error string, as defined in the install_dir	
/include/tt_errCode.h	
file. Entries are in the following format:	
For a description of each message, see "List of errors and warnings" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
After calling an ODBC function, check the return code. If the return code is not SQL_SUCCESS	
, use an error-handling routine that calls the ODBC function SQLError	
to retrieve the errors on the relevant ODBC handle. A single ODBC call may return multiple errors. The application should be written to return all errors by repeatedly calling the SQLError	
function until all errors are read from the error stack. Continue calling SQLError	
until the return code is SQL_NO_DATA_FOUND	
.	
Refer to ODBC API reference documentation for details about the SQLError	
function and its arguments.	
For more information about writing a function to handle standard ODBC errors, see "Retrieving errors and warnings" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
Example 2-10 Checking an ODBC function call for errors	
This example shows that after a call to SQLAllocConnect	
, you can check for an error condition. If one is found, an error message is displayed and program execution is terminated.	
TimesTen can return fatal errors, non-fatal errors, or warnings.	
Fatal errors are those that make the database inaccessible until after error recovery. When a fatal error occurs, all database connections are required to disconnect. No further operations may complete. Fatal errors are indicated by TimesTen error codes 846 and 994. Error handling for these errors should be different from standard error handling. In particular, the application error-handling code should include a disconnect from the database.	
Also see "Recovering after fatal errors".	
Non-fatal errors include simple errors such as an INSERT	
statement that violates unique constraints. This category also includes some classes of application and process failures.	
TimesTen returns non-fatal errors through the normal error-handling process and requires the application to check for and identify them.	
When a database is affected by a non-fatal error, an error may be returned and the application should take appropriate action. In some cases, such as process failure, no error is returned, but TimesTen automatically rolls back the transactions of the failed process.	
An application can handle non-fatal errors by modifying its actions or, in some cases, rolling back one or more offending transactions.	
TimesTen returns warnings when something unexpected occurs that you may want to know about. Some examples of events that cause TimesTen to issue a warning include:	
Application developers should include code that checks for warnings, as they can indicate application problems.	
When fatal errors occur, TimesTen performs a full cleanup and recovery procedure:	
If no checkpoint or transaction log files exist and the AutoCreate	
first connection attribute is set, TimesTen creates an empty database.	
Automatic client failover, used in High Availability scenarios when failure of a TimesTen node results in failover (transfer) to an alternate node, automatically reconnects applications to the new node. The standby node becomes the active node due to failure of the previously active node. TimesTen provides features that allow applications to be alerted when this happens, so they can take any appropriate action.	
This section discusses the TimesTen implementation of automatic client failover, covering the following topics.	
Automatic client failover is complementary to Oracle Clusterware in situations where Oracle Clusterware is used, but the two features are not dependent on each other. For information about Oracle Clusterware, you can refer to "Using Oracle Clusterware to Manage Active Standby Pairs" in Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.	
When a client failover occurs, no state other than the connection handle is preserved. All client statement handles are marked as invalid. API calls on these statement handles will generally return SQL_ERROR	
with a distinctive failover error code, defined in tt_errCode.h	
, such as:	
The exception to this is for SQLError	
and SQLFreeStmt	
calls, which would behave normally.	
In addition, note the following:	
SQLDisconnect	
. SQLPrepare	
calls. TTC_Timeout	
is reached. (Refer to "TTC_Timeout" in Oracle TimesTen In-Memory Database Reference for information about that attribute.) When failover occurs, TimesTen makes a callback to a user-defined function that you register. This function takes care of any custom actions you want to occur in a failover situation.	
Notes:	
The following public connection options will be propagated to the new connection. The corresponding general connection attribute is shown in parentheses where applicable. The TT_REGISTER_FAILOVER_CALLBACK	
option is used to register your callback function.	
The following options will be propagated to the new connection if they were set through connection attributes or SQLSetConnectOption	
calls, but not if set through TimesTen built-in procedures or ALTER SESSION	
.	
The following options will be propagated to the new connection if they were set on the connection handle.	
The following attributes for the logical server DSN in sys.ttconnect.ini	
are equivalent to TTC_Server	
, TTC_Server_DSN	
, and TCP_Port	
, but for the alternate server.	
Notes:	
Setting any of TTC_Server2	
, TTC_Server_DSN2	
, or TCP_Port2	
implies the following:	
The following new connection attribute specifies a port range for the port where the failover thread will listen for failover notifications:	
Set this as a lower and upper value separated by hyphen. TimesTen supports setting a port range to accommodate firewalls between the client and server. By default, a port chosen by the operating system will be used.	
Notes:	
When failover occurs, TimesTen makes a callback to your user-defined function for any desired action. This function is called when the attempt to connect to the alternate server begins, and again after the attempt to connect is complete. This function could be used, for example, to cleanly restore statement handles.	
The function API is defined as follows (modeled on a corresponding TAF function):	
Where:	
hdbc	
is the ODBC connection handle for the connection that failed. foCtx	
is a pointer to an application-defined data structure, for use as needed. foType	
is the type of failover. In TimesTen, the only supported value for this is TT_FO_SESSION	
, which results in the session being reestablished. This does not result in statements being re-prepared, as would be the case with TAF. foEvent	
indicates the event that has occurred, with supported values as for FAN and TAF: TT_FO_BEGIN	
: Beginning failover. TT_FO_ABORT	
: Failover failed. Retries were attempted for the interval specified by TTC_Timeout	
without success. TT_FO_END	
: Successful end of failover. TT_FO_ERROR	
: A failover connection failed but will be retried. Note that TT_FO_REAUTH	
is not supported by TimesTen client failover.	
Use a SQLSetConnectOption	
call to set the TimesTen TT_REGISTER_FAILOVER_CALLBACK	
option to register the callback function, specifying an option value that is a pointer to a structure of C type ttFailoverCallback_t	
, which is defined as follows in the timesten.h	
file and refers to the callback function:	
Where:	
appHdbc	
is the ODBC connection handle, and should have the same value as hdbc	
in the SQLSetConnectOption	
calling sequence. (It is required in the data structure due to driver manager implementation details, in case you are using a driver manager.) callbackFcn	
specifies the callback function. (You can set this to NULL	
to cancel callbacks for the given connection. The failover will still happen, but the application will not be notified.) foCtx	
is a pointer to an application-defined data structure, as in the function description earlier. Set TT_REGISTER_FAILOVER_CALLBACK	
for each connection for which a callback is desired. The values in the ttFailoverCallback_t	
structure will be copied when the SQLSetConnectOption	
call is made. The structure need not be kept by the application. If TT_REGISTER_FAILOVER_CALLBACK	
is set multiple times for a connection, the last setting takes precedence.	
Notes:	
Example 2-11 Failover callback function and registration	
This example shows the following:	
FOINFO	
, and the structure variable foStatus	
of type FOINFO	
. FailoverCallback()	
, that updates the foStatus	
structure whenever there is a failover. RegisterCallback()	
, that does the following. failoverCallback	
, of type ttFailoverCallback_t	
. foStatus	
values. failoverCallback	
data values, consisting of the connection handle, a pointer to foStatus	
, and the callback function (FailoverCallback	
). SQLSetConnectOption	
call that sets TT_REGISTER_FAILOVER_CALLBACK	
as a pointer to failoverCallback	
. When a failover occurs, the callback function would produce output such as the following:	
Oracle TimesTen In-Memory Database and Oracle IMDB Cache support the Oracle Call Interface (OCI) for C or C++ programs.	
This chapter includes the following sections:	
This chapter focuses on TimesTen-specific information regarding OCI support. For complete information, you can refer to Oracle Call Interface Programmer's Guide in the Oracle Database library.	
OCI is an API that provides functions you can use to access the database server and control SQL execution. OCI supports the data types, calling conventions, syntax, and semantics of the C and C++ programming languages. You compile and link an OCI program much as you would any C or C++ program. There is no preprocessing or precompilation step.	
The OCI library of database access and retrieval functions is in the form of a dynamic runtime library that can be linked into an application at runtime. The OCI library includes the following functional areas:	
The following are among the many useful features that OCI provides or supports:	
For general information about OCI, you can refer to Oracle Call Interface Programmer's Guide, included with the Oracle Database documentation set.	
This chapter contains information specific to using OCI with TimesTen and IMDB Cache. For supported features, TimesTen OCI syntax and usage is the same as that in Oracle Database.	
This section covers the following topics:	
TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries. TimesTen OCI support enables you to run many existing OCI applications with TimesTen in direct mode or client/server mode. It also enables you to use other Oracle products, such as Pro*C/C++ and ODP.NET, that use OCI as a database interface. (You can also call PL/SQL from OCI, Pro*C/C++, and ODP.NET applications.) Figure 3-1 shows where OCI support is positioned in the TimesTen architecture.	
TimesTen includes Oracle Instant Client as the OCI client library. This is configured through the appropriate ttenv	
script, as discussed in "Setting the environment for development".	
TimesTen Release 11.2.1 OCI is based on Oracle Release 11.1.0.7 OCI and supports the contemporary OCI 8 style APIs. For example, the OCIStmtExecute()	
function is supported but not the older oexec()	
function. See "Obsolete OCI Routines" in Oracle Call Interface Programmer's Guide in the Oracle Database documentation.	
This section discusses TimesTen OCI support for globalization.	
To specify a character set for the connection, OCI programs can set the NLS_LANG	
environment variable or call OCIEnvNlsCreate()	
. Any connection character set in the odbc.ini	
file is ignored. Setting the character set explicitly is recommended. The default is typically AMERICAN_AMERICA.US7ASCII	
.	
Note that because TimesTen OCI does not support language or locale (territory) settings, the language and territory components of NLS_LANG	
, such as AMERICAN_AMERICA	
above, are ignored. Even when not specifying the language and locale, however, you must still include the period in front of the character set when setting NLS_LANG	
. For example, either of the following would work, although AMERICAN_AMERICA	
is ignored:	
Or:	
Notes:	
TimesTen OCI also supports the following additional globalization features. These can be set either as environment variables or TimesTen general connection attributes. An environment variable setting takes precedence.	
NLS_LENGTH_SEMANTICS	
: By default, the lengths of character data types CHAR	
and VARCHAR2	
are specified in bytes, not characters. For single-byte character encoding this works well. For multibyte character encoding, you can use NLS_LENGTH_SEMANTICS	
to create CHAR	
and VARCHAR2	
columns using character-length semantics instead. Supported settings are BYTE	
(default) and CHAR	
. (NCHAR	
and NVARCHAR2	
columns are always character-based. Existing columns are not affected.) NLS_SORT	
: This specifies the type of sort for character data. It overrides the default value from NLS_LANGUAGE	
. Valid values are BINARY	
or any linguistic sort name supported by TimesTen. For example, to specify the German linguistic sort sequence, set NLS_SORT=German	
. NLS_NCHAR_CONV_EXCP	
: This determines whether an error is reported when there is data loss during an implicit or explicit character type conversion between NCHAR	
or NVARCHAR	
data and CHAR	
or VARCHAR2	
data. Valid settings are TRUE	
and FALSE	
. The default value is FALSE	
, resulting in no error being reported. Note: These environment variables override the corresponding TimesTen general connection attributes for OCI or Pro*C/C++ programs.	
Refer to Oracle TimesTen In-Memory Database Operations Guide and Oracle Database Globalization Support Guide for additional information on these environment variables and related features.	
This section discusses restrictions and differences for OCI in TimesTen compared to in the Oracle Database.	
TimesTen does not support OCI calls that are related to functionality that does not exist in TimesTen or IMDB Cache. For example, TimesTen and IMDB Cache do not support these Oracle Database features:	
TimesTen OCI has the following restrictions:	
TypeMode	
data store attribute must be set to 0, which corresponds to Oracle behavior. DuplicateBindMode	
general connection attribute must be set to 0, which corresponds to Oracle behavior. DDLCommitBehavior	
general connection attribute must be set to 0, which corresponds to Oracle behavior. OCIDescribeAny()	
is supported only by name. Describing PL/SQL objects is not supported. TNSPING	
utility does not recognize connections to TimesTen. ROWID	
values from INSERT	
, UPDATE	
, and DELETE	
statements is not supported. (This is supported for SELECT FOR UPDATE	
statements, however.) OCIBindArrayOfStruct()	
and OCIDefineArrayOfStruct()	
is supported for SQL statements but not for PL/SQL. ttIsql	
utility and the ttBulkCp	
built-in procedure, respectively.) If you have an existing OCI program and want to see whether it uses OCI features that TimesTen does not support, you can use the ttSrcScan	
command line utility to scan your program for unsupported functions, packages, types, type codes, attributes, modes, and constants. This is a standalone utility that can be run without TimesTen or Oracle being installed and runs on any platform supported by TimesTen. It reads source code files as input and creates HTML and text files as output. If the utility finds unsupported items, then they are logged and alternatives are suggested. You can find the ttSrcScan	
executable in the quickstart/sample_util	
directory in your TimesTen installation.	
Specify an input file or directory for the program to be scanned and an output directory for the ttSrcScan	
reports. Other options are available as well. See the README file in the sample_util	
directory for information.	
This section discusses the following topics for getting started with a TimesTen OCI application:	
Environment variables for executing a TimesTen OCI application are described in Table 3-1. Settings apply to both direct mode and client/server mode except as noted.	
After installation, you can modify environment variables as appropriate through the TimesTen install_dir	
/bin/ttenv	
script or quickstart/ttquickstartenv	
script applicable to your operating system.	
You can also use the TimesTen OCI and Pro*C/C++ Makefiles provided with the Quick Start demos to implement appropriate environment settings. These are in the following locations:	
Refer to "Environment variables" in Oracle TimesTen In-Memory Database Installation Guide for additional information about environment variables and ttenv	
.	
Table 3-1 Environment variables for TimesTen OCI	
Variable	Required or optional
---	---
Required	Must be set so that the Oracle Instant Client directory precedes the Oracle Database libraries in the path. The path will be set properly if you use either of the following scripts under bin/ttenv quickstart/ttquickstartenv (Unless you installed Quick Start in a different location.)
Required if you use the	Specifies the directory where the
Optional	You can use this, whichever is appropriate for your platform, instead of specifying the See "Connecting to a TimesTen database from OCI" for more information.
Optional	See "Character sets". Only the character set component is honored and it must indicate a character set supported by TimesTen. The language and territory values are ignored. This environment variable overrides the TimesTen default character set.
Optional	See "Additional globalization features". The sort order must be a value supported by TimesTen. This overrides the TimesTen
Optional	See "Additional globalization features". This overrides the TimesTen
Optional	See "Additional globalization features". This overrides the TimesTen
Note: Refer to "NLS general connection attributes" in Oracle TimesTen In-Memory Database Reference for information about the NLS connection attributes mentioned in the table.	
No changes are required for the steps to compile and link an OCI application in TimesTen.	
OCI programs that use the Oracle Client 11.1.0.7 library do not have to be recompiled or relinked to be executed with TimesTen.	
TimesTen OCI uses the Oracle Instant Client to connect to the TimesTen database. You can connect to the database through either the tnsnames	
or the easy connect naming method, similarly to how you would connect to an Oracle database through those methods.	
This section covers the following topics:	
Refer to "Configuring Naming Methods" in Oracle Database Net Services Administrator's Guide for additional information about tnsnames	
, easy connect, and the tnsnames.ora	
file.	
Notes:	
TimesTen supports tnsnames	
syntax. You can use a TimesTen tnsnames.ora	
entry the same way you would use an Oracle tnsnames.ora	
entry.	
The syntax of a TimesTen entry in tnsnames.ora	
is as follows:	
Where tns_entry	
is the arbitrary TNS name you assign to the entry. You can use this as the dbname	
argument in OCILogon()	
, OCILogon2()	
, and OCIServerAttach()	
calls.	
DESCRIPTION	
and CONNECT_DATA	
are required as shown.	
For SERVICE_NAME	
, dsn	
must be a TimesTen DSN that is configured in the odbc.ini	
or sys.odbc.ini	
file that is visible to a user running your OCI application. On Windows, the DSN can be specified by using the ODBC Data Source Administrator. See "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations Guide.	
For SERVER	
, timesten_direct	
specifies a direct connection to TimesTen or timesten_client	
specifies a client/server connection. If you choose timesten_client	
, the DSN must be configured as a client/server database.	
As always, the host and port of the TimesTen server are determined from entries in the sys.ttconnect.ini	
file, according to the DSN. See "Working with the TimesTen Client and Server" in Oracle TimesTen In-Memory Database Operations Guide.	
Here is a sample tnsnames.ora	
entry for a direct connection:	
You can use the TNS name, my_tnsname	
, in either of the following ways:	
my_tnsname	
" for the dbname	
argument in your OCI logon call. dbname	
and set TWO_TASK	
or LOCAL	
to "my_tnsname	
". For example:	
Refer to "Connect, Authorize, and Initialize Functions" in Oracle Call Interface Programmer's Guide for details about OCI logon calling sequences.	
Or on a UNIX system, for example, you can set TWO_TASK	
to "my_tnsname	
" and use an OCI logon call with an empty string for dbname	
:	
TimesTen supports easy connect syntax, which enhances the Instant Client package by allowing connections to be made without configuring tnsnames.ora	
. An easy connect string has syntax similar to a URL, in the following format:	
The initial double-slash is optional. A host name must be specified to satisfy easy connect syntax, but is otherwise ignored by TimesTen. The name "localhost	
" is typically used by convention. Any value specified for the port is also ignored. In client/server mode, the host and port of the TimesTen server are determined from entries in the sys.ttconnect.ini	
file, according to the TimesTen DSN.	
Specify the DSN for service_name	
. Specify timesten_client	
or timesten_direct	
, as desired, for server	
.	
TimesTen ignores the instance	
field and does not require that it be specified.	
For example, the following easy connect string connects to a TimesTen server using the client/server libraries. Assume the DSN ttclient	
in the odbc.ini	
file is resolved as a client/server data source and connects to the corresponding host and port specified in the sys.ttconnect.ini	
file:	
The following easy connect string is for a direct connection to TimesTen. Assume the DSN ttdirect	
is defined in odbc.ini	
:	
You can use an easy connect string in either of the following ways:	
dbname	
argument in your OCI logon call. dbname	
and set TWO_TASK	
or LOCAL	
to the easy connect string, in quotes. For example:	
Refer to "Connect, Authorize, and Initialize Functions" in Oracle Call Interface Programmer's Guide for details about OCI logon calling sequences.	
Or on a UNIX system, for example, you can set TWO_TASK	
to "localhost/ttclient:timesten_client	
" and use an OCI logon call with an empty string for dbname	
:	
If a sqlnet.ora	
file is present, it specifies the naming methods that will be tried and the order in which they will be tried. The Instant Client will look for a sqlnet.ora	
file at the TNS_ADMIN	
location, if applicable. If TNS_ADMIN	
has not been set but ORACLE_HOME	
has been (such as if you had a previous Instant Client installation), the default sqlnet.ora	
location is the Oracle Database default location as noted in "Parameters for the sqlnet.ora File" in Oracle Database Net Services Reference.	
If sqlnet.ora	
is found and does not include a particular naming method, you cannot use that method. If sqlnet.ora	
is not found, you can use either method.	
In TimesTen, sample copies of tnsnames.ora	
and sqlnet.ora	
are in the install_dir	
/network/admin/samples	
directory. Here is the sqlnet.ora	
file that TimesTen provides, which supports both tnsnames	
and easy connect ("EZCONNECT	
"):	
With this file, TimesTen will first look for tnsnames	
syntax in your OCI logon calls. If it cannot find tnsnames	
syntax, it will look for easy connect syntax.	
You can connect through OCI as an externally identified user (external user) by specifying the user name in brackets, such as "[myadmin]	
", and the password as an empty string, "".	
In particular, this is useful in connecting as the instance administrator, which in TimesTen is always an external user.	
Adapting an earlier example:	
This functionality uses OCI proxy syntax. You can refer to the discussion of client access through a proxy in Oracle Call Interface Programmer's Guide.	
Errors under TimesTen OCI applications return Oracle error codes. TimesTen attempts to report the same Oracle error code as Oracle would under similar conditions. The error messages may come from either the TimesTen catalog or the Oracle catalog. Some error messages may include the accompanying TimesTen error code if appropriate.	
Fatal errors are those that make the database inaccessible until after error recovery. When a fatal error occurs, all database connections are required to disconnect in order to avoid out-of-memory conditions. No further operations may complete. Shared memory from the old TimesTen instance will not be freed until all active connections at the time of the error have disconnected.	
Fatal errors in OCI are indicated by the Oracle error code ORA-03135	
or ORA-00600	
. Error handling for these errors should be different from standard error handling. In particular, the application error-handling code should include a disconnect from the database.	
The OCI diagnostic framework installs signal handlers that may impact any signal handling that you use in your application. You can disable OCI signal handling by setting DIAG_SIGHANDLER_ENABLED=FALSE	
in the sqlnet.ora	
file. Refer to "Fault Diagnosability in OCI" in Oracle Call Interface Programmer's Guide for information.	
This section covers the following topics for developers using TimesTen OCI:	
In OCI, a prepare call is expected to be a lightweight operation performed on the client. To allow TimesTen to be consistent with this expectation, and to avoid unwanted round trips between client and server, the TimesTen client library implementation of SQLPrepare	
performs what is referred to as a deferred prepare, where the request is not sent to the server until required. See "TimesTen deferred prepare".	
This section discusses TimesTen OCI features related using the IMDB Cache:	
To use IMDB Cache, there must be a cache user in the TimesTen database with the same name as an Oracle Database user who can select from and update the cached Oracle tables. This Oracle user, for example, can be the cache administration user or a schema user. The password of the TimesTen cache user can be different from the password of the Oracle user with the same name. See "Setting Up a Caching Infrastructure" in Oracle In-Memory Database Cache User's Guide for details.	
For use of OCI with the IMDB Cache, TimesTen allows you to pass the Oracle user's password through OCI by appending it to the password field in an OCILogon()	
or OCILogon2()	
call when you log in to TimesTen. Use the attribute OraclePWD	
in the connect string, such as in the following example:	
You must always specify OraclePWD	
, even if the Oracle user's password is the same as the TimesTen user's password.	
Note the following for the example:	
cacheuser1	
is the name of the TimesTen cache user as well as the name of the Oracle user who can access the cached Oracle tables. ttpwd	
is the password of the TimesTen cache user. orclpwd	
is the password of the Oracle user. tt_tnsname	
is the TNS name of the TimesTen database being connected to. The Oracle database is specified through the TimesTen OracleNetServiceName	
general connection attribute in the odbc.ini	
or sys.odbc.ini	
file.	
Alternatively, instead of using a TNS name, you could use easy connect syntax or the TWO_TASK	
or LOCAL	
environment variable, as discussed in preceding sections.	
In TimesTen OCI, following the execution of a FLUSH CACHE GROUP	
, LOAD CACHE GROUP	
, REFRESH CACHE GROUP	
, or UNLOAD CACHE GROUP	
statement, the OCI Function OCIAttrGet()	
with the OCI_ATTR_ROW_COUNT	
argument returns the number of cache instances that were flushed, loaded, refreshed, or unloaded.	
For related information, see "Determining the number of cache instances affected by an operation" in the Oracle In-Memory Database Cache User's Guide.	
"Binding duplicate parameters in SQL statements" discusses the two supported modes for binding duplicate parameters in a SQL statement, either the Oracle mode or the traditional TimesTen mode. As in that section, consider the following query. Note that in TimesTen OCI, only the Oracle mode is supported.	
In OCI, as in the Oracle mode in general, two occurrences of parameter a	
are considered to be separate parameters. However, OCI allows both occurrences of a	
to be bound with a single call to OCIBindByPos()	
:	
Alternatively, OCI also allows the two occurrences of a	
to be bound separately:	
Note that in both cases, parameter b	
is considered to be in position 3.	
Note: OCI also allows parameters to be bound by name, rather than by position, usingOCIBindByName() .	
Table 3-2 lists TimesTen support for OCI calls that are documented for Oracle Database, release 11.1.0.7.	
Some groups of calls are represented with an asterisk in the name. For example, the calls related to Advanced Queuing, which TimesTen does not support, have names that start with OCIAQ	
and are represented in the table as OCIAQ*()	
. OCI date functions, which TimesTen does support, are designated by OCIDate*()	
.	
Table 3-2 TimesTen OCI call support	
OCI call	Supported
---	---
No	TimesTen does not support Advanced Queuing.
No	TimesTen does not support Any Data.
Yes	
Yes	
Yes	
Yes	
Yes	TimesTen support includes special usage with cache groups. See "Using IMDB Cache in OCI".
Yes	
No	TimesTen does not support XML DB.
Yes	Supported for SQL statements but not PL/SQL.
Yes	Unsupported values for the
Yes	Unsupported values for the
No	
No	TimesTen does not support user-defined objects.
No	
No	TimesTen does not support user-defined objects.
Yes	
Yes	
Yes	
No	TimesTen does not support collections.
No	
No	
No	TimesTen does not support Data Cartridge.
No	
No	
Yes	See Table 3-4 for information about descriptor support.
Yes	Supported for SQL statements but not PL/SQL.
Yes	
No	
No	
Yes	Unsupported values for the
Unsupported values for the	
Yes	
Yes	
No	TimesTen does not support Direct Path Loading.
No	TimesTen does not support Data Cartridge.
Yes	Unsupported values for the
Yes	Unsupported values for the
Note: Use	
Yes	Unsupported values for the
Yes	
No	TimesTen does not support Data Cartridge.
No	TimesTen does not support Data Cartridge.
No	TimesTen does not support Data Cartridge.
No	TimesTen does not support Data Cartridge.
No	TimesTen does not support Data Cartridge.
No	TimesTen does not support Data Cartridge.
Yes	
Yes	
Yes	Unsupported values for the
Note: Use	
Yes	See Table 3-4 for information about descriptor support.
No	TimesTen does not support collections.
No	
No	TimesTen does not support LOB data types.
Yes	
Yes	
Yes	
No	TimesTen does not support Data Cartridge.
No	TimesTen does not support Data Cartridge.
Yes	
Yes	
Yes	
No	TimesTen does not support user-defined objects.
Yes	
Yes	
No	
Yes	
Yes	
No	
No	
Yes	
Yes	
Yes	
Yes	
Yes	
No	
No	
Yes	
No	
Yes	Unsupported values for the
Note: Using	
Yes	
Yes	The only supported values for the
Yes	
No	
Yes	The only supported value for the Note: In TimesTen,
Yes	The only supported value for the For statement caching, TimesTen supports the
Yes	The only supported value for the For statement caching, TimesTen supports the
No	
Yes	
No	TimesTen does not support Advanced Queuing.
No	
No	
No	
Yes	
Yes	The only supported value for the
No	
No	
No	
No	
Yes	
No	
No	
Yes	
Yes	
Yes	
Yes	
No	TimesTen does not support XML DB.
No	TimesTen does not support XML DB.
Table 3-3 lists the handles and attributes that TimesTen OCI supports.	
Table 3-3 TimesTen OCI supported handles and attributes	
Handle	C object
---	---
Environment	
Error	
Service context	
Statement	
Bind	
Define	
Describe	
Server	
User session	
Authentication	
Same as for user session handle.	
Transaction	
Thread	
Table 3-4 lists the descriptors that TimesTen OCI supports.	
Table 3-4 TimesTen OCI supported descriptors	
Descriptor	C object
---	---
Parameter (read-only)	
User callback	
Table 3-5 lists the SQL data types that TimesTen OCI supports.	
Table 3-5 TimesTen OCI supported SQL data types	
SQL data type	Notes
---	---
Not stored in TimesTen.	
Not stored in TimesTen.	
Truncated at 4 MB when stored in TimesTen.	
Truncated at 4 MB when stored in TimesTen.	
Rowids returned in Oracle format.	
Only one result set parameter is allowed for each statement.	
Time zone is ignored when stored in TimesTen.	
Time zone is ignored when stored in TimesTen.	
Time zone is ignored when stored in TimesTen.	
Table 3-6 that follows lists supported parameter attributes.	
Table 3-6 TimesTen OCI support for parameter attributes	
Parameter	Supported attributes
---	---
All parameters	
Table and view parameters	
PL/SQL procedure and function parameters	
PL/SQL subprogram parameters	
PL/SQL package parameters	
Sequence parameters	
Column parameters	
Argument and result parameters	
List parameters	
Database parameters	
Oracle TimesTen In-Memory Database and Oracle IMDB Cache support the Oracle Pro*C/C++ Precompiler for C and C++ applications. You can use the precompiler with embedded SQL and PL/SQL applications that access the TimesTen database.	
This chapter includes the following topics:	
It provides only an overview and TimesTen-specific information regarding Pro*C/C++. For complete general information, you can refer to Pro*C/C++ Programmer's Guide in the Oracle Database library.	
The Oracle Pro*C/C++ Precompiler enables you to embed SQL statements or PL/SQL blocks directly into C or C++ code. Further, you can use your C or C++ program host variables in your embedded SQL or PL/SQL.	
You use a precompilation step to convert the Pro*C/C++ source file into a C or C++ source file. The precompiler accepts the Pro*C/C++ file as input, translates embedded SQL statements into standard Oracle runtime library calls, and generates a modified source code file that you can then compile and link. Pro*C/C++ code is linked against the Oracle precompiler SQLLIB	
library, which is shipped with TimesTen as part of the Oracle Instant Client.	
TimesTen support for the Oracle Pro*C/C++ Precompiler depends on TimesTen OCI. TimesTen OCI depends on the Oracle client library and the TimesTen ODBC libraries. See Figure 3-1 to see where OCI and Pro*C/C++ fit in the TimesTen architecture.	
This chapter contains information specific to using the Oracle Pro*C/C++ Precompiler with TimesTen. The syntax and usage of the Oracle Pro*C/C++ Precompiler with TimesTen is essentially the same as with Oracle Database.	
The rest of this section includes the following topics.	
Because TimesTen support of the Oracle Pro*C/C++ Precompiler depends on TimesTen OCI support, restrictions for TimesTen OCI apply to Pro*C/C++ applications.	
In addition, TimesTen does not support OCI calls that are related to functionality that does not exist in TimesTen.	
For more information about TimesTen OCI support, see Chapter 3, "TimesTen Support for Oracle Call Interface." Much of the information there may apply to Pro*C/C++ applications as well.	
TimesTen supports SQL92 standards. Oracle supports SQL99 standards.	
The TimesTen Pro*C/C++ Precompiler does not support embedded SQL for functionality that TimesTen and IMDB Cache do not support. See "TimesTen restrictions and differences".	
TimesTen provides the following support for SQLLIB	
functions:	
SQLErrorGetText	
(sqlglmt	
) is supported. SQLRowidGet()	
is supported following only SELECT FOR UPDATE	
statements. In addition, TimesTen support for the Oracle Pro*C/C++ Precompiler has the following restrictions:	
REGISTER CONNECT	
is not supported. TimesTen support for the Oracle Pro*C/C++ Precompiler does not include semantic checking during precompilation. A SQLCHECK	
precompiler option setting that specifies semantic checking is permissible but has no effect.	
It is important to be aware, however, that a setting of SEMANTICS	
results in a database connection even though precompilation semantic checking is not performed. Therefore, a setting of SEMANTICS	
requires the following during precompilation:	
USERID	
precompiler option must be set, either on the command line or in the pcscfg.cfg	
configuration file. You must provide the user name and password for an existing TimesTen user, and a TNS name that points to the database. In the following example, you will be prompted for the password: Alternatively, you can enter USERID=user1/mypassword@my_tnsname	
, but for security reasons it is not advisable to specify a password on a command line or in a configuration file.	
See "Connecting to a TimesTen database from Pro*C/C++" for information about usage and syntax for TNS names.	
See the next section, "Embedded PL/SQL restrictions", for related information about Pro*C/C++ programs that use PL/SQL.	
In TimesTen, if a Pro*C/C++ application contains PL/SQL blocks, then Pro*C/C++ acts as though the SQLCHECK	
setting is SEMANTICS	
. It is important to be aware that this results in a database connection even though precompilation semantic checking is not performed. Therefore, using PL/SQL in a Pro*C/C++ application requires the following during precompilation:	
USERID	
precompiler option must be set, specifying an existing TimesTen user. See the preceding section, "Semantic checking restrictions", for details about setting this option. Regarding transactions, TimesTen support for the Oracle Pro*C/C++ Precompiler does not include the following:	
SAVEPOINT	
SQL statement SET TRANSACTION	
SQL statement You can still have transactions with commit and rollback, just not the SET TRANSACTION	
SQL statement.	
Regarding connections, TimesTen support for the Oracle Pro*C/C++ Precompiler does not include the following:	
ALTER AUTHORIZATION	
clause SYSDBA	
or SYSOPER	
privilege, given that these privileges do not exist in TimesTen For information about supported connection syntax, see "Connecting to a TimesTen database from Pro*C/C++".	
Given restrictions including those noted in the preceding sections, this section summarizes the Pro*C/C++ EXEC	
SQL executable commands, categories of commands, and command clauses that TimesTen does not support:	
ALTER AUTHORIZATION	
CACHE FREE ALL	
CALL	
: Supported only for calling PL/SQL. To call TimesTen built-in procedures, use dynamic SQL statements. COLLECTION...	
" command COMMIT FORCE	
'some text' COMMIT WORK COMMENT	
'some text' RELEASE	
: The COMMENT	
clause is not supported. CONNECT BY	
CONTEXT OBJECT OPTION GET	
CONTEXT OBJECT OPTION SET	
DECLARE TABLE	
: Supports only Oracle data types. DECLARE TYPE	
EXPLAIN PLAN	
IN SYSDBA MODE	
IN SYSOPER MODE	
LOB...	
" command LOCK TABLE	
OBJECT...	
" command PARTITION	
REGISTER CONNECT	
RETURN	
RETURNING	
SAVEPOINT	
SET DESCRIPTOR	
: Cannot set CHARACTER_SET_NAME	
. SET TRANSACTION	
START WITH	
TO SAVEPOINT	
If you have an existing Pro*C/C++ program and want to see whether it uses Pro*C/C++ features that TimesTen does not support, you can use the ttSrcScan	
command line utility to scan your program for unsupported embedded SQL functions and types. This is a standalone utility that can be run without TimesTen or Oracle being installed and runs on any platform supported by TimesTen. It reads source code files as input and creates HTML and text files as output. If the utility finds unsupported items, they are logged and alternatives are suggested. You can find the ttSrcScan	
executable in the quickstart/sample_util	
directory in your TimesTen installation.	
Specify an input file or directory for the program to be scanned and an output directory for the ttSrcScan	
reports. Other options are available as well. See the README file in the sample_util	
directory for information.	
This section covers the following topics for getting started with a Pro*C/C++ application for TimesTen:	
Before building a Pro*C/C++ application, you must set up your environment:	
(Unless you installed Quick Start in a different location.)	
LD_LIBRARY_PATH	
or PATH	
is set so that the Oracle Instant Client directory precedes the Oracle Database libraries in the path. The path will be set properly if you use the install_dir	
/bin/ttenv	
script or quickstart/ttquickstartenv	
script. See "Environment variables" in Oracle TimesTen In-Memory Database Installation Guide for information about environment variables and ttenv	
. Then use steps such as the following to build a Pro*C/C++ application. The steps shown here present a basic example for a UNIX system and assume the program has no other includes (#include	
) or links to other libraries. The designation instant_client	
represents the directory where Oracle Instant Client is installed.	
See the Quick Start Pro*C/C++ Makefile in the quickstart/sample_code/proc	
directory for complete, platform-specific examples.	
proc	
command from your system prompt. For example: The proc	
utility takes a .pc	
source file as input and produces a .c	
file.	
instant_client	
)/sdk/includeSQLLIB	
. For example: instant_client	
)/lib -lclntshThis section provides information on connecting to TimesTen from a Pro*C/C++ application. Also see "Connecting to a TimesTen database from OCI" for information about using the tnsnames	
naming method or easy connect naming method to connect to the database.	
The following topics are covered here:	
Note: A TimesTen connection cannot be inherited from a parent process. If a process opens a database connection before creating a child process, the child must not use the connection. In Pro*C/C++, to avoid having a child process inadvertently inherit a connection from its parent, useEXEC SQL COMMIT RELEASE in the parent before creating the child.	
TimesTen supports the following connection syntax:	
The parameters are described in Table 4-1.	
Table 4-1 Connection parameters	
Parameter	Description
---	---
This is the user name.	
This is the user password.	
As an alternative to separate	
This is a database identifier declared in a previous	
This is a variable whose value is a database identifier.	
This is a valid TNS name or easy connect string for a TimesTen database.	
Your EXEC SQL CONNECT	
syntax can be simplified if you use the Oracle tnsnames	
or easy connect method.	
From Pro*C/C++, you can use a host variable to include the user name, password, and a TNS name. For example:	
Where dbstring	
is set to "user1/pwd1@my_tnsname	
".	
Alternatively, the host variable could include the user name, password, and an easy connect string. For example, dbstring	
could be set to "user1/pwd1@localhost/ttclient:timesten_client	
".	
Or, if the TWO_TASK	
or LOCAL	
environment variable, as applicable for your operating system, is set to "my_tnsname	
" or "localhost/ttclient:timesten_client	
", you could connect as in the following example:	
To use IMDB Cache, there must be a cache user in the TimesTen database with the same name as an Oracle Database user who can select from and update the cached Oracle tables. This Oracle user, for example, can be the cache administration user or a schema user. The password of the TimesTen cache user can be different from the password of the Oracle user with the same name. See "Setting Up a Caching Infrastructure" in Oracle In-Memory Database Cache User's Guide for details.	
For use of Pro*C/C++ with IMDB Cache, TimesTen allows you to pass the Oracle user's password through Pro*C/C++ by appending it to the password field in an EXEC SQL CONNECT	
call when you log in to TimesTen. Use the attribute OraclePWD	
in the connect string, such as in the following example:	
You must always specify OraclePWD	
, even if the Oracle user's password is the same as the TimesTen user's password. Furthermore, in the circumstance of specifying an Oracle password for IMDB Cache, you must use a form of EXEC SQL CONNECT	
that specifies the password as a separate host variable. In this example, cacheuser1	
is the name of the TimesTen cache user as well as the name of the Oracle user who can access the cached Oracle tables, ttpwd	
is the password of the TimesTen cache user, orclpwd	
is the password of the Oracle user, and tt_tnsname	
is the TNS name of the TimesTen database being connected to. The Oracle database is specified through the TimesTen OracleNetServiceName	
general connection attribute in the odbc.ini	
or sys.odbc.ini	
file.	
Alternatively, instead of using the AT	
clause with a TNS name, you could use the TWO_TASK	
or LOCAL	
environment variable, as discussed in "Connecting to a TimesTen database from OCI".	
You can connect through Pro*C/C++ as an externally identified user (external user) by specifying the user name in brackets, such as "[myadmin]	
", and the password as an empty string, "".	
In particular, this is useful in connecting as the instance administrator, which in TimesTen is always an external user.	
Consider the following example.	
This functionality uses OCI proxy syntax. You can refer to the discussion of client access through a proxy in Oracle Call Interface Programmer's Guide.	
Be aware of the following regarding error conditions and error reporting:	
WHENEVER SQLERROR	
directive, to go to an error handler if an error occurs, and the WHENEVER NOT FOUND	
directive, to go to a handling section if a "no data found" condition occurs. TimesTen does not support the WHENEVER SQLWARNING	
directive. Examples:	
This section discusses Pro*C/C++ Precompiler option support by TimesTen.	
Table 4-2 describes TimesTen Pro*C/C++ Precompiler option support.	
Table 4-2 TimesTen Pro*C/C++ Precompiler option support	
Option	Notes
---	---
Supported value:	
Supported.	
Setting has no effect because TimesTen supports only	
Supported value: The Oracle default value of	
Setting has no effect because TimesTen supports only	
Setting has no effect because TimesTen supports only	
Setting has no effect because TimesTen supports only	
Supported.	
Supported.	
Supported.	
Supported value:	
Supported.	
Setting has no effect because TimesTen supports only	
Supported.	
Supported value:	
Supported.	
Supported.	
Setting has no effect because TimesTen does not support objects.	
Supported.	
Supported.	
Not supported.	
Both values allowed, but TimesTen OCI does not support Advanced Queuing.	
Supported.	
Supported.	
Supported.	
Supported value:	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported value:	
Setting has no effect because TimesTen does not support objects.	
Supported.	
Supported.	
All values are allowed, but TimesTen does not support Oracle optimization.	
Both values are allowed, but TimesTen does not support Oracle optimization.	
Supported.	
Supported.	
Supported.	
Supported.	
Not supported. Both values (
Supported.	
Any of the Whenever a Pro*C/C++ application uses PL/SQL, Pro*C/C++ acts as though the Important: A setting of	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Supported.	
Only the	
Supported.	
Setting has no effect because TimesTen does not support objects.	
Note: TimesTen does not support the default value forCLOSE_ON_COMMIT . TimesTen supports only CLOSE_ON_COMMIT=YES .	
You can set precompiler options in the following ways.	
pcscfg.cfg	
or on the Pro*C/C++ command line. A setting on the command line takes precedence over a setting in the configuration file. EXEC ORACLE OPTION	
command. A runtime setting takes precedence over a compile-time setting. For example, the following shows portions of the configuration file that ships with TimesTen.	
The following command line would override the ltype=short	
setting from the configuration file:	
The following runtime command would override the ltype=long	
setting from the command line:	
The Transaction Log API (XLA) is a set of C language functions that enable you to implement applications to perform the following:	
One of the purposes of XLA is to provide a high-performance, asynchronous alternative to triggers.	
XLA also provides functions that enable you to build a custom data replication solution if the TimesTen replication solutions described in Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide do not meet your needs.	
For a complete description of each XLA function, see Chapter 9, "XLA Reference".	
Notes:	
This chapter includes the following topics:
This section includes the following topics:
XLA functions mentioned here are documented in Chapter 9, "XLA Reference".
In normal usage, TimesTen XLA is initialized in persistent mode. In this mode, XLA obtains update records directly from the transaction log buffer or transaction log files, so the records are available for as long as they are needed. The persistent logging model also allows multiple readers to simultaneously read transaction log updates.
The ttXlaPersistOpen
XLA function opens a connection to the database in persistent mode.
When initially created, TimesTen configures a transaction log handle for the same version as the TimesTen release to which the application is linked. You can also use the ttXlaGetVersion
and ttXlaSetVersion
XLA functions to interoperate with earlier XLA versions.
(It is possible, though not recommended, to use XLA in non-persistent mode. This is discussed in "Using XLA in non-persistent mode".)
As applications modify a database, TimesTen generates transaction log records that describe the changes made to the data and other events such as transaction commits.
New transaction log records are always written to the end of the log buffer as they are generated.
Transaction log records are periodically flushed in batches from the log buffer in memory to transaction log files on disk. When XLA is initialized in persistent mode, the XLA application does not have to be concerned with which portions of the transaction log are on disk or in memory. Therefore, the term "transaction log" as used in this chapter refers to the "virtual" source of transaction update records, regardless of whether those records are physically located in memory or on disk.
Applications can use XLA to monitor the transaction log for changes to the database. XLA reads through the transaction log, filters the log records, and delivers to XLA applications a list of transaction records that contain the changes to the tables and columns of interest.
XLA sorts the records into discrete transactions. If multiple applications are updating the database simultaneously, transaction log records from the different applications will be interleaved in the transaction log.
XLA transparently extracts all transaction log records associated with a particular transaction and delivers them in a contiguous list to the application.
Only the records for committed transactions are returned. They are returned in the order in which their final commit record appears in the transaction log. XLA filters out records associated with changes to the database that have not yet been committed.
If a change is made but then rolled back, XLA does not deliver the records for the aborted transaction to the application.
Most of these basic XLA concepts are demonstrated in Example 5-1 that follows and summarized in the bulleted list following the example.
Consider the example transaction log illustrated in Figure 5-1.
Example 5-1 Reading transaction log records
In this example, the transaction log contains the following records:
CT1
- Application C
updates row 1 of table W
with value 7.7.BT1
- Application B
updates row 3 of table X
with value 2.CT2
- Application C
updates row 9 of table W
with value 5.6.BT2
- Application B
updates row 2 of table Y
with value "XYZ".AT1
- Application A
updates row 1 of table Z
with value 3.AT2
- Application A
updates row 3 of table Z
with value 4.BT3
- Application B
commits its transaction.AT3
- Application A
rolls back its transaction.CT3
- Application C
commits its transaction.An XLA application that is set up to detect changes to tables W
, Y
, and Z
would see the following:
BT2
and BT3
- Update row 2 of table Y
with value "XYZ" and commit.CT1
- Update row 1 of table W
with value 7.7.CT2
and CT3
- Update row 9 of table W
with value 5.6 and commit.This example demonstrates the following:
B
and C
all appear together. C
begin to appear in the transaction log before those for application B
, the commit for application B
(BT3
) appears in the transaction log before the commit for application C
(CT3
). As a result, the records for application B
are returned to the XLA application ahead of those for application C
. B
update to table X
(BT1
) is not presented because XLA is not set up to detect changes to table X
. A
updates to table Z
(AT1
and AT2
) are never presented because it did not commit and was rolled back (AT3
). You can use XLA to track changes to both tables and materialized views. A materialized view provides a single source from which you can track changes to selected rows and columns in multiple detail tables. Without a materialized view, the XLA application would have to monitor and filter the update records from all of the detail tables, including records reflecting updates to rows and columns of no interest to the application.
In general, there are no operational differences between the XLA mechanisms used to track changes to a table or a materialized view. However, for asynchronous materialized views, be aware that the order of XLA notifications for an asynchronous materialized view is not necessarily the same as it would be for the associated detail tables, or the same as it would be for a synchronous materialized view. For example, if there are two inserts to a detail table, they may be done in the opposite order in the asynchronous materialized view. Furthermore, updates may be treated as a delete followed by an insert. Also, multiple operations, such as multiple inserts or multiple deletes, may be combined. Applications that depend on ordering should not use asynchronous materialized views.
For more information about materialized views, see the following:
Each reader of a persistent transaction log uses a bookmark to maintain its position in the log update stream. Each bookmark consists of two pointers that track update records in the transaction log by using log record identifiers:
The rest of this section covers the following:
As described in "Initializing XLA and obtaining an XLA handle", when you call the ttXlaPersistOpen
function to initialize a persistent XLA handle, you include a tag
parameter to identify either a new bookmark or one that exists in the system, and an options
parameter to specify whether it is a new non-replicated bookmark, a new replicated bookmark, or an existing (reused) bookmark. At this time, the Initial Read log record identifier associated with the bookmark is read from the database and cached in the persistent XLA handle (ttXlaHandle_h
). It designates the start position of the reader in the transaction log.
When an application first initializes XLA and obtains an XLA handle, its Current Read log record identifier and Initial Read log record identifier both point to the last record written to the database, as shown in Figure 5-2 that follows.
As described in "Retrieving update records from the transaction log", use the ttXlaNextUpdate
or ttXlaNextUpdateWait
function to return a batch of records for committed transactions from the transaction log in the order in which they were committed. Each call to ttXlaNextUpdate
resets the Current Read log record identifier of the bookmark to the last record read, as shown in Figure 5-3. The Current Read log record identifier marks the start position for the next call to ttXlaNextUpdate
.
You can use the ttXlaGetLSN
and ttXlaSetLSN
functions to reread records, as described in "Changing the location of a bookmark". However, calling the ttXlaAcknowledge
function permanently resets the Initial Read log record identifier of the bookmark to its Current Read log record identifier, as shown in Figure 5-4. After you have called the ttXlaAcknowledge
function to reset the Initial Read log record identifier, all previously read transaction records are flagged for purging by TimesTen. Once the Initial Read log record identifier is reset, you cannot use ttXlaSetLSN
to go back and reread any of the previously read transactions.
Note: AttXlaAcknowledge call will reset the bookmark even if there are no relevant update records to acknowledge. This may be useful in managing transaction log space, but should be balanced against the expense of the operation. Be aware that XLA purges transaction logs a file at a time. Refer to "ttXlaAcknowledge" for details on how the operation works. |
The number of bookmarks created in a database is limited to 64. Each bookmark can be associated with only one active persistent connection at a time. However, a bookmark over its lifetime may be associated with many connections. An application can open a persistent connection, create a new bookmark, associate the bookmark with the connection, read a few records using the bookmark, disconnect from the database, reconnect to the database, create a new persistent connection, associate this new connection with the bookmark, and continue reading persistent transaction log records from where the old connection stopped.
If you are using an active standby pair replication scheme, you have the option of using replicated bookmarks according to the options
settings in your ttXlaPersistOpen
calls. For a replicated bookmark, operations on the bookmark are replicated to the standby database as appropriate. This allows more efficient recovery of your bookmark positions in the event of failover. Reading resumes from the stream of XLA records close to the point at which they left off before the switchover to the new active store. Without replicated bookmarks, reading must go through numerous duplicate records that were returned on the old active store.
You can only read and acknowledge a replicated bookmark in the active database. Each time you acknowledge a replicated bookmark, the acknowledge operation is asynchronously replicated to the standby database.
Be aware of the following usage notes:
ttXlaClose
and ttXlaPersistOpen
functions. The state of a replicated bookmark on a standby database does change during normal XLA processing, as the replication agent automatically repositions bookmarks as appropriate on standby databases. If you attempt to use a bookmark that was open before the database changed to active status, you will receive an error indicating that the state of the bookmark was reset and that it has been repositioned. While it is permissible to continue reading from the repositioned bookmark in this scenario, you can avoid the error by closing and reopening bookmarks. XLA data types supported by TimesTen are the same as previous data types when an equivalent data type existed before TimesTen release 7.0. Thus XLA applications that were written before release 7.0 should continue to work without code changes. If you change an XLA application that was written before release 7.0 so that it uses new data types, then you must also modify it to support the new data types.
Table 5-1 shows the data type mapping between internal SQL data types and XLA data types before release 7.0 and since release 7.0. For more information about TimesTen data types, see "Data Types" in Oracle TimesTen In-Memory Database SQL Reference.
Table 5-1 XLA data type mapping
Internal SQL data type | XLA data type before Release 7.0 | XLA data type since Release 7.0 |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
| - |
|
| - |
|
| - |
|
| - |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| - |
|
| - |
|
| - |
|
|
|
|
|
|
|
|
|
|
| - |
|
| - |
|
|
|
|
|
|
|
| - |
|
XLA offers functions to convert between internal SQL data types and external programmatic data types. For example, you can use ttXlaNumberToCString
to convert NUMBER
columns to character strings. XLA data type conversion functions include the following:
ttXlaDateToODBCCType
ttXlaDecimalToCString
ttXlaNumberToCString
ttXlaNumberToDouble
ttXlaNumberToBigInt
ttXlaNumberToInt
ttXlaNumberToSmallInt
ttXlaNumberToTinyInt
ttXlaNumberToUInt
ttXlaOraDateToODBCTimeStamp
ttXlaOraTimeStampToODBCTimeStamp
ttXlaRowidToCString
ttXlaTimeToODBCCType
ttXlaTimeStampToODBCCType
"Considering TimesTen features for access control" provides a brief overview of how TimesTen access control affects operations in the database. Access control includes impact on XLA, as follows:
XLA
. This includes: ttXlaPersistOpen
C function. ttXlaBookmarkCreate
, ttXlaBookmarkDelete
, ttXlaSubscribe
, and ttXlaUnsubscribe
are documented in "Built-In Procedures" in Oracle TimesTen In-Memory Database Reference. XLA
privilege has capabilities equivalent to the SELECT ANY TABLE
and SELECT ANY SEQUENCE
system privileges. XLA
privilege can capture DDL statement records that occur in the database. Note that as a result, the user can obtain information about database objects that he or she has not otherwise been granted access to. TimesTen provides the xlaSimple
demo showing how to use many of the XLA functions described in this chapter. It is located in the quickstart/sample_code/odbc/xla
directory:
See "About the TimesTen C demos" for an overview of TimesTen demo programs for C developers. Refer to install_dir
/quickstart.html
for details. The README file in the odbc
directory contains instructions for building and running xlaSimple
, among others.
Most of this chapter, including the sample code shown in "Writing an XLA event-handler application" starting immediately below, is based on the xlaSimple
demo. For this demo, a table MYDATA
has been created in the APPUSER
schema. While you are logged in as APPUSER
, you will be making updates to the table. While you are logged in as XLAUSER
, the xlaSimple
demo reports on the updates.
To run the demo, execute xlaSimple
at one command prompt. You will be prompted for the password of XLAUSER
, which is specified when the sample database is created. Start ttIsql
at a separate command prompt, connecting to the TimesTen sample database as APPUSER
. Again, you will be prompted for a password that is specified when the sample database is created.
At the ttIsql
command prompt you can enter DML statements to alter the table. Then you can view the XLA output in the xlaSimple
window.
This section describes the general procedures for writing an XLA application that detects and reports changes to selected tables in a database. With the possible exception of "Inspecting column data", the procedures described in this section are applicable to most XLA applications.
The following procedures are described:
The example code in this section is based on the xlaSimple
demo application.
XLA functions mentioned here are documented in Chapter 9, "XLA Reference".
Important: In addition to#include files noted in "TimesTen #include files", an XLA application must include tt_xla.h . |
Note: To simplify the code examples, routine error checking code for each function call has been omitted. See "Handling XLA errors" for information on error handling. |
As with every ODBC application, an XLA application must initialize ODBC, obtain an environment handle (henv
), and obtain a connection handle (hdbc
) to communicate with the specific database.
Initialize the environment and connection handles:
Pass the address of henv
to the SQLAllocEnv
ODBC function to allocate an environment handle:
Pass the address of hdbc
to the SQLAllocConnect
ODBC function to allocate a connection handle for the database:
Call the SQLDriverConnect
ODBC function to connect to the database specified by the connection string (connStr
), which in this example is passed from the command line:
Note: After an ODBC connection handle is opened for use by an XLA application, the ODBC handle cannot be used for ODBC operations until the corresponding XLA handle is closed by callingttXlaClose . |
Call the SQLSetConnectOption
ODBC function to turn autocommit off:
After initializing ODBC and obtaining an environment and connection handle as described in "Obtaining a database connection handle", you can initialize XLA and obtain an XLA handle to access the transaction log. Create only one XLA handle per ODBC connection. If your application uses multiple XLA reader threads, create a separate XLA handle and ODBC connection for each thread.
This section describes how to initialize XLA in persistent mode, which is the recommended mode.
Before initializing XLA, initialize a bookmark. Then initialize an XLA handle as type ttXlaHandle_h
:
Pass bookmarkName
and the address of xla_handle
to the ttXlaPersistOpen
function to obtain an XLA handle:
The XLACREAT
option is used to create a new non-replicated bookmark. Alternatively, use the XLAREPL
option to create a replicated bookmark. In either case, the operation will fail if the bookmark already exists.
To use a bookmark that already exists, call ttXlaPersistOpen
with the XLAREUSE
option, as shown in the following example.
If ttXlaPersistOpen
is given invalid parameters, or the application was unable to allocate memory for the handle, the return code will be SQL_INVALID_HANDLE
. In this situation, ttXlaError
cannot be used to detect this or any further errors.
If ttXlaPersistOpen
fails but still creates a handle, the handle must be closed to prevent memory leaks.
Note: When an XLA handle is initially created, TimesTen configures it for the same version as the TimesTen release to which the application is linked. If you must interoperate with earlier XLA versions, you can use thettXlaGetVersion and ttXlaSetVersion functions. |
After initializing XLA and obtaining an XLA handle, as described in "Initializing XLA and obtaining an XLA handle", you can specify which tables or materialized views you want to monitor for update events.
You can determine which tables a bookmark is subscribed to by querying the SYS.XLASUBSCRIPTIONS
table. You can also use SYS.XLASUBSCRIPTIONS
to determine which bookmarks have subscribed to a specific table.
The ttXlaNextUpdate
and ttXlaNextUpdateWait
functions retrieve XLA records associated with DDL events. DDL XLA records are available to any XLA bookmark. DDL events include CREATAB
, DROPTAB
, CREAIND
, DROPIND
, CREATVIEW
, DROPVIEW
, CREATSEQ
, DROPSEQ
, CREATSYN
, DROPSYN
, ADDCOLS
, DRPCOLS
, TRUNCATE
, SETTBLI
, and SETCOLI
transactions.
The ttXlaTableStatus
function indicates that DML records associated with the specified table should be monitored by the current bookmark. Or it determines whether the current bookmark is already monitoring DML records associated with the table.
Call the ttXlaTableByName
function to obtain both the system and user identifiers for a named table or materialized view. Then call the ttXlaTableStatus
function to enable XLA to monitor changes to the table or materialized view.
Example 5-2 Specifying a table to monitor for updates
This example tracks changes to the MYDATA
table:
When you have the table identifiers, you can use the ttXlaTableStatus
function to enable XLA update tracking to detect changes to the MYDATA
table. Setting the newstatus
parameter to a nonzero value results in XLA tracking changes made to the specified table:
The oldstatus
parameter is output to indicate the status of the table at the time of the call.
At any time, you can use ttXlaTableStatus
to return the current XLA status of a table by leaving newstatus
null and returning only oldstatus
. For example:
Once you have specified which tables to monitor for updates, you can call the ttXlaNextUpdate
or ttXlaNextUpdateWait
function to return a batch of records from the transaction log. Only records for committed transactions are returned. They are returned in the order in which they were committed. You must periodically call the ttXlaAcknowledge
function to acknowledge receipt of the transactions so that XLA can determine which records are no longer needed and can be purged from the transaction log. These functions impact the position of the application's bookmark in the transaction log, as described in "How bookmarks work".
Note: ThettXlaAcknowledge function is an expensive operation and should be used only as necessary. |
Each update record in a transaction returned by ttXlaNextUpdate
begins with an update header described by the ttXlaUpdateDesc_t
structure. This update header contains a flag indicating if the record is the first in the transaction (TT_UPDFIRST
) or the last commit record (TT_UPDCOMMIT
). The update header also identifies the table affected by the update. Following the update header are zero to two rows of data that describe the update made to that table in the database.
Figure 5-5 that follows shows a call to ttXlaNextUpdate
that returns a transaction consisting of four update records from the transaction log. Receipt of the returned transaction is acknowledged by calling ttXlaAcknowledge
, which resets the bookmark.
Note: This example is simplified for clarity. An actual XLA application would likely read records for multiple transactions before callingttXlaAcknowledge . |
Example 5-3 Retrieving update records from the transaction log
The xlaSimple
demo continues to monitor our table for updates until stopped by the user.
Before calling ttXlaNextUpdateWait
, the example initializes a pointer to the buffer to hold the returned ttXlaUpdateDesc_t
records (arry
) and a variable to hold the actual number of returned records (records
). Because the example calls ttXlaNextUpdateWait
, it also specifies the number of seconds to wait (FETCH_WAIT_SECS
) if no records are found in the transaction log buffer.
Next, call ttXlaNextUpdateWait
, passing these values to obtain a batch of ttXlaUpdateDesc_t
records in arry
. Then process each record in arry
by passing it to the HandleChange()
function described in Example 5-4. After all records are processed, call ttXlaAcknowledge
to reset the bookmark position.
The actual number of records returned by ttXlaNextUpdate
or ttXlaNextUpdateWait
, as indicated by the nreturned
output parameter of those functions, may be less than the value of the maxrecords
parameter. Figure 5-6 shows an example where maxrecords
is 10, the transaction log contains transaction AT
that is made up of seven records, and transaction BT
that is made up of three records. In this case, both transactions are returned in the same batch and both maxrecords
and nreturned
values are 10. However, the next three transactions in the log are CT
with 11 records, DT
with two records, and ET
with two records. Because the commit record for the DT
transaction appears before the CT
commit record, the next call to ttXlaNextUpdate
returns the two records for the DT
transaction and the value of nreturned
is 2. In the next call to ttXlaNextUpdate
, XLA detects that the total records for the CT
transaction exceeds maxrecords
, so it returns the records for this transaction in two batches. The first batch contains the first 10 records for CT
(nreturned
= 10). The second batch contains the last CT
record and the two records for the ET
transaction, assuming no commit record for a transaction following ET
is detected within the next seven records.
See "ttXlaNextUpdate" and "ttXlaNextUpdateWait" for details of the parameters of these functions.
XLA reads records from either a memory buffer or transaction log files on disk, as described in "How XLA reads records from the transaction log". To minimize latency, records from the memory buffer are returned as soon as they are available, while records not in the buffer are returned only if the buffer is empty. This design allows XLA applications to see changes as soon as the changes are made and with minimal latency. The trade-off is that there may be times when fewer changes are returned than the number requested by the ttXlaNextUpdate
or ttXlaNextUpdateWait
maxrecords
parameter.
Note: Some XLA applications may improve performance by making the "fetch" and "process record" procedures asynchronous. For example, you can create one thread to fetch and store the records and one or more other threads to process the stored records. |
Now that there is an array of update records where the type of operation each record represents is known, the returned row data can be inspected.
Each record returned by the ttXlaNextUpdate
or ttXlaNextUpdateWait
function begins with an ttXlaUpdateDesc_t
header that describes the following:
Figure 5-7 shows one of the update records in the transaction log
The ttXlaUpdateDesc_t
header has a fixed length and, depending on the type of operation, is followed by zero to two rows (or tuples) from the database. You can locate the address of the first returned row by obtaining the address of the ttXlaUpdateDesc_t
header and adding it to sizeof(ttXlaUpdateDesc_t)
:
This is shown in Example 5-4 below.
The ttXlaUpdateDesc_t ->
type
field describes the type of SQL operation that generated the update. Transaction records of type UPDATETTUP
describe UPDATE
operations, so they return two rows to report the row data before and after the update. You can locate the address of the second returned row that holds the value after the update by adding the address of the first row in the record to its length:
This is also shown in Example 5-4.
Example 5-4 Inspecting record headers for SQL operation type
This example passes each record returned by the ttXlaNextUpdateWait
function to a HandleChange()
function, which determines whether the record is related to an INSERT
, UPDATE
, or CREATE VIEW
operation. To keep this example simple, all other operations are ignored.
The HandleChange()
function handles each type of SQL operation differently before calling the PrintColValues()
function described in Example 5-13.
As described in "Inspecting record headers and locating row addresses", zero to two rows of data may be returned in an update record after the ttXlaUpdateDesc_t
structure. For each row, the first portion of the data is the fixed-length data, which is followed by any variable-length data, as shown in Figure 5-8.
The procedures for inspecting column data are described in the following sections:
To read the column values from the returned row, you must first know the offset of each column in that row. The column offsets and other column metadata can be obtained for a particular table by calling the ttXlaGetColumnInfo
function, which returns a separate ttXlaColDesc_t
structure for each column in the table. You should call the ttXlaGetColumnInfo
function as part of your initialization procedure. This call was omitted from the discussion in "Initializing XLA and obtaining an XLA handle" for simplicity.
When calling ttXlaGetColumnInfo
, specify a colinfo
parameter to create a pointer to a buffer to hold the list of returned ttXlaColDesc_t
structures. Use the maxcols
parameter to define the size of the buffer.
Example 5-5 Using column descriptions
The sample code from the xlaSimple
demo below guesses the maximum number of returned columns (MAX_XLA_COLUMNS
), which sets the size of the buffer xla_column_defs
to hold the returned ttXlaColDesc_t
structures. An alternative and more precise way to set the maxcols
parameter would be to call the ttXlaGetTableInfo
function and use the value returned in ttXlaColDesc_t ->
columns
.
As shown in Figure 5-9, the ttXlaGetColumnInfo
function produces the following output:
xla_column_defs
, of ttXlaColDesc_t
structures into the buffer pointed to by the ttXlaGetColumnInfo
colinfo
parameter. nreturned
value, ncols
, that holds the actual number of columns returned in the xla_column_defs
buffer. Each ttXlaColDesc_t
structure returned by ttXlaGetColumnInfo
includes an offset value that describes the offset location of that column. How you use this offset value to read the column data depends on whether the column contains fixed-length data (such as CHAR
, NCHAR
, INTEGER
, BINARY
, DOUBLE
, FLOAT
, DATE
, TIME
, TIMESTAMP
, and so on) or variable-length data (such as VARCHAR
, NVARCHAR
, or VARBINARY
).
For fixed-length column data, the address of a column is the offset value in the ttXlaColDesc_t
structure, plus the address of the row.
Figure 5-10 Locating fixed-length data in a row
Example 5-6 Reading fixed-length column data
See Example 5-13 for a complete working example of computations such as those shown here.
The first column in the MYDATA
table is of type CHAR
. If you use the address of the tup1
row obtained earlier in the HandleChange()
function (Example 5-4) and the offset from the first ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function (Example 5-5), you can obtain the value of the first column with computations such as the following:
The third column in the MYDATA
table is of type INTEGER
, so you can use the offset from the third ttXlaColDesc_t
structure to locate the value and recast it as an integer using computations such as the following. The data is guaranteed to be aligned properly.
The fourth column in the MYDATA
table is of type NCHAR
, so you can use the offset from the fourth ttXlaColDesc_t
structure to locate the value and recast it as a SQLWCHAR
type, with computations such as the following:
Unlike the column values obtained in the above examples, Column4
points to an array of two-byte Unicode characters. You must iterate through each element in this array to obtain the string, as shown for the SQL_WCHAR
case in Example 5-13.
Other fixed-length data types can be cast to their corresponding C types. Complex fixed-length data types, such as DATE
, TIME
, and DECIMAL
values, are stored in an internal TimesTen format, but can be converted by applications to their corresponding ODBC C value using the XLA conversion functions, as described in "Converting complex data types".
For NOT INLINE
variable-length data (VARCHAR
, NVARCHAR
, and VARBINARY
), the data located at ttXlaColDesc_t ->
offset
is a four-byte offset value that points to the location of the data in the variable-length portion of the returned row. By adding the offset address to the offset value, you can obtain the address of the column data in the variable-length portion of the row. The first n
bytes (where n
is 4 on 32-bit platforms or 8 on 64-bit platforms) at this location is the length of the data, followed by the actual data. For variable-length data, the ttXlaColDesc_t ->
size
value is the maximum allowable column size. Figure 5-11 shows how to locate NOT INLINE
variable-length data in a row.
Example 5-7 Reading NOT INLINE variable-length column data
See Example 5-13, "Complete PrintColValues() function" for a complete working example of computations such as those shown here.
Continuing with our example, the second column in the returned row (tup1
) is of type VARCHAR
. To locate the variable-length data in the row, first locate the value at the column's ttXlaColDesc_t ->
offset
in the fixed-length portion of the row, as shown in Figure 5-11 above. The value at this address is the four-byte offset of the data in the variable-length portion of the row (VarOffset
). Next, obtain a pointer to the beginning of the variable-length column data (DataLength
) by adding the VarOffset
offset value to the address of VarOffset
. Assuming the operation is performed on a 32-bit platform, the first four bytes at the DataLength
location is the length of the data. The next byte after DataLength
is the beginning of the actual data (Column2
).
The sample code here assumes the operation is performed on a 32-bit platform, so DataLength
is initialized as a 32-bit type. On a 64-bit platform, DataLength
must be initialized as a 64-bit type and the Column2
data would appear 64 bits + 1 after the offset address, DataLength
.
VARBINARY
types are handled in a manner similar to VARCHAR
types. If Column2
were an NVARCHAR
type, you could initialize it as a SQLWCHAR
, get the value as shown in the above VARCHAR
case, then iterate through the Column2
array, as shown for the NCHAR
value, CharBuf
, in Example 5-13.
Strings returned from record row data are not terminated with a null character. You can null-terminate a string by copying it into a buffer and adding a null character, such as '\0
', after the last character in the string.
The procedures for null-terminating fixed-length and variable-length strings are slightly different. The procedure for null-terminating fixed-length strings is described in Example 5-8. Example 5-9 that follows describes the procedure for null-terminating variable-length strings of a known size. Example 5-10 then describes the procedure for strings of an unknown size.
Example 5-8 Null-terminating fixed-length strings
See Example 5-13 for a complete working example of computations such as those shown here.
To null-terminate the fixed-length CHAR(10)
Column1
string returned in Example 5-6, establish a buffer large enough to hold the string plus null character. Next, obtain the size of the string from ttXlaColDesc_t -
>size
, copy the string into the buffer, and null-terminate the end of the string, using computations such as the following. You can now use the contents of the buffer. In this example, the string is printed:
Null-terminating a variable-length string is similar to the procedure for fixed-length strings, only the size of the string is the value located at the beginning of the variable-length data offset, as described in "Reading NOT INLINE variable-length column data".
Example 5-9 Null-terminating variable-length strings of known size
(See Example 5-13 for a complete working example of computations such as those shown here.)
If the Column2
string obtained in Example 5-7 is a VARCHAR(32)
, establish a buffer large enough to hold the string plus null character. Use the value located at the DataLength
offset to determine the size of the string, using computations such as the following:
If you are writing general purpose code to read all data types, you cannot make any assumptions about the size of a returned string. For strings of an unknown size, statically allocate a buffer large enough to hold the majority of returned strings. If a returned string is larger than the buffer, dynamically allocate the correct size buffer, as shown in Example 5-10.
Example 5-10 Null-terminating variable-length strings of unknown size
If the Column2
string obtained in Example 5-7 is of an unknown size, you might statically allocate a buffer large enough to hold a string of up to 10000 characters. Then check that the DataLength
value obtained at the beginning of the variable-length data offset is less than the size of the buffer. If the string is larger than the buffer, use malloc()
to dynamically allocate the buffer to the correct size.
Values for complex data types such as TT_DATE
, TT_TIME
, and TT_DECIMAL
are stored in an internal TimesTen format that can be converted into corresponding ODBC C types using the XLA type conversion functions. Table 5-2 contains descriptions of these conversion functions.
Table 5-2 XLA data type conversion functions
Function | Converts |
---|---|
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal | |
Internal |
These conversion functions can be used on row data included in the ttXlaUpdateDesc_t
types: UPDATETUP
, INSERTTUP
and DELETETUP
.
Example 5-11 Converting complex data types
(See Example 5-13 for a complete working example of computations such as those shown here.)
If you use the address of the tup1
row obtained earlier in the HandleChange()
function (Example 5-4) and the offset from the fifth ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function (Example 5-5), you can locate a column value of type TIMESTAMP
. Use the ttXlaTimeStampToODBCCType
function to convert the column data from TimesTen format and store the converted time value in an ODBC TIMESTAMP_STRUCT
. You could use code such as the following to print the values:
If you use the address of the tup1
row obtained earlier in the HandleChange()
function (Example 5-4) and the offset from the sixth ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function (Example 5-5), you can locate a column value of type DECIMAL
. Use the ttXlaDecimalToCString
function to convert the column data from TimesTen decimal format to a string. You could use code such as the following to print the values.
For columns that can have null values, ttXlaColDesc_t ->
nullOffset
points to a null byte in the record. The nullOffset
is 1 if the column is null, or 0 if it is not null.
To determine if a column value is null, first check if the nullOffset
is 0, in which case it is not a nullable value. If nullOffset
is nullable, then check the value at the nullOffset
to see if it is 1 or 0.
Example 5-12 Deleting null values
Check whether Column6
is null as follows:
Example 5-13 shows a function that checks the ttXlaColDesc_t ->
dataType
of each column to locate columns with a data type of CHAR
, NCHAR
, INTEGER
, TIMESTAMP
, DECIMAL
, and VARCHAR
, then prints the values. This is just one possible approach. Another option, for example, would be to check the ttXlaColDesc_t ->
ColName
values to locate specific columns by name.
The PrintColValues()
function handles CHAR
and VARCHAR
strings up to 50 bytes in length. NCHAR
characters must belong to the ASCII character set.
Example 5-13 Complete PrintColValues() function
The function in this example first checks ttXlaColDesc_t ->
nullOffset
to see if the column is null. Next it checks the ttXlaColDesc_t ->
dataType
field to determine the data type for the column. For simple fixed-length data (CHAR
, NCHAR
, and INTEGER
), it casts the value located at ttXlaColDesc_t ->
offset
to the appropriate C type. The complex data types, TIMESTAMP
and DECIMAL
, are converted from their TimesTen formats to ODBC C values using the ttXlaTimeStampToODBCCType
and ttXlaDecimalToCString
functions.
For variable-length data (VARCHAR
), the function locates the data in the variable-length portion of the row, as described in "Handling XLA errors".
Each time you call an ODBC or XLA function, you must check the return code for any errors. If the error is fatal, terminate the program as described in "Terminating an XLA application".
An error can be checked using either its error code (error number) or tt_Err
string. For the complete list of TimesTen error codes and error strings, see the install_dir
/include/tt_errCode.h
file. For a description of each message, see "List of errors and warnings" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.
If the return code from an XLA function is not SQL_SUCCESS
, use the ttXlaError
function to retrieve XLA-specific errors on the XLA handle.
Also see "Checking for errors".
Example 5-14 Checking the return code and calling the error-handling function
This example, after calling the XLA function ttXlaTableByName
, checks to see if the return code is SQL_SUCCESS
. If not, it calls an XLA error-handling function followed by a function to terminate the application. See "Terminating an XLA application".
Your XLA error-handling function should repeatedly call ttXlaError
until all XLA errors are read from the error stack, proceeding until the return code from ttXlaError
is SQL_NO_DATA_FOUND
. If you must reread the errors, you can call the ttXlaErrorRestart
function to reset the error stack pointer to the first error.
The error stack is cleared after a call to any XLA function other than ttXlaError
or ttXlaErrorRestart
.
Note: In cases wherettXlaPersistOpen cannot create an XLA handle, it returns the error code SQL_INVALID_HANDLE . Because no XLA handle has been created, ttXlaError cannot be used to detect this error. SQL_INVALID_HANDLE is returned only in cases where no memory can be allocated or the parameters provided are invalid. |
Depending on your application, you may be required to act on specific XLA errors, including those shown in Table 5-3.
Table 5-3 XLA errors and codes
Error | Code |
---|---|
802 (transient) | |
6001 (transient) | |
6002 (transient) | |
6003 (transient) | |
6220 (transient) | |
6221 (transient) | |
8024 | |
8029 | |
8031 | |
8034 | |
8035 | |
8036 | |
8037 | |
8038 | |
8046 | |
8047 |
Example 5-15 Calling the handleXLAerror() function
This example shows handleXLAerror()
, the error function for the xlaSimple
demo program.
Before you can drop a table that is subscribed to by an XLA bookmark, you must unsubscribe the table from the bookmark. There are several ways to unsubscribe a table from a bookmark, depending on whether the application is connected to the bookmark.
If persistent XLA applications are connected and using bookmarks that are tracking the table to be dropped, then perform the following tasks.
ttXlaTableStatus
function and set the newstatus
parameter to 0. This unsubscribes the table from the XLA bookmark in use by the application. If persistent XLA applications are not connected and using bookmarks associated with the table to be dropped, then perform the following tasks:
SYS.XLASUBSCRIPTIONS
system table to see which bookmarks have subscribed to the table you want to drop. ttXlaUnsubscribe
built-in procedure to unsubscribe the table from each XLA bookmark with a subscription to the table. Deleting bookmarks also unsubscribes the table from the XLA bookmarks. See the next section, "Deleting bookmarks".
You may want to delete bookmarks when you terminate an application or drop a table. Use the ttXlaDeleteBookmark
function to delete XLA bookmarks if the application is connected and using the bookmarks.
As described in "About XLA bookmarks", a bookmark may be reused by a new connection after its previous connection has closed. The new connection can resume reading from the transaction log from where the previous connection stopped. Note the following:
ttCkpt
or ttCkptBlocking
built-in procedure will free the disk space associated with any unread update records in the transaction log. Notes:
|
Example 5-16 Deleting bookmarks
The InitHandler()
function in the xlaSimple
demo deletes the XLA bookmark upon exit, as shown in the following example.
If the application is not connected and using the XLA bookmark, you can delete the bookmark either of the following ways:
When your XLA application has finished reading from the transaction log, you should gracefully exit by rolling back uncommitted transactions and freeing all handles. Also unsubscribe the tables and materialized views being monitored, unless your application must capture updates that occur when it is not connected. You may or may not want to delete the XLA bookmark when the program terminates, as described in "Deleting bookmarks".
Free your resources in reverse order of allocation. For each table and materialized view tracked by XLA, call the ttXlaTableStatus
function and set the newstatus
parameter to 0. This unsubscribes the table or materialized view from XLA. Next, call ttXlaClose
to release the XLA handle.
Call appropriate ODBC functions. Call SQLTransact
with SQL_ROLLBACK
to roll back any uncommitted transaction. Next, call SQLDisconnect
to close the connection to TimesTen. Finally, call SQLFreeConnect
and SQLFreeEnv
to release the connection handle (hdbc
) and environment handle (henv
) and to free the associated memory.
Example 5-17 Terminating an XLA application
This example shows TerminateGracefully()
, the XLA termination function in the xlaSimple
demo.
If the TimesTen replication solutions described in Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide do not meet your needs, you can use XLA functions to replicate updates from one database to another.
Note: You cannot use XLA to replicate updates between different platforms or between 32-bit and 64-bit versions of the same platform. |
In this section, the sending database is referred to as the master and the receiving database as the subscriber. To use XLA to replicate changes between databases, first use the ttXlaPersistOpen
function to initialize the XLA handles, as described in "Initializing XLA and obtaining an XLA handle".
After the XLA handles have been initialized for the databases, take the steps described in the following sections:
XLA functions mentioned here are documented in Chapter 9, "XLA Reference".
Before transferring update records from one database to the other, verify that the tables in the master and subscriber databases are compatible with one another:
ttXlaTableByName
, ttXlaGetTableInfo
, and ttXlaGetColumnInfo
functions. See "Checking table and column descriptions" immediately below. ttXlaVersionTableInfo
and ttXlaVersionColumnInfo
functions. See "Checking table and column versions". Use the ttXlaTableByName
, ttXlaGetTableInfo
, and ttXlaGetColumnInfo
functions to return ttXlaTblDesc_t
and ttXlaColDesc_t
descriptions for each table you want to replicate. These operations are described in "Specifying which tables to monitor for updates" and "Obtaining column descriptions". You can then pass these descriptions to the ttXlaTableCheck
function. The output parameter, compat
, specifies whether the tables are compatible. A value of 1 indicates compatibility and 0 indicates non-compatibility. The following example shows this.
Example 5-18 Checking table and column descriptions for compatibility
Use the ttXlaVersionTableInfo
and ttXlaVersionColumnInfo
functions to retrieve the table structure information of an update record at the time the record was generated.
The following example verifies that the table associated with the pXlaRecord
update record from the pCmd
source is compatible with the hXlaTarget
target.
Example 5-19 Checking table and column versions for compatibility
When you are ready to begin replication, use the ttXlaNextUpdate
or ttXlaNextUpdateWait
function to obtain batches of update records from the master database and ttXlaApply
to write the records to the subscriber database. The following example shows this.
Example 5-20 Replicating updates between databases
Important: If you are packaging data to be replicated across a network, or anywhere between processes not using the same memory space, you must ensure that thettXlaUpdateDesc_t data structure is shipped in its entirely. Its length is indicated by ttXlaUpdateDesc_t -> header.length , where the header element is a ttXlaNodeHdr_t structure that in turn has a length element. Also see "ttXlaUpdateDesc_t" and "ttXlaNodeHdr_t". |
The return code from ttXlaApply
indicates whether the update was successful. If the return code is not SQL_SUCCESS
, then the update may have encountered a transient problem, such as a deadlock or timeout, or a persistent problem. You can use ttXlaError
to check for errors, such as tt_ErrDeadlockVictim
or tt_ErrTimeoutVictim
. Recovery from transient errors is possible by rolling back the replicated transaction and re-executing it. Other errors may be persistent, such as those for duplicate key violations or key not found. Such errors are likely to repeat if the transaction is re-executed.
If ttXlaApply
returns a timeout or deadlock error before applying the commit record (ttXlaUpdateDesc_t ->
flags
= TT_UPDCOMMIT
) for a transaction to the subscriber database, you can do either of the following:
ttXlaRollback
to roll back the transaction. ttXlaCommit
to commit the changes in the records that have been applied to the subscriber database. To enable recovery from transient errors, you should keep track of transaction boundaries on the master database and store the records associated with the transaction currently being applied to the subscriber in a user buffer, so you can reapply them if necessary. The transaction boundaries can be found by checking the flags
member of the ttXlaUpdateDesc_t
structure. Consider the following example. If this condition is true, then the record was committed:
If you encounter an error that requires you to roll back a transaction, call ttXlaRollback
to roll back the records applied to the subscriber database. Then call ttXlaApply
to reapply all the rolled back records stored in your buffer.
Note: An alternative to buffering the transaction records in a user buffer is to callttXlaGetLSN to get the transaction log record identifier of each commit record in the transaction log, as described in "Changing the location of a bookmark". If you encounter an error that requires you to roll back a transaction, you can call ttXlaSetLSN to reset the bookmark to the beginning of the transaction in the transaction log and reapply the records. However, the extra overhead associated with the ttXlaGetLSN function may make this a less efficient option. |
If you have applications making simultaneous updates to both your master and subscriber databases, you may encounter update conflicts. Update conflicts are described in detail in "Resolving Replication Conflicts" in Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.
To check for update conflicts in XLA, you can set the ttXlaApply
test
parameter to compare the old row value (ttXlaUpdateDesc_t ->
tuple1
) in each record of type UPDATETUP
with the existing row in the subscriber database. If the old row value in the update description does not match the corresponding row in the subscriber database, an update conflict is assumed. In this case, ttXlaApply
does not apply the update to the subscriber and returns an sb_ErrXlaTupleMismatch
error.
If you are replicating changes to a non-TimesTen database, you can use the ttXlaGenerateSQL
function to convert the record data into a SQL statement that can be read by the non-TimesTen subscriber. For update and delete records, ttXlaGenerateSQL
requires a primary key or a unique index on a non-nullable column to generate the correct SQL.
The ttXlaGenerateSQL
function accepts a ttXlaUpdateDesc_t
record as a parameter and outputs its SQL equivalent into a buffer.
Important: The SQL returned byttXlaGenerateSQL uses TimesTen SQL syntax. The SQL statement may fail on a non-TimesTen subscriber if there are SQL syntax incompatibilities between the two systems. In addition, the SQL statement is encoded in the connection character set associated with the XLA handle. |
Example 5-21 Replicating updates to a non-TimesTen database
This example translates a record (record
) and stores the resulting SQL output in a 200-character buffer (buffer
). The actual size of the buffer is returned in the actualLength
parameter.
The following sections describe how to use additional XLA features:
At any point during a connection, you can call the ttXlaGetLSN
function to query the system for the Current Read log record identifier. If you must replay a set of updates, you can use the ttXlaSetLSN
function to reset the Current Read log record identifier to any valid value larger than the Initial Read log record identifier set by the last ttXlaAcknowledge
call. In this context, "larger" only applies if the log record identifiers being compared are from records in the same transaction. If that is not the case, then any log record identifier from a transaction that committed before another transaction is the "smaller" log record identifier, even if the numeric value of the log record identifier is larger. The only way to enable the Initial Read log record identifier to move forward to the Current Read log record identifier is by calling the ttXlaAcknowledge
function, which indicates that you have received and processed all transaction log records up to the Current Read log record identifier. Once you have called ttXlaAcknowledge
on a particular bookmark, you can no longer access transaction log records with a log record identifier smaller than the Current Read log record identifier.
Although it is not an XLA function, writers to the transaction log can call the ttApplicationContext
built-in procedure to pass binary data associated with an application to XLA readers. This procedure specifies a single VARBINARY
value that is returned in the next update record produced by the current transaction. XLA readers can obtain a pointer to this value as described in "Reading NOT INLINE variable-length column data".
Note: A context value will be applied to only one update record. After it has been applied it is reset. If the same context value should be applied to multiple updates, then it must be reestablished before each update. |
To set the context:
ttApplicationContext
procedure. The variable contextBuffer
is a CHAR
array that is declared to be large enough to accommodate the longest application context that you will use. The variable contextBufferLen
is of type INTEGER
and is used to convey the actual length of the context on each call to ttApplicationContext
. ttApplicationContext
built-in procedure: contextBuffer
, assign the length of the context to contextBufferLen
, and invoke ttApplicationContext
with the call: The transaction is then committed with the usual call on SQLTransact
:
Note: If a SQL operation fails after a call tottApplicationContext , the context may not be stored in the next SQL operation and therefore may be lost. If this happens, the application can call ttApplicationContext again before the next SQL operation. |
TimesTen XLA is normally used in persistent mode, but non-persistent mode is also supported. This is primarily for backward compatibility. In non-persistent mode, transaction log updates are maintained in an XLA staging buffer, which is where XLA stages the update records obtained from the transaction log and makes them available to be read by the application. However, the staging buffer can be accessed by only one reader at a time and all of the buffered data is lost when the computer or database is shut down.
The ttXlaOpenTimesTen
XLA function opens a connection to a database in non-persistent mode.
Information for operating XLA in non-persistent mode is described in the following sections.
Non-persistent mode differs from persistent mode as follows:
ttXlaConfigBuffer
. ttXlaStatus
function. ttXlaResetStatus
function. All other XLA procedures, excluding those related to bookmarks, are the same as those described for persistent mode in "Writing an XLA event-handler application".
After initializing ODBC and obtaining an environment handle, connection handle, and statement handle as described in "Obtaining a database connection handle", you can initialize XLA in non-persistent mode and obtain an XLA handle to access the transaction log. Though you may have multiple open XLA connections in non-persistent mode, you must coordinate reads so that only one connection accesses the staging buffer at any one time.
Initializing XLA in non-persistent mode is similar to initializing in persistent mode, as described in "Initializing XLA and obtaining an XLA handle", but you are not required to identify a bookmark. Simply initialize an XLA handle as type ttXlaHandle_h
and pass the address to the ttXlaOpenTimesTen
function to obtain the XLA handle:
After initializing XLA in non-persistent mode, use the ttXlaConfigBuffer
function to configure the size of the XLA staging buffer. Only one staging buffer may be configured for a database. The staging buffer size setting is guaranteed to survive normal disconnects. However, the size setting may not survive an abnormal termination, depending on whether a checkpoint was done.
When finished using XLA, you can delete the staging buffer by setting its size to 0.
See "ttXlaConfigBuffer" for details.
When operating XLA in non-persistent mode, you can use the ttXlaStatus
function to retrieve status information on the transaction log buffer and your XLA staging buffer.
See "ttXlaStatus" for details.
This chapter describes the TimesTen implementation of the X/Open XA standard.
The TimesTen implementation of the XA interfaces is intended for use by transaction managers in distributed transaction processing (DTP) environments. You can use these interfaces to write a new transaction manager or to adapt an existing transaction manager, such as Oracle Tuxedo, to operate with TimesTen resource managers.
The purpose of this chapter is to provide information specific to the TimesTen implementation of XA and is intended to be used with the following documents:
http://www.opengroup.org
). This chapter includes the following topics:
Important:
|
This section provides a brief overview of the following XA concepts:
Figure 6-1 that follows illustrates the interfaces defined by the X/Open DTP model.
The TX interface is what applications use to communicate with a transaction manager. The figure shows an application communicating global transactions to the transaction manager. In the DTP model, the transaction manager breaks each global transaction down into multiple branches and distributes them to separate resource managers for service. It uses the XA interface to coordinate each transaction branch with the appropriate resource manager.
In the context of TimesTen XA, the resource managers can be a collection of TimesTen databases, or databases in combination with other commercial databases that support XA.
Global transaction control provided by the TX and XA interfaces is distinct from local transaction control provided by the native ODBC interface. It is generally best to maintain separate connections for local and global transactions. Applications can obtain a connection handle to a TimesTen resource manager in order to initiate both local and global transactions over the same connection. See "TimesTen tt_xa_context function to obtain ODBC handle from XA connection" for more information.
In an XA implementation, the transaction manager commits the distributed branches of a global transaction by using a two-phase commit protocol.
Note the following optimizations:
Note: The transaction manager considers the global transaction committed if and only if all branches successfully commit. |
The TimesTen implementation of XA provides an API that is consistent with the API specified in Distributed Transaction Processing: The XA Specification. This section describes what you should know when using the TimesTen implementation of XA, covering the following topics:
To guarantee global transaction consistency, TimesTen XA transaction branches must be durable. The TimesTen implementation of the xa_prepare()
, xa_rollback()
, and xa_commit()
functions log their actions to disk, regardless of the value set in the DurableCommits
general connection attribute or by the ttDurableCommit
built-in procedure. (The behavior is equivalent to what occurs with a setting of DurableCommits=1
. See "DurableCommits" in Oracle TimesTen In-Memory Database Reference for related information.) If you must recover from a failure, both the resource manager and the TimesTen transaction manager have a consistent view of which transaction branches were active in a prepared state at the time of failure.
Rollback of transactions requires transaction logging, which is always enabled with XA.
When a database is loaded from disk to recover after a failure or unexpected termination, any global transactions that were prepared but not committed are left pending, or in doubt. Normal processing is not enabled until the disposition of all in-doubt transactions has been resolved.
After connection and recovery are complete, TimesTen checks for in-doubt transactions. If there are no in-doubt transactions, operation proceeds as normal. If there are in-doubt transactions, other connections may be created, but virtually all operations are prohibited on those connections until the in-doubt transactions are resolved. Any other ODBC or JDBC calls result in the following error:
The list of in-doubt transactions can be retrieved through the XA implementation of xa_recover()
, then dealt with through the XA call xa_commit()
, xa_rollback()
, or xa_forget()
, as appropriate. After all of the in-doubt transactions are cleared, operation proceeds normally.
This scheme should be adequate for systems that operate strictly under control of the transaction manager, since the first thing the transaction manager should do after connect is to call xa_recover()
.
If the transaction manager is unavailable or cannot resolve an in-doubt transaction, you can use the ttXactAdmin
utility to independently commit or abort the individual transaction branches. Be aware, however, that these ttXactAdmin
options require ADMIN
privilege. See "ttXactAdmin" in Oracle TimesTen In-Memory Database Reference.
This section describes some issues concerning the use of TimesTen XA functions, which are of interest if you are writing your own transaction manager.
The xa_info
string used by xa_open()
should be a connection string identical to that supplied to SQLDriverConnect
, such as:
XA limits the length of the string to 256 characters. See MAXINFOSIZE
in the xa.h
header file.
The xa_open()
function automatically turns off autocommit when it opens an XA connection.
A connection opened with xa_open()
must be closed with a call to xa_close()
.
Note: Privilege to connect to the database must be explicitly granted to every user other than the instance administrator, through theCREATE SESSION privilege. Refer to "Access control for connections". |
XA uniquely identifies global transactions by using a transaction ID, referred to as an XID. The XID is a required parameter for XA functions that manipulate a transaction. Internally, TimesTen maps XIDs to its own transaction identifiers.
The XID defined by the XA standard has some of its members (such as formatID
, gtrid_length
, and bqual_length
) defined as type long
. Be aware that this can cause problems when 32-bit client applications connect to a 64-bit server, or 64-bit client applications connect to a 32-bit server. This is because long
is a 32-bit integer on 32-bit platforms but a 64-bit integer on 64-bit platforms, other than 64-bit Windows. Hence, TimesTen internally uses only the 32 least significant bits of those XID members regardless of the platform type of client or server. TimesTen does not support any value in those XID members that does not fit in a 32-bit integer.
TimesTen provides the function tt_xa_context()
, which enables you to acquire the ODBC connection handle associated with an XA connection opened by xa_open()
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
rmid | int | The specified resource manager ID. If this is non-null, the function returns the handles associated with the rmid value. If the specified |
henv | out SQLHENV | The environment handle associated with the current xa_open() context. |
hdbc | out SQLHDBC | The connection handle associated with the current xa_open() context. |
Return values
0: Success
1: rmid
not found
-1: Invalid parameter
Example
In the following example, assume Tuxedo has used xa_open()
and xa_start()
to open a connection to the database and start a transaction. To do further ODBC processing on the connection, use the tt_xa_context()
function to locate the SQLHENV
and SQLHDBC
handles allocated by xa_open()
.
Example 6-1 Using tt_xa_context() to locate handles
This section describes some TimesTen issues to be aware of when calling ODBC functions using an ODBC handle associated with an XA connection opened by xa_open()
.
To simplify operation and prevent possible contradictions, xa_open()
automatically turns off autocommit when it opens an XA connection.
Autocommit may subsequently be turned on or off during local transaction work, but must be turned off before xa_start()
is called to begin work on a global transaction branch. If autocommit is on, a call to xa_start()
returns the following error:
Once xa_start()
has been called to begin work on a global transaction branch, autocommit may not be turned on until such work has been completed through a call to xa_end()
. Any attempt to turn on autocommit in this case will result in the same error as above.
Once work on a global transaction branch has commenced through a call to xa_start()
, attempts to perform a local commit or rollback using SQLTransact
results in the following error:
Each resource manager defines a switch in its xa.h
header file that provides the transaction manager with access to the XA functions in the resource managers. The transaction manager never directly calls an XA interface function. Instead, it calls the function in the switch table, which, in turn, points to the appropriate function in the resource manager. This allows resource managers to be added and removed without the requirement to recompile the applications.
In the TimesTen implementation of XA, the functions in the XA switch, xa_switch_t
, point to their respective functions defined in a TimesTen switch, tt_xa_switch
.
The xa_switch_t
structure defined by the XA specification is as follows:
The tt_xa_switch
names the actual functions implemented by a TimesTen resource manager. It also indicates explicitly that association migration is not supported. In addition, dynamic registration and asynchronous operations are not supported.
The XA specification has a limited and strictly defined set of errors that can be returned from XA interface calls. The ODBC SQLError
function returns XA-defined errors along with any additional information.
The TimesTen XA-related errors begin at number 11000. Errors 11002 through 11020 correspond to the errors defined by the XA standard.
See "Warnings and Errors" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps for the complete list of errors.
This section discusses issues and procedures for using XA with the Windows ODBC driver manager. (UNIX ODBC driver managers are not considered.)
XA support through the ODBC driver manager requires special handling. There are two fundamental problems:
.dll
file to load at connect time, when you call SQLConnect
or SQLDriverConnect
. XA dictates that the connection should be opened through xa_open()
. However, the correct xa_open()
entry point cannot be located until the .dll
is loaded during the connect operation itself. Note that the driver manager objective of database portability is generally not applicable here, since each XA implementation is essentially proprietary. The primary benefit of driver manager support for XA-enabled applications is to allow TimesTen-specific applications to run transparently with either the TimesTen direct driver or the TimesTen Client/Server driver.
On Windows installations, TimesTen provides a driver manager extension library, ttxadm1121.dll
, for XA functions. Applications can make XA calls directly, but must link in the extension library.
To link with the ttxadm1121.dll
library, applications must include ttxadm1121.lib
before odbc32.lib
in their link line. For example:
Note: The XA driver manager extension is implemented only for 32-bit Windows applications. |
Note: Though TimesTen XA has been demonstrated to work with the Oracle Tuxedo transaction manager, TimesTen cannot guarantee the operation of DTP software beyond the TimesTen implementation of XA. |
To configure Tuxedo to use the TimesTen resource managers, perform the following tasks:
Note: The examples in this section use the direct driver. You can also use the client/server library or driver manager library with the XA extension library. |
To integrate the TimesTen XA resource manager into the Oracle Tuxedo system, update the $TUXDIR/udataobj/RM
file to identify the TimesTen resource manager, the name of the TimesTen resource manager switch (tt_xa_switch
), and the name of the library for the resource manager.
On UNIX platforms, add the following:
For example:
On Windows platforms, add the following:
For example:
Note: Theinstall_dir is the path to the TimesTen home directory. |
Use the buildtms
command to build a transaction manager server for the TimesTen resource manager. Then copy the TMS_TT
file created by buildtms
to the $TUXDIR/bin
directory.
On UNIX platforms, the commands are the following:
On Windows platforms, the commands are the following:
For TMSNAME
, specify the TMS_TT
file created by the buildtms
command described in the preceding section.
Enter a line for each TimesTen resource manager that includes a group name, followed by the LMID
, GRPNO
, and OPENINFO
parameters. Your OPENINFO
string should look like this:
Where DSNname
is the name of the database.
Note that on Windows, Tuxedo servers run as user SYSTEM
. Add the UID
general connection attribute to the OPENINFO
string to specify a user other than SYSTEM
for the connection:
Do not specify a CLOSEINFO
parameter for any TimesTen resource manager.
Example 6-2 shows the portions of a UBBCONFIG
file used to configure two TimesTen resource managers, GROUP1
and GROUP2
.
Example 6-2 Configuring TimesTen resource managers
Set the CFLAGS
environment variable to include the install_dir
/include
directory that holds the TimesTen header files. Then use the buildserver
command to construct an Oracle Tuxedo ATMI server load module.
On UNIX platforms, enter the following.
On Windows platforms, enter the following.
Note: Theinstall_dir is the path to the TimesTen home directory. |
Example 6-3 shows an example of how to use the buildclient
command to construct the client module (simpcl
) and the buildserver
command to construct the two server modules described in the UBBCONFIG
file in Example 6-2 above.
This chapter describes how to tune a C application to run optimally on a TimesTen database. See "TimesTen Database Performance Tuning" in Oracle TimesTen In-Memory Database Operations Guide for more general tuning tips.
This chapter includes the following topics:
TimesTen permits ODBC applications that do not need some of the functionality provided by a driver manager to link without one. In particular, applications that do not need ODBC access to database systems other than TimesTen should consider omitting the driver manager. This is done by linking the application directly with the TimesTen direct or client driver, as described in "Linking options". The performance improvement will be significant.
"Testing link options" explains how to determine whether an application is linked directly with the driver or with the driver manager.
Note: It is permissible for some applications connected to a database to be linked with the driver manager, while others connected to the same database are direct-linked. |
You can improve performance by using groups, referred to as batches, of statement executions in your application.
The SQLParamOptions
ODBC function allows an application to specify multiple values for the set of parameters assigned by SQLBindParameter
. This is useful for processing the same SQL statement multiple times with various parameter values. For example, your application can specify multiple sets of values for the set of parameters associated with an INSERT
statement, and then execute the INSERT
statement once to perform all the insert operations.
TimesTen supports the use of SQLParamOptions
with INSERT
, UPDATE
and DELETE
statements, but not with SELECT
statements. TimesTen recommends the following batch sizes for Release 11.2.1:
INSERT
statements UPDATE
statements DELETE
statements Table 7-1 provides a summary of SQLParamOptions
arguments. Refer to ODBC API reference documentation for details.
Table 7-1 SQLParamOptions arguments
Argument | Type | Description |
---|---|---|
|
| Statement handle. |
|
| Number of values for each parameter. |
|
| Pointer to storage for the current row number. |
Assuming the crow
value is greater than 1, the rgbValue
argument of SQLBindParameter
points to an array of parameter values and the pcbValue
argument points to an array of lengths. (Also see "SQLBindParameter function".)
Refer to the TimesTen Quick Start demo source file bulkinsert.c
for a complete working example of batching. (Also, for programming in C++ with TTClasses, see bulktest.cpp
.)
Note: When usingSQLParamOptions with the TimesTen Client/Server driver, data-at-execution parameters are not supported. |
The purpose of a SQLBindCol
or SQLBindParameter
call is to associate a type conversion and program buffer with a data column or parameter. For a given SQL statement, if the type conversion or memory buffer for a given data column or parameter is not going to change over repeated executions of the statement, it is better not to make repeated calls to SQLBindCol
or SQLBindParameter
.
Note: A call toSQLFreeStmt with the SQL_UNBIND option unbinds all columns. |
SQLGetData
can be used for fetching data without binding columns. This can sometimes have a negative impact on performance because applications have to issue a SQLGetData
ODBC call for every column of every row that is fetched. In contrast, using bound columns requires only one ODBC call for each fetched column. Further, the TimesTen ODBC driver is more highly optimized for the bound columns method of fetching data.
SQLGetData
can be very useful, though, for doing piece-wise fetches of data from long character or binary columns.
TimesTen instruction paths are so short that even small delays due to data conversion can cause a relatively large percentage increase in transaction time. To avoid data type conversions:
TimesTen provides the TT_PREFETCH_COUNT
option, which can be set through SQLSetStmtOption
and allows an application to fetch multiple rows of data. This feature is available for applications that use the Read Committed isolation level. For applications that retrieve large amounts of TimesTen data, fetching multiple rows can increase performance greatly. However, locks are held on all rows being retrieved until all the application has received all the data, decreasing concurrency. For more information on how to use TT_PREFETCH_COUNT
, see "Prefetching multiple rows of data".
The TimesTen Utility Library C language functions documented in this chapter provide a programmable interface to some of the command line utilities documented in "Utilities" in Oracle TimesTen In-Memory Database Reference.
Applications that use this set of C language functions must include ttutillib.h
and link with both the TimesTen driver library (libtten
on UNIX or ttdv1121.lib
and tten1121.lib
on Windows) and the TimesTen utility library (libttutil
on UNIX and ttutil1121.lib
on Windows platforms).
Important: Applications must call thettUtilAllocEnv C function before calling any other TimesTen utility library function. In addition, applications must call the ttUtilFreeEnv C function when it is done with the TimesTen utility library interface. |
These functions are not supported with TimesTen Client or for Java applications. They are supported only for TimesTen ODBC applications using the direct driver.
Return codes
Unless otherwise indicated, the utility functions return these codes as defined in ttutillib.h
.
Code | Description |
---|---|
TTUTIL_SUCCESS | Returned upon success. |
TTUTIL_ERROR | Returned if an error occurs. |
TTUTIL_WARNING | Returned upon success, when a warning has been generated. |
TTUTIL_INVALID_HANDLE | Returned if an invalid utility library handle is specified. |
Note: The application must call thettUtilGetError C function to retrieve all actual error or warning information. |
Description
Creates either a full or an incremental backup copy of the database specified by connStr
. You can back up a database either to a set of files or to a stream. You can restore the database at a later time using either the ttRestore
function or the ttRestore
utility. If the database is in use at the time of the backup, it must be in shared mode to successfully complete this operation.
For an overview of the TimesTen backup and restore facility, see "Migration, backup, and restoration of the database" in the Oracle TimesTen In-Memory Database Operations Guide.
Required privilege
Requires ADMIN
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying a connection string that describes the database to be backed up. |
type | ttBackupType | Specified the type of backup to be performed. Valid values are as follows:
|
atomic | ttBooleanType | Specifies the disposition of an existing backup with the same baseName and backupDir while the new backup is being created. This parameter has an effect only on full file backups when there is an existing backup with the same The following are valid values:
|
backupDir | const char* | Specifies the backup directory for file backups. It is ignored for stream backups. Otherwise it must be non-null. For For |
baseName | const char* | Specifies the file prefix for the backup files in the backup directory specified by the backupDir parameter for file backups. It is ignored for stream backups. If For |
stream | ttUtFileHandle | For stream backups, this parameter specifies the stream to which the backup is to be written. On UNIX, it is an integer file descriptor that can be written to by using On Windows, it is a handle that can be written to using This parameter is ignored for file backups. The application can pass |
Example
This example backs up the database for the payroll
DSN into C:\backup
.
Upon successful backup, all files are created in the C:\backup
directory.
Note
Each database supports only eight incremental-enabled backups.
See also
Description
Destroys a database, including all checkpoint files, transaction logs and daemon catalog entries corresponding to the database specified by the connection string. It does not delete the DSN itself defined in the odbc.ini
file on the supported UNIX platforms or in Windows registry on the supported Windows platforms.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying the connection string that describes the database to be destroyed. All attributes in this connection string, except the DSN and the DataStore attribute, are ignored. |
timeout | unsigned int | Specifies the number of times to retry before returning to the caller. ttDestroyDataStore continually retries the destroy operation every second until it is successful or the timeout is reached. This is useful in those situations where the destroy fails due to some temporary condition, such as when the database is in use. No retry is performed if this parameter value is 0. |
Example
This example destroys a database defined by the payroll
DSN, consisting of files C:\dsns\payroll.ds0
, C:\dsns\payroll.ds1
, and several transaction log files C:\dsns\payroll.log
n
.
Description
Destroys a database, including all checkpoint files, transaction logs and daemon catalog entries corresponding to the database specified by the connection string. It does not delete the DSN itself defined in the odbc.ini
file on the supported UNIX platforms or in the Windows registry on supported Windows platforms.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying the connection string that describes the database to be destroyed. All attributes in this connection string, except the DSN and the DataStore attribute, are ignored. |
timeout | unsigned int | Specifies the number of seconds to retry before returning to the caller. The ttDestroyDataStoreForce utility continually retries the destroy operation every second until it is successful or the timeout is reached. This is useful when the destroy fails due to some temporary condition, such as when the database is in use. No retry is performed if this parameter value is 0. |
Example
This example destroys a database defined by the payroll
DSN, consisting of files C:\dsns\payroll.ds0
, C:\dsns\payroll.ds1
, and several transaction log files C:\dsns\payroll.log
n
.
Description
Specifies the number of seconds the database specified by the connection string is kept in RAM by TimesTen after the last application disconnects from the database. TimesTen then unloads the database. This grace period can be set or reset at any time but is only in effect if the RAM policy is TT_RAMPOL_INUSE
.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying a connection string that describes the database for which the RAM grace period is set. |
seconds | unsigned int | Specifies the number of seconds TimesTen keeps the database in RAM after the last application disconnects from the database. TimesTen then unloads the database. |
Example
This example sets the RAM grace period of 10 seconds for the payroll
DSN.
See also
ttRamLoad
ttRamPolicy
ttRamUnload
Description
Causes TimesTen to load the database specified by the connection string into the system RAM. For a permanent database, a call to ttRamLoad
is valid only when RamPolicy
is set to TT_RAMPOL_MANUAL
. For a temporary database, a call to ttRamLoad
loads the database into RAM.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying a connection string that describes the database to be loaded into RAM. |
Example
This example loads the database for the payroll
DSN.
See also
ttRamGrace
ttRamPolicy
ttRamUnload
Description
Defines the policy used to determine when TimesTen loads the database specified by the connection string into the system RAM.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying a connection string that describes the database for which the RAM policy is to be set. |
policy | ttRamPolicyType | Specifies the policy used to determine when TimesTen loads the specified database into system RAM. Valid values are the following:
If you do not explicitly set the RAM policy for the specified database, the default RAM policy is |
Example
This example sets the RAM policy to manual for the payroll
DSN.
Note
The policy cannot be set for a temporary database.
See also
ttRamGrace
ttRamLoad
ttRamUnload
Description
Causes TimesTen to unload the database specified by the connection string from the system RAM if the TimesTen RAM policy is set to manual
. (Refer to "ttRamPolicySet" in Oracle TimesTen In-Memory Database Reference for related information.) For a permanent database, this call is valid only when RAM policy is set to TT_RAMPOL_MANUAL
. For a temporary database, a call to ttRamUnload
always tries to unload the database from RAM because RAM policy cannot be set for such a database.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying a connection string for the database to be unloaded from RAM. |
Example
This example unloads the database from RAM for the payroll
DSN.
Notes
When using this function with a temporary database, TimesTen always attempts to unload the database.
See also
ttRamGrace
ttRamLoad
ttRamPolicy
Description
Creates a replica of a remote database on the local system. The process is initiated from the receiving local system. From there, a connection is made to the remote source database to perform the duplicate operation.
Notes:
|
Required privilege
Requires an instance administrator on the receiving local database (where ttRepDuplicateEx
is called) and a user with ADMIN
privilege on the remote source database. Create the internal user on the remote source store as necessary.
In addition, be aware of the following requirements to execute ttRepDuplicateEx
:
ttRepDuplicateEx
is called, the uid
and pwd
data structure elements must specify the user name and password of the user with ADMIN
privilege on the remote source database. This user name is used to connect to the remote source database to perform the duplicate operation. Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
destConnStr | const char* | A null-terminated string specifying the connection string for a local database into which the replica of the remote database is created. |
srcDatabase | const char* | A null-terminated string specifying the remote source database name. This name is the last component of the database path name. |
remoteHost | const char* | A null-terminated string specifying the TCP/IP host name of the system where the remote source database is located. |
arg | ttRepDuplicateExArg* | The address of the structure containing the desired ttRepDuplicateEx arguments. If NULL is passed in for arg or if the value of arg -> size is invalid, TimesTen returns error 12230, "Invalid argument value ", and TTUTIL_ERROR . |
Struct elements
The ttRepDuplicateEx
argument structure contains these elements:
Element | Type | Description |
---|---|---|
size | unsigned int | Must be set up to sizeof (ttRepDuplicateExArg). |
flags | unsigned int | The bit-wise union of values chosen from the list in the table of flag values. |
uid | const char* | The user name of a user on the remote source database with ADMIN privileges. This user name is used to connect to the remote source database to perform the duplicate operation. |
pwd | const char* | The password associated with the user ID. |
pwdcrypt | const char* | The encrypted password associated with the user ID. |
cacheuid | const char* | Cache administration user ID. |
cachepwd | const char* | Cache administration user password. |
localHost | const char* | A null-terminated string specifying the TCP/IP host name of the local system. This element is ignored if remoteRepStart is TT_FALSE . This explicitly identifies the local host. This parameter can be null, which is useful if the local host uses a nonstandard name such as an IP address. |
truncListLen | int | The number of elements in the truncList . |
truncList | const char** | A list of non-replicated tables to truncate after duplicate. |
dropListLen | int | The number of elements in dropList . |
dropList | const char** | A list of non-replicated tables to drop after the duplicate operation. |
maxkbytesPerSec | int | Setting maxkbytesPerSec to a nonzero value specifies that the duplicate operation should not put more than maxkbytesPerSec kilobytes of data per second onto the network. Setting maxkbytesPerSec to 0 or a negative number indicates that the duplicate operation should not attempt to limit its bandwidth. |
remoteDaemonPort | int | Specifies the remote daemon port. Setting remoteDaemonPort to 0 results in the daemon port number for the target database being set to the port number used for the daemon on the source database. This option cannot be used in duplicate operations for databases with automatic port configuration. |
nThreads4initDR | int | For the disaster recovery subscriber, this determines the number of threads used to initialize the Oracle database on the disaster recovery site. After the TimesTen database is copied to the disaster recovery system, the Oracle database tables are truncated and the data from the TimesTen cache groups is copied to the Oracle database on the disaster recovery system. Also see the |
crsManaged | int | For internal use. This should be set to 0 (default). |
The ttRepDuplicateExArg
flags element is constructed from these values:
Value | Description |
---|---|
TT_REPDUP_NOFLAGS | No flags. |
TT_REPDUP_COMPRESS | Enables compression of the data transmitted over the network for the duplicate operation. |
TT_REPDUP_REPSTART | Directs ttRepDuplicateEx to set the replication state (with respect to the local database) in the remote database to the start state before the remote database is copied across the network. This ensures that all updates made after the duplicate operation are replicated from the remote database to the newly created or restored local database. |
TT_REPDUP_RAMLOAD | Keeps the database in memory upon completion of the duplicate operation. It changes the RAM policy for the database to manual . |
TT_REPDUP_DELXLA | ttRepDuplicateEx removes all the XLA bookmarks as part of the duplicate operation. |
TT_REPDUP_NOKEEPCG | Do not preserve the cache group definitions. ttRepDuplicateEx converts all cache group tables into regular tables. By default, cache group definitions are preserved. |
TT_REPDUP_RECOVERINGNODE | Specifies that ttRepDuplicateEx is being used to recover a failed node for a replication scheme that includes an AWT or autorefresh cache group. Do not specify TT_REPDUP_RECOVERINGNODE when rolling out a new or modified replication scheme to a node. If ttRepDuplicateEx cannot update metadata stored on the Oracle database and all incremental autorefresh cache groups are replicated, then updates to the metadata will be automatically deferred until the cache and replication agents are started. |
TT_REPDUP_DEFERCACHEUPDATE | Forces the deferral of changes to metadata stored on the Oracle database until the cache and replication agents are started and the agents can connect to the Oracle database. Using this option can cause a full autorefresh if some incremental cache groups are not replicated or if ttRepDuplicateEx is being used for rolling out a new or modified replication scheme to a node. |
TT_REPDUP_INITCACHEDR | Initializes disaster recovery. You must also specify cacheuid and cachepwd in the data structure. Also see nThreads4initDR in the data structure. |
Example
This example creates a replica of a remote TimesTen DSN, remote_payroll
with the database path name C:\dsns\payroll
, to a local DSN local_payroll
.
See also
The following built-in procedures are described in "Built-In Procedures" in Oracle TimesTen In-Memory Database Reference.
ttReplicationStatus
ttRepPolicySet
ttRepStop
ttRepSubscriberStateSet
ttRepSyncGet
ttRepSyncSet
Description
Restores a database specified by the connection string from a backup that has been created using the ttBackup
C function or ttBackup
utility. If the database already exists, ttRestore
will not overwrite it.
For an overview of the TimesTen backup and restore facility, see "Migration, backup, and restoration of the database" in Oracle TimesTen In-Memory Database Operations Guide.
Required privilege
Requires instance administrator.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char* | A null-terminated string specifying a connection string that describes the database to be restored. |
type | ttRestoreType | Indicates whether the database is to be restored from a file or a stream backup. Valid values are the following:
|
backupDir | const char* | For TT_RESTORE_FILE , specifies the directory where the backup files are stored. For |
baseName | const char* | For TT_RESTORE_FILE , specifies the file prefix for the backup files in the backup directory specified by the backupDir parameter. If For |
stream | ttUtFileHandle | For TT_RESTORE_STREAM , specifies the stream from which the backup is to be read. On UNIX, it is an integer file descriptor that can be read from using On Windows, it is a handle that can be read from using For |
flags | unsigned int | Reserved for future use. Specify 0. |
Example
This example restores the database for the payroll
DSN from C:\backup
.
See also
Description
Allocates memory for a TimesTen utility library environment handle and initializes the TimesTen utility library interface for use by an application. An application must call ttUtilAllocEnv
before calling any other TimesTen utility library function. In addition, an application must call ttUtilFreeEnv
when it is done with the TimesTen utility library interface.
Required privilege
None.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle_ptr | ttUtilHandle* | Specifies a pointer to storage where the TimesTen utility library environment handle is returned. |
errBuff | char* | A user allocated buffer where error messages (if any) are returned. The returned error message is a null-terminated string. If the length of the error message exceeds buffLen -1, it is truncated to buffLen -1. If this parameter is null, buffLen is ignored and TimesTen does not return error messages to the calling application. |
buffLen | unsigned int | Specifies the size of the buffer errBuff . If this parameter is 0, TimesTen does not return error messages to the calling application. |
errLen | unsigned int* | A pointer to an unsigned integer where the actual length of the error message is returned. If it is NULL , this parameter is ignored. |
Return codes
This utility returns the following code as defined in ttutillib.h
.
Code | Description |
---|---|
TTUTIL_SUCCESS | Returned upon success. |
Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.
Example
This example allocates and initializes a TimesTen utility library environment handle with the name utilHandle
.
See also
ttUtilFreeEnv
ttUtilGetError
ttUtilGetErrorCount
Description
Frees memory associated with the TimesTen utility library handle.
An application must call ttUtilAllocEnv
before calling any other TimesTen utility library function. In addition, an application must call ttUtilFreeEnv
when it is done with the TimesTen utility library interface.
Required privilege
None.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
errBuff | char* | A user-allocated buffer where error messages are to be returned. The returned error message is a null-terminated string. If the length of the error message exceeds buffLen -1, it is truncated to buffLen -1. If this parameter is NULL , buffLen is ignored and TimesTen does not return error messages to the calling application. |
buffLen | unsigned int | Specifies the size of the buffer errBuff . If this parameter is 0, TimesTen does not return error messages to the calling application. |
errLen | unsigned int* | A pointer to an unsigned integer where the actual length of the error message is returned. If it is NULL , this parameter is ignored. |
Return codes
This utility returns the following codes as defined in ttutillib.h
.
Code | Description |
---|---|
TTUTIL_SUCCESS | Returned upon success. |
TTUTIL_INVALID_HANDLE | Returned if an invalid utility library handle is specified. |
Otherwise, it returns a TimesTen-specific error message as defined in tt_errCode.h
and a corresponding error message in the buffer provided by the caller.
Example
This example frees a TimesTen utility library environment handle named utilHandle
.
See also
ttUtilAllocEnv
ttUtilGetError
ttUtilGetErrorCount
Description
Retrieves the errors and warnings generated by the last call to the TimesTen C utility library functions excluding ttUtilAllocEnv
and ttUtilFreeEnv
.
Required privilege
None.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
errIndex | unsigned int | Indicates error or warning record to be retrieved from the TimesTen utility library error array. Valid values are as follows:
|
retCode | unsigned int* | Returns the TimesTen-specific error or warning codes as defined in tt_errCode.h . |
retType | ttUtilErrType* | Indicates whether the returned message is an error or warning. The following are valid return values:
|
errBuff | char* | A user allocated buffer where error messages (if any) are to be returned. The returned error message is a null-terminated string. If the length of the error message exceeds buffLen -1, it is truncated to buffLen -1. If this parameter is NULL , buffLen is ignored and TimesTen does not return error messages to the calling application. |
buffLen | unsigned int | Specifies the size of the buffer errBuff . If this parameter is 0, TimesTen does not return error messages to the calling application. |
errLen | unsigned int* | A pointer to an unsigned integer where the actual length of the error message is returned. If it is NULL , TimesTen ignores this parameter. |
Return codes
This utility returns the following codes as defined in ttutillib.h
.
Code | Description |
---|---|
TTUTIL_SUCCESS | Returned upon success. |
TTUTIL_INVALID_HANDLE | Returned if an invalid utility library handle is specified. |
TTUTIL_NODATA | Returned if no error or warming information is retrieved. |
Example
This example retrieves all error or warning information after calling ttDestroyDataStore
for the DSN named payroll
.
Notes
Each of the TimesTen C functions can potentially generate multiple errors and warnings for a single call from an application. To retrieve all of these errors and warnings, the application must make repeated calls to ttUtilGetError
until it returns TTUTIL_NODATA
.
See also
ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetErrorCount
Description
Retrieves the number of errors and warnings generated by the last call to the TimesTen C utility library functions, excluding ttUtilAllocEnv
and ttUtilFreeEnv
. Each of these functions can potentially generate multiple errors and warnings for a single call from an application. To retrieve all of these errors and warnings, the application must make repeated calls to ttUtilGetError
until it returns TTUTIL_NODATA
.
Required privilege
None.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
errCount | unsigned int* | Indicates the number of errors and warnings generated by the last call, excluding ttUtilAllocEnv and ttUtilFreeEnv , to the TimesTen utility library. |
Return codes
The utility returns the following codes as defined in ttutillib.h
.
Code | Description |
---|---|
TTUTIL_SUCCESS | Returned upon success. |
TTUTIL_INVALID_HANDLE | Returned if an invalid utility library handle is specified. |
Example
This example retrieves the error and warning count information after calling ttDestroyDataStore
for the DSN named payroll
.
Notes
Each of the TimesTen utility library functions can potentially generate multiple errors and warnings for a single call from an application. To retrieve all of these errors and warnings, the application must make repeated calls to ttUtilGetError
until it returns TTUTIL_NODATA
.
See also
ttUtilAllocEnv
ttUtilFreeEnv
ttUtilGetError
Description
Rolls back the transaction indicated by the transaction ID that is specified. The intended user of ttXactIdRollback
is the ttXactAdmin
utility. However, programs that want to have a thread with the power to roll back the work of other threads must ensure that those threads call the ttXactIdGet
built-in procedure before beginning work and put the results into a location known to the thread that executes the rollback.
Required privilege
Requires ADMIN
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttUtilHandle | Specifies the TimesTen utility library environment handle allocated using ttUtilAllocEnv . |
connStr | const char** | The connection string of the database, which contains the transaction to be rolled back. |
xactId | const char* | The transaction ID for the transaction to be rolled back. |
Example
This example rolls back a transaction with the ID 3.4567 in the database named payroll
.
This chapter provides reference information for the Transaction Log API (XLA) described in Chapter 5, "XLA and TimesTen Event Management". It includes the following topics:
This section includes general information about XLA functions.
All of the XLA API functions described in this chapter return a value of type SQLRETURN
, which is defined by ODBC to have one of the following values:
SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_NO_DATA_FOUND
SQL_ERROR
See "Handling XLA errors" for information on handling XLA errors.
In the function descriptions:
OUT
. IN OUT
. Most routines in this API copy results to application buffers. Those few routines that produce pointers to buffers containing results are guaranteed to remain valid only until the next call with the same XLA handle.
Exceptions to this rule include the following.
ttXlaError
function that supplies diagnostic information. ttXlaNextUpdate
remain valid until the next call to ttXlaNextUpdate
. ttXlaConfigBuffer
, or ttXlaAcknowledge
in persistent mode, if the application must retain access to the buffers for a longer time, it must copy the information from the buffer returned by XLA to an application-owned buffer. Character string values in XLA are null- terminated, except for actual column values. Fixed-length CHAR
columns are space-padded to their full length. VARCHAR
columns have an explicit length encoded.
XLA uses the same data structures for both 32- and 64-bit platforms. The types SQLUINTEGER
and SQLUBIGINT
are used to refer to 32- and 64-bit integers unambiguously. Issues of alignment and padding are addressed by filling the type definition so that each SQLUINTEGER
value is on a four-byte boundary and each SQLUBIGINT
value is on an eight-byte boundary. For a description of storage requirements for other TimesTen data types, see "Understanding rows" in Oracle TimesTen In-Memory Database Operations Guide.
"Access control impact on XLA" introduces the effects of TimesTen access control features on XLA functionality. Any XLA functionality requires the system privilege XLA
.
As described in Chapter 5, "XLA and TimesTen Event Management", TimesTen XLA can be used to detect updates on a database or as a toolkit to build your own replication solution. You can initialize XLA in either persistent or non-persistent mode, but use of non-persistent mode is discouraged.
This section categorizes the XLA functions based on their use and provides a brief description of each function. It includes the following categories:
The following table lists core XLA functions that can be used by any XLA application:
Function | Description |
---|---|
ttXlaClose | Closes the XLA handle opened by ttXlaPersistOpen . |
ttXlaConvertCharType | Converts column data into the connection character set. |
ttXlaError | Retrieves error information. |
ttXlaErrorRestart | Resets error stack information. |
ttXlaGetColumnInfo | Retrieves information about all the columns in the table. |
ttXlaGetTableInfo | Retrieves information about a table. |
ttXlaGetVersion | Retrieves the current version of XLA. |
ttXlaNextUpdate | Retrieves a batch of updates from TimesTen. |
ttXlaNextUpdateWait | Retrieves a batch of updates from TimesTen. Will wait for a specified time if no updates are available in the transaction log. |
ttXlaTableByName | Finds the system and user table identifiers for a table given the table's owner and name. |
ttXlaTableStatus | Sets and retrieves XLA status for a table. |
ttXlaSetVersion | Sets the XLA version to be used. |
ttXlaTableVersionVerify | Checks whether the cached table definitions are compatible with the XLA record being processed. |
ttXlaVersionColumnInfo | Retrieves information about the columns in a table for which a change update record must be processed. |
ttXlaVersionCompare | Compares two XLA versions. |
See "Writing an XLA event-handler application" for a discussion on how to use most of these functions.
The following table lists data type conversion functions that can be used by any XLA application:
Function | Description |
---|---|
ttXlaDateToODBCCType | Converts a TTXLA_DATE_TT value to an ODBC C value usable by applications. |
ttXlaDecimalToCString | Converts a TTXLA_DECIMAL_TT value to a character string usable by applications. |
ttXlaNumberToBigInt | Converts a TTXLA_NUMBER value to a SQLBIGINT C value usable by applications. |
ttXlaNumberToCString | Converts a TTXLA_NUMBER value to a character string usable by applications. |
ttXlaNumberToDouble | Converts a TTXLA_NUMBER value to a long floating point number value usable by applications. |
ttXlaNumberToInt | Converts a TTXLA_NUMBER value to an integer usable by applications. |
ttXlaNumberToSmallInt | Converts a TTXLA_NUMBER value to a SQLSMALLINT C value usable by applications. |
ttXlaNumberToTinyInt | Converts a TTXLA_NUMBER value to a SQLCHAR C value usable by applications. |
ttXlaNumberToUInt | Converts a TTXLA_NUMBER value to an unsigned integer usable by applications. |
ttXlaOraDateToODBCTimeStamp | Converts a TTXLA_DATE value to an ODBC timestamp usable by applications. |
ttXlaOraTimeStampToODBCTimeStamp | Converts a TTXLA_TIMESTAMP value to an ODBC timestamp usable by applications. |
ttXlaRowidToCString | Converts a ROWID value to a character string value usable by applications. |
ttXlaTimeToODBCCType | Converts a TTXLA_TIME value to an ODBC C value usable by applications. |
ttXlaTimeStampToODBCCType | Converts a TTXLA_TIMESTAMP_TT value to an ODBC C value usable by applications. |
For more information about XLA data types, see "About XLA data types".
The following table lists the functions that are exclusive to operating XLA in persistent mode:
Function | Description |
---|---|
ttXlaPersistOpen | Initializes a handle to a database to access the transaction log in persistent mode. |
ttXlaAcknowledge | Acknowledges receipt of one or more transaction update records from the transaction log. |
ttXlaDeleteBookmark | Deletes a transaction log bookmark. |
ttXlaGetLSN | Retrieves the log record identifier of the current bookmark for a database. |
ttXlaSetLSN | Sets the log record identifier of the current bookmark for a database. |
See "Writing an XLA event-handler application" for a discussion on how to use these functions.
Note: TimesTen recommends using XLA in persistent mode. |
The following table lists the functions that are exclusive to operating XLA in non-persistent mode:
Function | Description |
---|---|
ttXlaOpenTimesTen | Initializes a handle to a database to access the transaction log in non-persistent mode. |
ttXlaConfigBuffer | Sets the size of the XLA staging buffer. |
ttXlaStatus | Retrieves the current XLA status. |
ttXlaResetStatus | Resets all the XLA statistics counters. |
The following table lists the functions that are exclusive to using XLA as a replication mechanism include the following.
Function | Description |
---|---|
ttXlaApply | Applies the update to the database associated with the XLA handle. |
ttXlaTableCheck | Verifies that the named table in the table description received from the sending database is compatible with the receiving database. |
ttXlaLookup | Looks for an update record for a table with a specific key value. |
ttXlaRollback | Rolls back a transaction. |
ttXlaCommit | Commits a transaction. |
ttXlaGenerateSQL | Generates a SQL statement that expresses the effect of an update record. |
See "Using XLA as a replication mechanism" for a discussion on how to use these functions.
This section provides reference information for each XLA function. Functions are listed in alphabetical order.
Description
This function is used in persistent mode to acknowledge that one or more records have been read from the transaction log by the ttXlaNextUpdate
or ttXlaNextUpdateWait
function.
After you make this call, the bookmark is reset so that you cannot reread any of the previously returned records. Call ttXlaAcknowledge
only when messages have been completely processed.
Notes:
|
Note that ttXlaAcknowledge
is an expensive operation that should be used only as necessary. Calling ttXlaAcknowledge
more than once per reading of the transaction log file does not reduce the volume of the transaction log since XLA only purges transaction logs a file at a time. To detect when a new transaction log file is generated, you can find out which log file a bookmark is in by examining the purgeLSN
(represented by the PURGELSNHIGH
and PURGELSNLOW
values) for the bookmark in the system table SYS.TRANSACTION_LOG_API
. You can then call ttXlaAcknowledge
to purge the old transaction log files. (Note that you must have ADMIN
or SELECT ANY TABLE
privilege to view this table.)
The second purpose of ttXlaAcknowledge
is to ensure that the XLA application does not see the acknowledged records if it were to connect to a previously used bookmark by calling the ttXlaPersistOpen
function with the XLAREUSE
option. If you intend to reuse a bookmark, call ttXlaAcknowledge
to reset the bookmark position to the current record before calling ttXlaClose
.
See "Retrieving update records from the transaction log" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
See also
ttXlaNextUpdate
ttXlaNextUpdateWait
Description
Applies an update to the database associated with the transaction log handle. The return value indicates whether the update was successful. The return also shows if the update encountered a persistent problem. (To see whether the update encountered a transient problem such as a deadlock or timeout, you must call ttXlaError
and check the error code.)
If the ttXlaUpdateDesc_t
record is a transaction commit, the underlying database transaction is committed. No other transaction commits are performed by ttXlaApply
. If the parameter test
is true, the "old values" in the update description are compared against the current contents of the database for record updates and deletions. If the old value in the update description does not match the corresponding row in the database, this function rejects the update and returns an sb_ErrXlaTupleMismatch
error.
See "Using XLA as a replication mechanism" for a discussion about using this function.
Note: ttXlaApply cannot be used if the table definition was updated since it was originally written to the transaction log. Unique key and foreign key constraints are checked at the row level rather than at the statement level. |
Required privilege
Requires the system privilege ADMIN
.
Additional privileges may be required on the target database for the ttXlaApply
operation. For example, to apply a CREATETAB
(create table) record to the target database, you must have CREATE TABLE
or CREATE ANY TABLE
privilege, as appropriate.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
record | ttXlaUpdateDesc_t* | Transaction to generate SQL statement. |
test | SQLINTEGER | Test for old values:
|
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
If test
is 1 and ttXlaApply
detects an update conflict, an sb_ErrXlaTupleMismatch
error is returned.
Example
This example applies an update to a database without testing for the previous value of the existing record:
Note
When calling ttXlaApply
, it is possible for the update to timeout or deadlock with concurrent transactions. In such cases, it is the application's responsibility to roll the transaction back and reapply the updates.
See also
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL
Description
Closes an XLA handle that was opened by ttXlaPersistOpen
. See "Terminating an XLA application" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The ODBC handle for the database. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
To close the XLA handle opened in the previous example, use the following call:
See also
ttXlaPersistOpen
Description
Commits the current transaction being applied on the transaction log handle. This routine commits the transaction regardless of whether the transaction has completed. You can call this routine to respond to transient errors (timeout or deadlock) reported by ttXlaApply
, which applies the current transaction if it does not encounter an error.
See "Handling timeout and deadlock errors" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
See also
ttXlaApply
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL
Description
This function is valid only when XLA is in non-persistent mode (which is generally discouraged).
You can use the ttXlaConfigBuffer
function to both set and get the size of the XLA staging buffer, which is where XLA stages the update records obtained from the transaction log and makes them available to be read by the application.
To first set the size of the staging buffer, specify a value for the newSize
parameter and a null value for the oldSize
parameter. The new size of the staging buffer is retrieved from *newSize
. A size of zero indicates no staging buffer should be allocated.
To change the size of the staging buffer, specify a value for newSize
and provide an oldSize
parameter. Upon return, *oldSize
contains the previous size of the staging buffer, or 0 if the size had not been set.
To retrieve but not change the current size of the staging buffer, specify a null value for newSize
. The current size of the staging buffer is returned in *oldSize
.
When choosing the size of your staging buffer, consider that if the buffer is too small, TimesTen updates will exhaust the buffer, causing further updates to be rejected. Conversely, over-allocating space for the buffer wastes memory.
After setting the size of your staging buffer, you can resize it at any time. However, resizing may result in copying the current buffer and therefore incurring substantial performance penalties.
Changes to the staging buffer size are carried out immediately. When the buffer is resized, records that were returned by previous calls to ttXlaNextUpdate
or ttXlaNextUpdateWait
become invalid.
Only one buffer may be configured for a database. When the buffer is resized, values returned by previous calls on ttXlaNextUpdate
become invalid.
Notes:
|
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
oldSize | out SQLUBIGINT* | Current size of the staging buffer. |
newSize | SQLUBIGINT* | New size of the staging buffer. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
Assume the following declarations for our examples:
To find the current size of the staging buffer without changing the size:
To set the size of the staging buffer to 400,000 bytes:
To change the size of the staging buffer to 400,000 bytes and retrieve the previous size:
To delete the staging buffer:
Note
Buffer resizing may copy the current buffer and therefore incur substantial performance penalties. If a smaller size is specified for the staging buffer and the current contents will not fit in the smaller size, the staging buffer size is not changed and an error is returned.
See also
ttXlaOpenTimesTen
ttXlaStatus
ttXlaResetStatus
Description
Converts the column data indicated by the colinfo
and tup
parameters into the connection character set associated with the transaction log handle and places the result in a buffer.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
colinfo | ttXlaColDesc_t* | A pointer to the buffer that holds the column descriptions. |
tup | void* | The data that is to be converted. |
buf | void* | Location where the converted data is placed. |
buflen | size_t | Size of the buffer where the converted data is placed. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Description
Converts a TTXLA_DATE_TT
value to an ODBC C value usable by applications. See "Converting complex data types" for a discussion about using this function.
Call this function only on a column of data type TTXLA_DATE_TT
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the date value returned from the transaction log. |
returnData | out DATE_STRUCT* | Pointer to storage allocated to hold the converted date. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Description
Converts a TTXLA_DECIMAL_TT
value to a string usable by applications. The scale and precision values can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function. The scale
parameter specifies the maximum number of digits after the decimal point. If the decimal value is larger than 1, the precision
parameter should specify the maximum number of digits before and after the decimal point. If the decimal value is less than 1, precision
equals scale
.
Call this function only for a column of type TTXLA_DECIMAL_TT
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
See "Converting complex data types" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the decimal value returned from the transaction log. |
returnData | out char* | Pointer to storage allocated to hold the converted string. |
precision | SQLSMALLINT | If fromData is larger than 1, precision is the maximum number of digits before and after the decimal point. If fromData is less than 1, precision equals scale. |
scale | SQLSMALLINT | Maximum number of digits after the decimal point. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example assumes you have obtained the offset
, precision
, and scale
values from a ttXlaColDesc_t
structure and used the offset to obtain a decimal value, pColVal
, in a row returned in a transaction log record.
Description
Deletes the bookmark associated with the specified transaction log handle. After the bookmark has been deleted, it is no longer accessible and its identifier may be reused for another bookmark. The deleted bookmark is no longer associated with the database handle and the effect is the same as having opened the persistent connection with the XLANONE
option.
If the bookmark is in use, it cannot be deleted until it is no longer in use.
See "Deleting bookmarks" for a discussion about using this function.
Notes:
|
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
Delete the bookmark for xlahandle
:
See also
ttXlaPersistOpen
ttXlaGetLSN
ttXlaSetLSN
Description
Reports details of any errors encountered from the previous call on the given transaction log handle. Multiple errors may be returned through subsequent calls to ttXlaError
. The error stack is cleared following each call to a function other than ttXlaError
itself and ttXlaErrorRestart
.
See "Handling XLA errors" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
errCode | out SQLINTEGER* | The code of the error message to be copied into the errMessage buffer. |
errMessage | out char* | Buffer to hold the error text. |
maxLen | SQLINTEGER | The maximum length of the errMessage buffer. |
retLen | out SQLINTEGER* | The actual size of the error message. |
Returns
SQL_SUCCESS
if error information is returned and SQL_NO_DATA_FOUND
if no more errors are found in the error stack. If the errMessage
buffer is not large enough, ttXlaError
returns SQL_SUCCESS_WITH_INFO
.
Example
There can be multiple errors on the error stack. This example shows how to read them all.
Note
If you use multiple threads to access a TimesTen transaction log over a single XLA connection, TimesTen creates a latch to control concurrent access. If for some reason the latch cannot be acquired by a thread, the XLA function returns SQL_INVALID_HANDLE
.
See also
Description
Resets the error stack so that an application can reread the errors. See "Handling XLA errors" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
See also
Description
Generates a SQL DML or DDL statement that expresses the effect of the update record. The generated statement is not applied to any database. Instead, the statement is returned in the given buffer, whose maximum size is specified by the maxLen
parameter. The actual size of the buffer is returned in actualLen
. For update and delete records, ttXlaGenerateSQL
requires a primary key or a unique index on a non-nullable column to generate the correct SQL.
The generated SQL statement is encoded in the connection character set that is associated with the ODBC connection of the XLA handle.
Also see "Replicating updates to a non-TimesTen database".
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
record | ttXlaUpdateDesc_t* | The record to be translated into SQL. |
buffer | out char* | Location of the translated SQL statement. |
maxLen | SQLINTEGER | The maximum length of the buffer, in bytes. |
actualLen | out SQLINTEGER* | The actual length of the buffer, in bytes. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example generates the text of a SQL statement that is equivalent to the UPDATE
expressed by an update record:
Note
The ttXlaGenerateSQL
function cannot generate SQL statements for update records associated with a table that has been dropped or altered since the record was generated.
See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaTableCheck
Description
Retrieves information about all the columns in the table. Normally, the output parameter for number of columns returned, nreturned
, is set to the number of columns returned in colinfo
. The systemTableID
or userTableID
parameter describes the desired table. This call is serialized with respect to changes in the table definition.
See "Obtaining column descriptions" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
systemTableID | SQLUBIGINT | System ID of table. |
userTableID | SQLUBIGINT | User ID of table. |
colinfo | out ttXlaColDesc_t* | A pointer to the buffer large enough to hold a separate description for maxcols columns. |
maxcols | SQLINTEGER | The maximum number of columns that can be stored in the colInfo buffer. If the table contains more than maxcols columns, an error is returned. |
nreturned | out SQLINTEGER* | The number of columns returned. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
For this example, assume the following definitions:
To get the description of up to 20 columns using the system table identifier, issue the following call:
Likewise, the user table identifier can be used:
See "ttXlaColDesc_t" for details and an example on how to access the column data in a returned row.
See also
ttXlaGetTableInfo
ttXlaDecimalToCString
ttXlaDateToODBCCType
ttXlaTimeToODBCCType
ttXlaTimeStampToODBCCType
Description
Returns the Current Read log record identifier for the connection specified by the transaction log handle. See "How bookmarks work" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
LSN | out tt_XlaLsn_t* | The Current Read log record identifier for the handle. |
Note: Be aware thattt_XlaLsn_t , particularly the logFile and logOffset fields, is used differently than in earlier releases, referring to log record identifiers rather than sequentially increasing LSNs. See the note in "tt_XlaLsn_t". |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example returns the Current Read log record identifier, CurLSN
.
See also
Description
Retrieves information about the rows in the table (refer to the description of the ttXlaTblDesc_t
data type.) If the userTableID
parameter is nonzero, then it is used to locate the desired table. Otherwise, the systemTableID
value is used to locate the table. If both are zero, an error is returned. The description is stored in the output parameter tblinfo
. This call is serialized with respect to changes in the table definition.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
systemTableID | SQLUBIGINT | System table ID. |
userTableID | SQLUBIGINT | User table ID. |
tblinfo | out ttXlaTblDesc_t* | Row information. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
For this example, assume the following definitions:
To get table information using a system identifier, find the system table identifier using ttXlaTableByName
or other means and issue the following call:
Alternatively, the table information can be retrieved using a user table identifier:
See also
Description
This function is used in combination with ttXlaSetVersion
to ensure XLA applications written for older versions of XLA operate on a new version. The configured version is typically the older version, while the actual version is the newer one.
The function retrieves the currently configured XLA version and stores it into configuredVersion
parameter. The actual version of the underlying XLA is stored in actualVersion
. Due to calls on ttXlaSetVersion
, the results in configuredVersion
may vary from one call to the next, but the results in actualVersion
remain the same.
See "XLA persistent mode" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
configuredVersion | out ttXlaVersion_t* | The configured version of XLA. |
actualVersion | out ttXlaVersion_t* | The actual version of XLA. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
Assume the following directions for this example:
To determine the current version configuration, use the following call:
See also
ttXlaVersionCompare
ttXlaSetVersion
Description
This function looks for a record in the given table with key values according to the keys
parameter. The formats of the keys
and result
records are the same as for ordinary rows. This function requires a primary key on the underlying table.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
table | ttXlaTblDesc_t* | The table to search. |
keys | void* | A record in the defined structure for the table. Only those columns of the keys record that are part of the primary key for the table are examined. |
result | out void* | The located record is copied into the result. If no record exists with the matching key columns, an error is returned. |
maxsize | SQLINTEGER | The size of the largest record that can fit into the result buffer. |
retsize | out SQLINTEGER* | The actual size of the record. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example looks up a record given a pair of integer key values. Before this call, table
should describe the desired table and keybuffer
contains a record with the key columns set.
See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaTableCheck
ttXlaGenerateSQL
Description
This function fetches up to a specified maximum number of update records from the transaction log and returns the records associated with committed transactions to a specified buffer. The actual number of returned records is reported in the nreturned
output parameter. This function requires a bookmark to be present in the database and to be associated with the connection used by the function.
When operating the transaction log in persistent mode, each call to ttXlaNextUpdate
resets the bookmark to the last record read to enable the next call to ttXlaNextUpdate
to return the next list of records.
See "Retrieving update records from the transaction log" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
records | out ttXlaUpdateDesc_t*** | The buffer to hold the completed transaction records. |
maxrecords | SQLINTEGER | Maximum number of records to be fetched. |
nreturned | out SQLINTEGER* | The actual number of returned records, where 0 is returned if no update data is available. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example retrieves up to 100 records and describes a loop in which each record can be processed:
Notes
Updates are generated for all data definition statements, regardless of tracking status. Updates are generated for data update operations for all tracked tables associated with the bookmark.
In addition, updates are generated for certain special operations, including assigning application-level identifiers for tables and columns and changing a table's tracking status.
See also
ttXlaNextUpdateWait
ttXlaAcknowledge
Description
This is similar to the ttXlaNextUpdate
function, with the addition of a seconds
parameter that specifies the number of seconds to wait if no records are available in the transaction log. The actual number of seconds of wait time can be up to two seconds more than the specified seconds
value.
Also see "Retrieving update records from the transaction log".
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
records | out ttXlaUpdateDesc_t*** | The buffer to hold the completed transaction records. |
maxrecords | SQLINTEGER | The maximum number of records to be fetched. Note: The largest effective value is 1000 records. |
nreturned | out SQLINTEGER* | The actual number of records returned, where 0 is returned if no update data is available within the seconds wait period. |
seconds | SQLINTEGER | Number of seconds to wait if the log is empty. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example retrieves up to 100 records and will wait for up to 60 seconds if there are no records available in the transaction log.
See also
ttXlaNextUpdate
ttXlaAcknowledge
Description
Converts a TTXLA_NUMBER
value to a SQLBIGINT
value usable by an application.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
bint | SQLBIGINT* | The SQLBIGINT value converted from the XLA number value. |
Returns
SQL_SUCCESS
if successful. Otherwise, use ttXlaError
to report an error.
Description
Converts a TTXLA_NUMBER
value to a character string usable by an application.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
buf | char* | Location where the converted data is placed. |
buflen | int | Size of the buffer where the converted data is placed. |
reslen | int* | If buflen >= reslen , then reslen is the number of bytes that were written. If |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Description
Converts a TTXLA_NUMBER
value to a long floating point number value usable by applications.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
dbl | double* | The long floating point number value converted from the XLA number value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Converts a TTXLA_NUMBER
value to a SQLINTEGER
value usable by an application.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
ival | SQLINTEGER* | The SQLINTEGER value converted from the XLA number value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Converts a TTXLA_NUMBER
value to a SQLSMALLINT
value usable by an application.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
smint | SQLSMALLINT* | The SQLSMALLINT value converted from the XLA number value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Converts a TTXLA_NUMBER
value to a tiny integer value usable by an application.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
tiny | SQLCHAR* | The tiny integer value converted from the XLA number value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Converts a TTXLA_NUMBER
value to an unsigned integer value usable by an application.
Call this function only for a column of type TTXLA_NUMBER
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
ival | SQLUINTEGER* | The integer value converted from the XLA number value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Initializes a transaction log handle to a database to enable access to the transaction log in non-persistent mode. The hdbc
parameter is an ODBC connection handle to a database that will be used to apply updates. Do not issue any other ODBC calls against this connection until it is closed by ttXlaClose
. The handle
parameter is initialized by this call and must be provided on each subsequent call that applies updates.
In non-persistent mode, only one application at a time can read from the transaction log. See "Initializing XLA in non-persistent mode" for related discussion.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
hdbc | SQLHDBC | The ODBC handle for the database. |
handle | out ttXlaHandle_h* | The transaction log handle for the database. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
The following example opens a transaction log in non-persistent mode and returns a handle named xlahandle
for the ODBC connection:
Note
Use of multiple threads over the same XLA handle is not recommended by TimesTen. Multithreaded applications should use ttXlaPersistOpen
to create a separate XLA handle for each thread. If multiple threads must use the same XLA handle, use a mutex
to serialize thread access to that XLA handle so that only one thread can execute an XLA operation at a time.
See also
ttXlaConfigBuffer
ttXlaStatus
ttXlaResetStatus
ttXlaClose
Description
Converts a TTXLA_DATE
value to an ODBC timestamp.
Call this function only for a column of type TTXLA_DATE
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
returnData | TIMESTAMP_STRUCT* | An ODBC timestamp value converted from the XLA Oracle DATE value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Converts a TTXLA_TIMESTAMP
value to an ODBC timestamp.
Call this function only for a column of type TTXLA_TIMESTAMP
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Syntax
Required privilege
Requires the system privilege XLA
.
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the number value returned from the transaction log. |
returnData | TIMESTAMP_STRUCT* | An ODBC timestamp value converted from the XLA Oracle TIMESTAMP value. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report an error.
Description
Initializes a transaction log handle to a database to enable access to the transaction log in persistent mode. The hdbc
parameter is an ODBC connection handle to a database. Create only one XLA handle for each ODBC connection. After you have created an XLA handle on an ODBC connection, do not issue any other ODBC calls over the ODBC connection until it is closed by ttXlaClose
.
The tag
is a string that identifies the persistent bookmark (see "About XLA bookmarks"). The tag
can identify a new bookmark, either non-replicated or replicated, or one that exists in the system, as specified by the options
parameter. The handle
parameter is initialized by this call and must be provided on each subsequent call to XLA.
Some actions can be done without a bookmark. When performing these types of actions, you can use the XLANONE
option to access the transaction log without a bookmark. Actions that cannot be done without a bookmark are the following:
In persistent mode, multiple applications can concurrently read from the transaction log. See "Initializing XLA and obtaining an XLA handle" for a discussion about using this function.
When this function is successful, XLA sets the autocommit mode to off.
If this function fails but still creates a handle, the handle must be closed to prevent memory leaks.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
hdbc | SQLHDBC | The ODBC handle for the database. |
tag | SQLCHAR* | The identifier for the persistent bookmark. Can be null, in which case options should be set to XLANONE . Maximum allowed length is 31. |
options | SQLUINTEGER | Bookmark options:
|
handle | out ttXlaHandle_h* | The transaction log handle returned by this call. Space is allocated by this call. User should call ttXlaClose to free space. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example opens a transaction log in persistent mode, returns a handle named xlahandle
, and creates a new non-replicated bookmark named mybookmark
:
Alternatively, create a new replicated bookmark as follows:
Note
Multithreaded applications should create a separate XLA handle for each thread. If multiple threads must use the same XLA handle, use a mutex
to serialize thread access to that XLA handle so that only one thread can execute an XLA operation at a time.
See also
ttXlaClose
ttXlaDeleteBookmark
ttXlaGetLSN
ttXlaSetLSN
Description
This function is valid only when XLA is in non-persistent mode (which is generally discouraged).
Resets all the XLA status counters reported in the ttXlaStatus_t
structure returned by ttXlaStatus
. Currently, only the xlabufminfree
value is reset.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
The following example resets the XLA status counters:
See also
ttXlaOpenTimesTen
ttXlaConfigBuffer
ttXlaStatus
Description
Rolls back the current transaction being applied on the transaction log handle. You can call this routine to respond to transient errors (timeout or deadlock) reported by ttXlaApply
.
See "Handling timeout and deadlock errors" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
See Also
ttXlaApply
ttXlaCommit
ttXlaLookup
ttXlaTableCheck
ttXlaGenerateSQL
Description
Converts a ROWID
value to a string value usable by applications.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the ROWID value returned from the transaction log. |
buf | char* | Pointer to storage allocated to hold the converted string. |
buflen | int | Length of the converted string. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
Description
Sets the Current Read log record identifier for the database specified by the transaction handle. The specified LSN
value should be returned from ttXlaGetLSN
. It cannot be a user-created value and cannot be earlier than the current bookmark Initial Read log record identifier.
See "About XLA bookmarks" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
LSN | tt_XlaLsn_t* | The new log record identifier for the handle. |
Note: Be aware thattt_XlaLsn_t , particularly the logFile and logOffset fields, is used differently than in earlier releases, referring to log record identifiers rather than sequentially increasing LSNs. See the note in "tt_XlaLsn_t". |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example sets the Current Read log record identifier to CurLSN
.
See also
Description
Sets the version of XLA to be used by the application. This version must be either the same as the version received from ttXlaGetVersion
or from an earlier version.
See "XLA persistent mode" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
version | ttXlaVersion_t* | The desired version of XLA. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
To set the configured version to the value specified in requestedVersion
, issue the following call:
See also
ttXlaVersionCompare
ttXlaGetVersion
Description
This function is valid only when operating XLA in non-persistent mode (which is generally discouraged).
Retrieves status information on the transaction log buffer and your XLA staging buffer and stores it in the *status
parameter, which is of data type ttXlaStatus_t
. This data structure includes the following:
The ttXlaStatus_t ->
xlabufminfree
value is the minimum number of free bytes in the transaction log buffer and is a useful statistic if you want to recalculate the optimum size of the staging buffer. As the transaction log buffer expands and contracts, xlabufminfree
may no longer accurately reflect the minimum space. You can call ttXlaResetStatus
, generally used to reset the value of the ttXlaStatus_t ->
xlabufminfree
field, to set xlabufminfree
to NULL
. Then, at some later time, you can call ttXlaStatus
to obtain a new minimum value before calculating the optimum newSize
value to pass to the ttXlaConfigBuffer
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
status | out ttXlaStatus_t* | The current XLA status. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example gets the current XLA status:
See also
ttXlaOpenTimesTen
ttXlaConfigBuffer
ttXlaResetStatus
Description
Finds the system and user table identifiers for a table or materialized view by providing the owner and name of the table or view. See "Specifying which tables to monitor for updates" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
owner | char* | The owner for the table or view as a string. |
name | char* | The name of the table or view. |
sysTableID | out SQLUBIGINT* | Where the system table ID is returned. |
userTableID | out SQLUBIGINT* | Where the user table ID is returned. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
To get the system and user table IDs associated with the table PURCHASING.INVOICES
, use the following call:
See also
Description
When using XLA as a replication mechanism, this function verifies that the named table in the ttXlaTblDesc_t
structure received from a master database is compatible with a subscriber database or database associated with the transaction log handle. The compat
parameter indicates whether the tables are compatible.
See "Checking table compatibility between databases" for a discussion about using this function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
table | ttXlaTblDesc_t* | A table description. |
columns | ttXlaColDesc_t* | Column description for the table. |
compat | out SQLINTEGER* | Returns compatibility information.
|
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example checks the compatibility of a table:
See also
ttXlaApply
ttXlaCommit
ttXlaRollback
ttXlaLookup
ttXlaGenerateSQL
Description
Returns the update status for a table. Identify the table by specifying either a user ID (userTableID
) or a system ID (systemTableID
). If userTableID
is nonzero, it is used to locate the table. Otherwise systemTableID
is used. If both are zero, an error is returned.
Specifying a value for newstatus
sets the update status to *newstatus
. A nonzero status means the table specified by systemTableID
is available through XLA. Zero means the table is not tracked. Changes to table update status are effective immediately.
Updates to a table are tracked only if update tracking was enabled for the table at the time the update was performed. This call is serialized with respect to updates to the underlying table. Therefore, transactions that update the table run either completely before or completely after the change to table status.
To use ttXlaTableStatus
, the user must be connected to a bookmark in persistent mode. The function reports inserts, updates, and deletes only to the bookmark that has subscribed to the table. It reports DDL events to all bookmarks. DDL events include CREATAB
, DROPTAB
, CREAIND
, DROPIND
, CREATVIEW
, DROPVIEW
, CREATSEQ
, DROPSEQ
, CREATSYN
, DROPSYN
, ADDCOLS
, DRPCOLS
, TRUNCATE
, SETTBL1
, and SETCOL1
transactions.
See "Specifying which tables to monitor for updates" for a discussion about using this function.
Note: DML updates to a table being tracked through XLA will not preventttXlaTableStatus from running. However, DDL updates to the table being tracked, which take a lock on SYS.TABLES , will delay ttXlaTableStatus from running in serializable isolation against SYS.TABLES . |
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
systemTableID | SQLUBIGINT | System ID of table. |
userTableID | SQLUBIGINT | User ID of table. |
oldstatus | out SQLINTEGER* | XLA old status:
|
newstatus | SQLINTEGER* | XLA new status:
|
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
The following examples assume that the system or user table identifiers are found using ttXlaTableByName
or some other means.
Assume these declarations for the example:
To find the status of a table given its system table identifier, use the following call:
The currentStatus
value will be nonzero if update tracking for the table is enabled, or zero otherwise.
To enable update tracking for a table given a system table identifier, set the requested status to 1 as follows:
You can set a new update tracking status and retrieve the current status in a single call, as in the following example:
The above call enables update tracking for a table by system table identifier and retrieves the prior update tracking status in the variable currentStatus
.
All of these examples can be done using user table identifiers as well. To retrieve the update tracking status of a table through its user table identifier, use the following call:
See also
Description
Converts a TTXLA_TIME
value to an ODBC C value usable by applications. See "Converting complex data types" for a discussion about using this function.
Call this function only for a column of type TTXLA_TIME
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the time value returned from the transaction log. |
returnData | out TIME_STRUCT* | Pointer to storage allocated to hold the converted time. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
This example assumes you have used the offset
value returned in a ttXlaColDesc_t
structure to obtain a time value, pColVal
, from a row returned in a transaction log record.
Description
Converts a TTXLA_TIMSTAMP_TT
value to an ODBC C value usable by applications. See "Converting complex data types" for a discussion about using this function.
Call this function only for a column of type TTXLA_TIMSTAMP_TT
. The data type can be obtained from the ttXlaColDesc_t
structure returned by the ttXlaGetColumnInfo
function.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
fromData | void* | Pointer to the timestamp value returned from the transaction log. |
returnData | out TIMESTAMP_STRUCT* | Pointer to storage allocated to hold the converted timestamp. |
Returns
SQL_SUCCESS
if successful. Otherwise, use ttXlaError
to report the error.
Example
This example assumes you have used the offset
value returned in a ttXlaColDesc_t
structure to obtain a timestamp value, pColVal
, from a row returned in a transaction log record.
Description
Verifies that the cached table definitions are compatible with the XLA record being processed. Table definitions change only when the ALTER TABLE
statement is used to add or remove columns.
You can monitor the XLA stream for XLA records of transaction type ADDCOLS
and DRPCOLS
to avoid the overhead of using this function. When an XLA record of transaction type ADDCOLS
or DROPCOLS
is encountered, refresh the table and column definitions. See "Inspecting record headers and locating row addresses" for information about monitoring XLA records for transaction type.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
table | ttXlaTblVerDesc_t* | A cached table description. |
record | ttXlaUpdateDesc_t* | The XLA record that must be processed. |
compat | out SQLINTEGER* | Returns compatibility information.
|
Returns
SQL_SUCCESS
if cached table definition is compatible with the XLA record being processed. Otherwise, use ttXlaError
to report the error.
Example
This example checks the compatibility of a table.
See also
ttXlaVersionColumnInfo
ttXlaVersionTableInfo
Description
Retrieves information about the columns in a table for which a change update XLA record must be processed.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
record | ttXlaUpdateDesc_t* | The XLA record that must be processed. |
colinfo | out ttXlaColDesc_t* | A pointer to the buffer large enough to hold a description for maxcols columns. |
maxcols | SQLINTEGER | The maximum number of columns the table can have. If the table contains more than maxcols columns, an error is returned. |
nreturned | out SQLINTEGER* | The number of columns returned. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
For this example, assume the following definitions:
The following call retrieves the description of up to 20 columns:
Description
Compares two XLA versions and returns the result.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
version1 | ttXlaVersion_t* | The version of XLA you want to compare with version2 . |
version2 | ttXlaVersion_t* | The version of XLA you want to compare with version1 . |
comparison | out SQLINTEGER* | The comparison result.
|
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
To compare the configured
version against the actual
version of XLA, issue the following call:
Notes
When connecting two systems with XLA-based replication, use the following protocol:
ttXlaGetVersion
. Send this version information to the standby site. ttXlaGetVersion
. Use ttXlaVersionCompare
to determine which version is earlier. The earlier version number must be used to ensure proper operation between the two sites. Use ttXlaSetVersion
to specify the version of the interface to use at the standby site. Send the earlier version number back to the primary site. ttXlaSetVersion
to specify the version of XLA to use. See also
ttXlaGetVersion
ttXlaSetVersion
Description
Retrieves the table definition for the change update record that must be processed. The table description is stored in the tableinfo
output parameter.
Required privilege
Requires the system privilege XLA
.
Syntax
Parameters
Parameter | Type | Description |
---|---|---|
handle | ttXlaHandle_h | The transaction log handle for the database. |
record | ttXlaUpdateDesc_t* | The XLA record that must be processed. |
tableinfo | out ttXlaTblVerDesc_t* | Information about table definition. |
Returns
SQL_SUCCESS
if call is successful. Otherwise, use ttXlaError
to report the error.
Example
For this example, assume the following definitions:
The following call retrieves a table definition:
This section describes the C data structures used by the XLA functions described in this chapter. These structures are defined in the following file:
install_dir
/include/tt_xla.h
You must include this file when building your XLA application.
Table 9-1 Summary of C data structures
C data structure | Description |
---|---|
| Describes the record type. Used at the beginning of records returned by XLA. |
| Describes an update record. |
| Describes XLA status information returned by |
| Describes XLA version information returned by |
| Describes table information returned by |
| Describes table version returned by |
| Describes table column information returned by |
| Description of a log record identifier used by bookmarks. This structure is used by the |
| Describes a log record identifier used by an XLA bookmark. |
Most C data structures begin with a standard header that describes the data record type and length. The standard header has the type ttXlaNodeHdr_t
.
This header includes the following fields.
Field | Type | Description |
---|---|---|
nodeType | char | The type of record:
|
byteOrder | char | Byte order of the record.
|
length | SQLUINTEGER | Total length of record, including all attachments. |
This structure describes an update operation to a single row (or tuple) in the database. Each update record returned by a ttXlaNextUpdate
or ttXlaNextUpdateWait
function begins with a fixed length ttXlaUpdateDesc_t
header followed by zero to two rows from the database. The row data differs depending on the record type reported in the ttXlaUpdateDesc_t
header:
COMMITONLY
record. INSERTTUP
, DELETETUP
, or SETREPL
records. UPDATETUP
record to report the row data before and after the update, respectively. CREATAB
, DROPTAB
, CREAIND
, DROPIND
, CREATVIEW
, DROPVIEW
, CREATSEQ
, DROPSEQ
, CREATSYN
, DROPSYN
, ADDCOLS
, DRPCOLS
, SETTBLI
, and SETCOLI
records, which are described in "Special update data formats". Note: SETREPL , SETTBLI and SETCOLI records are not returned in persistent mode. |
The flags
field is a bit-map of special options for the record update.
The connID
field identifies the ODBC connection handle that initiated the update. This value can be used to determine if updates came from the same connection.
A separate commit XLA record is generated when a call to the ttApplicationContext
procedure is not followed by an operation that generates an XLA record. See "Passing application context" for a description of the ttApplicationContext
procedure.
Note
XLA cannot receive notification of the following:
CREATE VIEW
or DROP VIEW
for a non-materialized view CREATE GLOBAL TEMPORARY TABLE
or DROP TABLE
for a temporary table The only XLA records that can be generated from an ALTER TABLE
operation are of the following types:
ADDCOLS
or DRPCOLS
when columns are added or dropped CREAIND
or DROPIND
when a unique attribute of a column is modified While sequence creates (CREATESEQ
) and drops (DROPSEQ
) are visible through XLA, sequence increments are not.
All deletes resulting from cascading deletes and aging are visible through XLA. The flags
value (discussed in the following table) indicates when deletes are due to cascading or aging.
The fields of the update header defined by ttXlaUpdateDesc_t
are as follows.
Field | Type | Description |
---|---|---|
header | ttXlaNodeHdr_t | Standard data header. |
type | SQLUSMALLINT | Record type:
|
flags | SQLUSMALLINT | Special options on record update:
If the value of a specific column is 0, it indicates that column does not have a default value. The defaults for all nonzero values are concatenated in a string and are presented in order, with the array value indicating the length of the default value. For example, three columns with defaults 1 of type Decimal values for each of these TT_UPDCOMMIT 1 TT_UPDFIRST 2 TT_UPDREPL 4 TT_UPDCOLS 8 TT_UPDDEFAULT 64 TT_CASCDEL 256 TT_AGING 512 |
contextOffset | SQLUINTEGER | Offset to application-provided context value. This value is 0 if there is no context. A nonzero value indicates the location of the context relative to the beginning of the XLA record. |
connID | SQLUBIGINT | Connection ID owning the transaction. |
sysTableID | SQLUBIGINT | System-provided identifier of the affected table. |
userTableID | SQLUBIGINT | Application-defined table ID of the affected table. |
tranID | SQLUBIGINT | Read-only, system-provided transaction identifier. |
LSN | tt_LSN_t | Transaction log record identifier of this operation, used for diagnostics. |
tuple1 | SQLUINTEGER | Length of first row (tuple), or zero. |
tuple2 | SQLUINTEGER | Length of second row (tuple), or zero. |
Note: Be aware thattt_LSN_t , particularly the logFile and logOffset fields, is used differently than in earlier releases, referring to log record identifiers rather than sequentially increasing LSNs. See the note in "tt_LSN_t". |
The data contained in an update record follows the ttXlaTblDesc_t
header. This section describes the data formats for the special update records related to specific SQL operations.
For a CREATE TABLE
operation, the special row value consists of the ttXlaTblDesc_t
record describing the new table, followed by the ttXlaColDesc_t
records that describe each column.
For an ALTER TABLE
operation, the special row value consists of a ttXlaDropTableTup_t
or ttXlaAddColumnTup_t
value, followed by a ttXlaColDesc_t
record that describes the column.
For a DROP TABLE
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
tblName | char(31) | Name of the dropped table. |
tblOwner | char(31) | Owner of the dropped table. |
For a TRUNCATE TABLE
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
tblName | char(31) | Name of the truncated table |
tblOwner | char(31) | Owner of the truncated table. |
For a CREATE INDEX
operation, the row value is as follows.
Field | Type | Description |
---|---|---|
tblName | char(31) | Name of the table on which the index is defined. |
tblOwner | char(31) | Owner of the table on which the index is defined. |
ixName | char(31) | Name of the new index. |
flag | char(31) | Index flag:
|
nixcols | SQLUINTEGER | Number of indexed columns. |
ixColsSys | SQLUINTEGER(16) | Indexed column numbers using system numbers. |
ixColsUser | SQLUINTEGER(16) | Indexed column numbers using user-defined column IDs. |
ixType | char | Type of index:
|
ixUnique | char | Uniqueness of index:
|
pages | SQLUINTEGER | Number of pages for hash indexes. |
For a DROP INDEX
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
tblName | char(31) | Name of the table on which the index was dropped. |
tblOwner | char(31) | Owner of the table on which the index was dropped. |
ixName | char(31) | Name of the dropped index. |
For an ADD COLUMN
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
ncols | SQLUINTEGER | The number of additional columns. |
Following this special row are the ttXlaColDesc_t
records describing the new columns.
For a DROP COLUMN
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
ncols | SQLUINTEGER | The number of dropped columns. |
Following this special row is an array of ttXlaColDesc_t
records describing the columns that were dropped.
For a CREATE SEQUENCE
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
sqName | char(31) | Name of sequence. |
sqOwner | char(31) | Owner of sequence. |
cycle | char | Indicates whether the sequence number generator will continue to generate numbers after it reaches the maximum or minimum value:
|
minval | SQLBIGINT | Minimum value of sequence. |
maxval | SQLBIGINT | Maximum value of sequence. |
incr | SQLBIGINT | Increment between sequence numbers. Positive numbers indicate an ascending sequence and negative numbers indicate a descending sequence. In a descending sequence, the range goes from maxval to minval . In an ascending sequence, the range goes from minval to maxval . |
For a DROP SEQUENCE
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
sqName | char(31) | Name of sequence. |
sqOwner | char(31) | Owner of sequence. |
For a CREATE VIEW
operation, the row value is as follows.
Note: This applies to either materialized or non-materialized views. |
Field | Type | Description |
---|---|---|
vwName | char(31) | Name of view. |
vwOwner | char(31) | Owner of view. |
sysTableID | SQLUBIGINT | System table ID stored in SYS.TABLES . |
For a DROP VIEW
operation, the row value is as follows.
Note: This applies to either materialized or non-materialized views. |
Field | Type | Description |
---|---|---|
vwName | char(31) | Name of view. |
vwOwner | char(31) | Owner of view. |
For a CREATE SYNONYM
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
synName | char(31) | Name of synonym. |
synOwner | char(31) | Owner of synonym. |
objName | char(31) | Name of object the synonym points to. |
objOwner | char(31) | Owner of object the synonym points to. |
isPublic | char | Indicates whether the synonym is public:
|
isReplace | char | Indicates whether the synonym was created using CREATE OR REPLACE :
|
For a DROP SYNONYM
operation, the row value is as follows:
Field | Type | Description |
---|---|---|
synName | char(31) | Name of synonym. |
synOwner | char(31) | Owner of synonym. |
isPublic | char | Indicates whether the synonym is public:
|
The description of the SET TABLE ID
operation uses the previously assigned application table identifier in the main part of the update record and provides the new value of the application table identifier in the following special row.
Field | Type | Description |
---|---|---|
newID | SQLUBIGINT | The new user-defined table ID. |
The description of the SET COLUMN ID
operation provides the following special row:
Field | Type | Description |
---|---|---|
oldUserColID | SQLUINTEGER | Previous user-defined column ID value. |
newUserColID | SQLUINTEGER | New user-defined column ID value. |
sysColID | SQLUINTEGER | System column ID. |
A change in a table's replication status provides the following special row.
Field | Type | Description |
---|---|---|
oldStatus | SQLUINTEGER | Previous replication status. |
newStatus | SQLUINTEGER | New replication status. |
See "Retrieving update records from the transaction log" and "Inspecting record headers and locating row addresses" for a detailed discussion on obtaining update records and inspecting the contents of ttXlaUpdateDesc_t
headers. Below is a summary of these procedures.
The update header is immediately followed by the row data. The row data is stored in an internal format with the offsets given in the ttXlaColDesc_t
structure returned by ttXlaGetColumnInfo
.
You can locate the address of the row data by adding the address of the update header to its size.
For example:
For UPDATETUP
records, there are two rows of data following the ttXlaUpdateDesc_t
header. The first row contains the data before the update, and the second row the data after the update.
Since the new row is right after the old row, you can calculate its address by adding the address of the old row to its length (tuple1
).
For example:
See "ttXlaColDesc_t" for details on how to access the column data in a returned row.
The ttXlaStatus_t
structure shows runtime operational information about the XLA system. This structure is returned by the ttXlaStatus
function when operating XLA in non-persistent mode.
Field | Type | Description |
---|---|---|
header | ttXlaNodeHdr_t | Standard data header. |
xlabuffree | SQLUBIGINT | Free bytes in the staging buffer. |
xlabufminfree | SQLUBIGINT | Minimum free bytes in the staging buffer. |
xlabufalloc | SQLUBIGINT | Allocated bytes in the staging buffer. |
xlabuftran | SQLUBIGINT | Number of transactions in the staging buffer. |
xlabufrec | SQLUBIGINT | Number of records in the staging buffer. |
logbuffree | SQLUBIGINT | Number of free bytes in the transaction log buffer. |
logbufminfree | SQLUBIGINT | Minimum free bytes in the transaction log buffer. |
logbufalloc | SQLUBIGINT | Number of allocated bytes in the transaction log buffer. |
flags | SQLUINTEGER | A bit map of status flags. Currently, only the TTXLASTAT_STALLED flag is defined. If set, this flag specifies that the XLA staging buffer is full and new updates are being rejected. |
To permit future extensions to XLA, a version structure ttXlaVersion_t
describes the current XLA version and structure byte order. This structure is returned by the ttXlaGetVersion
function.
This structure includes the following fields.
Field | Type | Description |
---|---|---|
header | ttXlaNodeHdr_t | Standard data header. |
hardware | char(16) | Name of hardware platform. |
wordSize | SQLUINTEGER | Native word size (32 or 64). |
TTMajor | SQLUINTEGER | TimesTen major version. |
TTMinor | SQLUINTEGER | TimesTen minor version. |
TTPatch | SQLUINTEGER | TimesTen point release number. |
OS | char(16) | Name of operating system. |
OSMajor | SQLUINTEGER | Operating system major version. |
OSMinor | SQLUINTEGER | Operating system minor version. |
Table information is portrayed through the ttXlaTblDesc_t
structure. This structure is returned by the ttXlaGetTableInfo
function.
This structure includes the following fields.
Field | Type | Description |
---|---|---|
header | ttXlaNodeHdr_t | Standard data header. |
tblName | char(31) | Name of the table, null-terminated. |
tblOwner | char(31) | Owner of the table, null-terminated. |
sysTableID | SQLUBIGINT | Unique system-defined table identifier. |
userTableId | SQLUBIGINT | User-defined table identifier. |
columns | SQLUINTEGER | Number of columns. |
width | SQLUINTEGER | Inline row size. |
nPrimCols | SQLUINTEGER | Number of primary columns. |
primColsSys | SQLUINTEGER(16) | System primary key column numbers. |
primColsUser | SQLUINTEGER(16) | User-defined primary key column numbers. |
The inline row size includes space for all fixed-width columns, null column flags, and pointer information for variable-length columns. Each varying-length column occupies four bytes of inline row space.
Note the following if the table has a declared primary key:
nPrimCols
value is greater than 0. primColsSys
array contains the column numbers of the primary key, in the same order in which they were originally declared with the CREATE TABLE
statement. primColsUser
array contains the corresponding application-specified column identifiers. This data structure contains the table version number and ttXlaTblDesc_t
. It is returned by ttXlaVersionTableInfo
. This structure includes the following fields.
Field | Type | Description |
---|---|---|
tblDesc | ttXlaTblDesc_t | Table description. |
tblVer | SQLBIGINT | System-generated table version number. |
Column information is given through this structure, which is returned by the ttXlaGetColumnInfo
function.
The structure includes the following fields.
Field | Type | Description |
---|---|---|
header | ttXlaNodeHdr_t | Standard data header. |
colName [tt_NameLenMax] | char | Name of the column. |
pad0 | SQLUINTEGER | Pad to four-byte boundary. |
sysColNum | SQLUINTEGER | Ordinal number of the column as specified when the table is created or subsequently altered. It is the same as the corresponding COLNUM value in SYS.COLUMNS . (See "SYS.COLUMNS" in Oracle TimesTen In-Memory Database System Tables and Limits Reference.) |
userColNum | SQLUINTEGER | This is 0 or a column number optionally specified by the user through the ttSetUserColumnID TimesTen built-in procedure. (See "ttSetUserColumnID" in Oracle TimesTen In-Memory Database Reference.) |
dataType | SQLUINTEGER | Structure in ODBC TTXLA_* code. |
size | SQLUINTEGER | Maximum or basic size of column. |
offset | SQLUINTEGER | Offset to fixed-length part of column. |
nullOffset | SQLUINTEGER | Offset to null byte; zero if not nullable. |
precision | SQLSMALLINT | Numeric precision for decimal types. |
scale | SQLSMALLINT | Numeric scale for decimal types. |
flags | SQLUINTEGER | Column flag:
|
The procedures for obtaining a ttXlaColDesc_t
structure and inspecting its contents are described in "Inspecting column data". Below is a summary of these procedures.
The ttXlaColDesc_t
structure is returned by the ttXlaGetColumnInfo
function. This structure contains the metadata needed to access column information in a particular table. For example, you can use the offset
field to locate specific column data in the row or rows returned in an update record after the ttXlaColDesc_t
structure. By adding the offset
to the address of a returned row, you can locate the address to the column value. You can then cast this value to the corresponding C types according to the dataType
field, or pass it to one of the conversion routines described in "Converting complex data types".
TimesTen row data consists of fixed-length data followed by any variable-length data.
ttXlaColDesc_t
returns the offset
and size
of the column data. The offset
is relative to the beginning of the fixed part of the record. See Example 9-1 below. VARCHAR
and VARBINARY
), offset
is an address that points to a four-byte offset value. By adding the offset address to the offset value, you can obtain the address of the column data in the variable-length portion of the row. The first n
bytes at this location is the length of the data, followed by the actual data (where n
is 4 on 32-bit platforms or 8 on 64-bit platforms). For variable-length data, the returned size value is the maximum allowable column size. See Example 9-1 below. For columns that can have null values, nullOffset
points to a null byte in the record. This value is 1 if the column is null, or 0 if it is not null. See "Detecting null values" for a discussion.
The flags
bits define whether the column is nullable, part of a primary key, or stored out of line.
The sysColNum
value is the system column number to assign to the column. This value begins with 1 for the first column.
Example 9-1 Copying and printing a VARCHAR string
For fixed-length column data, the address of a column is the offset
value in the ttXlaColDesc_t
structure, plus the address of the row as follows:
The value of the column can be obtained by dereferencing this pointer using a type pointer that corresponds to the data type. For example, for SQL_INTEGER
, the ODBC type is SQLINTEGER
and the value of the column can be obtained by the following:
In the case of variable-length column data, the pColVal
calculated above is the address of a four-byte offset value. Adding this offset value to the address of pColVal
provides a pointer to the beginning of the variable-length column data. Assuming the operation is performed on a 64-bit platform, the first eight bytes at this location is the length of this data (var_len
), followed by the actual data (var_data
).
In this example, a VARCHAR
string is copied and printed.
Description of log record identifier used by bookmarks. This structure is used by the ttXlaUpdateDesc_t
structure.
Field | Type | Description |
---|---|---|
logFile | SQLUBIGINT | Higher order portion of log record identifier. |
logOffset | SQLUBIGINT | Lower order portion of log record identifier. |
Note: ThelogFile and logOffset field names are retained for backward compatibility, although their usage has changed. In previous releases the values referred to LSNs, which increased sequentially, and the values had very specific meanings, indicating the log file number plus byte offset. Now they refer to log record identifiers, which are more abstract and do not have a direct relationship to the log file number and byte offset. All you can assume about a sequence of log record identifiers is that a log record identifier B read at a later time than a log record identifier A will have a higher value. |
Description of a log record identifier used by bookmarks. This structure is returned by the ttXlaGetLSN
function and used by the ttXlaSetLSN
function.
The checksum
is specific to an XLA handle to ensure that every log record identifier is related to a known XLA connection.
Field | Type | Description |
---|---|---|
checksum | SQLUINTEGER | Checksum used to ensure that it is a valid log record identifier handle. |
xid | SQLUSMALLINT | Transaction ID. |
logFile | SQLUBIGINT | Higher order portion of log record identifier. |
logOffset | SQLUBIGINT | Lower order portion of log record identifier. |
Note: ThelogFile and logOffset field names are retained for backward compatibility, although their usage has changed. In previous releases the values referred to LSNs, which increased sequentially, and the values had very specific meanings, indicating the log file number plus byte offset. Now they refer to log record identifiers, which are more abstract and do not have a direct relationship to the log file number and byte offset. All you can assume about a sequence of log record identifiers is that a log record identifier B read at a later time than a log record identifier A will have a higher value. |
This chapter covers the topics noted below, listing ODBC functions supported by TimesTen and options supported by TimesTen for set and get functions for statements and connections. For complete function definitions, refer to ODBC API reference documentation.
TimesTen supports ODBC 2.5, Extension Level 1, with additional features for Extension Level 2 as indicated in this chapter.
This section lists ODBC function supported by TimesTen, with special notes as applicable.
Table 10-1 Supported ODBC functions
Function | Notes |
---|---|
| |
| |
| |
| |
| |
| In TimesTen, |
| |
| |
| |
| Available only to programs using a driver manager. |
| |
| |
| |
| |
| Available only to programs using a driver manager. |
| |
| |
| |
| |
| |
| |
| |
| |
| See "Option support for SQLSetConnectOption and SQLGetConnectOption". |
| You can set or get a cursor name but not reference it, such as in a |
| |
| |
| |
| See "Option support for SQLSetStmtOption and SQLGetStmtOption". |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| In addition to its standard functionality, this has special usage with cache groups. See "Managing cache groups". |
| See "Option support for SQLSetConnectOption and SQLGetConnectOption". |
| You can set or get a cursor name but not reference it, such as in a |
| See "Option support for SQLSetStmtOption and SQLGetStmtOption". |
| ODBC 1.0 function, replaced by |
| |
| |
| |
|
This section discusses TimesTen option support for the ODBC functions SQLSetConnectOption
, SQLGetConnectOption
, SQLSetStmtOption
, and SQLGetStmtOption
.
Refer to ODBC API reference documentation for general information about these functions.
Table 10-2 and Table 10-3 document TimesTen support for standard and TimesTen-specific options for the ODBC SQLSetConnectOption
and SQLGetConnectOption
functions. These functions let you set connection options after the initial connection or retrieve those settings. Some of these correspond to connection attributes you can set during the connection process, as noted.
Also see "Option support for SQLSetStmtOption and SQLGetStmtOption". Those options can also be set using SQLSetConnectOption
, in which case the value serves as a default for all statements on the connection.
Note: An option setting throughSQLSetConnectOption or SQLSetStmtOption overrides the setting of the corresponding connection attribute (as applicable). |
Table 10-2 Standard options: SQLSetConnectOption, SQLGetConnectOption
Option | Support |
---|---|
| No |
| Yes |
| No |
| No |
| Yes |
| Yes |
| Available only to programs using a driver manager. |
| Available only to programs using a driver manager. |
| Available only to programs using a driver manager. |
| No |
| No |
| No |
| No |
Supported only if |
Table 10-3 TimesTen options: SQLSetConnectOption, SQLGetConnectOption
Option | Comments |
---|---|
| For client/server only. Same functionality as the |
| See "Disabling dynamic loading" in Oracle In-Memory Database Cache User's Guide. This has the same functionality as the |
| See "Displaying dynamic load errors" in Oracle In-Memory Database Cache User's Guide. Same functionality as the |
| See "Setting globalization options". Same functionality as the |
| See "Setting globalization options". Same functionality as the |
| See "Setting globalization options". Same functionality as the |
| See "Enable TT_PREFETCH_CLOSE for Serializable transactions" in Oracle TimesTen In-Memory Database Operations Guide. |
| |
| See "Setting up user-specified parallel replication". Same functionality as the |
Table 10-4 and Table 10-5 document TimesTen support for standard and TimesTen-specific options for the ODBC SQLSetStmtOption
and SQLGetStmtOption
functions, which let you set or retrieve statement option settings.
To set an option default value for all statements associated with a connection, use SQLSetConnectOption
.
Note: An option setting throughSQLSetConnectOption or SQLSetStmtOption overrides the setting of the corresponding connection attribute (as applicable). |
Table 10-4 Standard options: SQLSetStmtOption, SQLGetStmtOption
Option | Support |
---|---|
| No |
| No |
| No |
| No |
| No |
| No. |
| Yes |
| Yes |
| Yes. See "Setting a timeout or threshold for executing SQL statements". |
| No |
| No |
| No |
| No |
Table 10-5 TimesTen options: SQLSetStmtOption, SQLGetStmtOption
Option | Comment |
---|---|
| |
| See "Setting a threshold value for SQL statements". This is to specify a time threshold for SQL statements, in seconds, after which TimesTen will write a warning to the support log and throw an SNMP trap. |
| Commands are not shared with any other connection. See "PrivateCommands" in Oracle TimesTen In-Memory Database Reference. |
Determines whether a specific prepared statement will be passed through to Oracle by the passthrough feature of IMDB Cache. The value returned by Note: In TimesTen, this option is supported only with See "Determining passthrough status". Also see "Setting a passthrough level" in Oracle In-Memory Database Cache User's Guide. |
 Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved. |