TTClasses Guide
Release 11.2.1
E13074-07
March 2011
Oracle TimesTen In-Memory Database TTClasses Guide, Release 11.2.1
E13074-07
Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle TimesTen In-Memory Database is a memory-optimized relational database. Deployed in the application tier, TimesTen operates on databases that fit entirely in physical memory using standard SQL interfaces. High availability for the in-memory database is provided through real-time transactional replication.
TimesTen supports a variety of programming interfaces, including ODBC (Open DataBase Connectivity), OCI (Oracle Call Interface), Oracle Pro*C/C++ (precompiler for embedded SQL and PL/SQL instructions in C or C++ code), and PL/SQL (Oracle procedural language extension for SQL).
The TimesTen C++ Interface Classes (TTClasses) library was written to provide an easy-to-use, high-performance interface to TimesTen. This C++ class library provides wrappers around the most common ODBC functionality.
This preface covers the following topics:
This guide is for application developers who administer and access TimesTen through C++.
In addition to familiarity with the particular programming interface you use, you should be familiar with TimesTen, SQL (Structured Query Language), database operations, and ODBC.
TimesTen documentation is available on the product distribution media and on the Oracle Technology Network:
Oracle documentation is also available on the Oracle Technology network at the following location. This may be especially useful for Oracle features that TimesTen supports but does not attempt to fully document, such as OCI and Pro*C/C++.
In particular, these Oracle documents may be of interest:
This manual occasionally refers to ODBC APIs. ODBC API reference documentation is available from Microsoft or a variety of third parties. For example:
http://msdn.microsoft.com/en-us/library/ms714562(VS.85).aspx
TimesTen supports multiple platforms. Unless otherwise indicated, the information in this guide applies to all supported platforms. The term Windows refers to Windows 2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux, HP-UX, Tru64 and AIX.
Note: In TimesTen documentation, the terms "data store" and "database" are equivalent. Both terms refer to the TimesTen database unless otherwise noted. |
This document uses the following text conventions:
Convention	Meaning
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates code, commands, URLs, class names, function names, method names, attribute names, directory names, file names, text that appears on the screen, or text that you enter.
italic monospace	Italic monospace type indicates a variable in a code example that you must replace. For example:
Replace	
[]	Square brackets indicate that an item in a command line is optional.
{ }	Curly braces indicated that you must choose one of the items separated by a vertical bar (
	A vertical bar (or pipe) separates alternative arguments.
. . . | An ellipsis (. . .) after an argument indicates that you may use more than one argument on a single command line. |
% | The percent sign indicates the UNIX shell prompt. |
| The number (or pound) sign indicates the UNIX root prompt. |
TimesTen documentation uses the following variables to identify path, file and user names.
Convention	Meaning
install_dir	The path that represents the directory where the current release of TimesTen is installed.
TTinstance	The instance name for your specific installation of TimesTen. Each installation of TimesTen must be identified at install time with a unique alphanumeric instance name. This name appears in the install path.
bits or bb	Two digits, either 32 or 64, that represent either the 32-bit or 64-bit operating system.
release or rr	Numbers that represent a major TimesTen release, with or without dots. For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.
DSN	The data source name (for the TimesTen database).
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/	
.	
Accessibility of Code Examples in Documentation	
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.	
Accessibility of Links to External Web Sites in Documentation	
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.	
Access to Oracle Support	
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html	
or visit http://www.oracle.com/accessibility/support.html	
if you are hearing impaired.	
For information about obtaining technical support for TimesTen products, go to the following Web address:	
This section summarizes new features and functionality of Oracle TimesTen In-Memory Database Release 11.2.1 that are documented in this guide, providing links into the guide for more information.	
TTClasses implements the following features beginning with the TimesTen Release 11.2.1.6.0.	
OUT	
and IN OUT	
parameters Discussion of binding parameters includes new support for binding OUT	
and IN OUT	
parameters.	
See appropriate subsections under "Binding parameters".	
TimesTen supports either of two modes for binding duplicate parameters in a SQL statement. Use the DuplicateBindMode	
general connection attribute to choose between Oracle mode (now the default) and traditional TimesTen mode.	
REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over a SQL result set and can be passed between PL/SQL and an application.	
Each row in a TimesTen database table has a unique identifier known as its rowid. TimesTen now supports Oracle-style rowids. An application can retrieve the rowid of a row from the ROWID	
pseudocolumn. Rowids can be represented in either binary or character format.	
RETURNING INTO	
clause) TimesTen now supports the RETURNING INTO	
clause, referred to as DML returning, with an INSERT	
, UPDATE	
, or DELETE	
statement to return specified items from a row that was affected by the action. This is included in the discussion of OUT	
parameters in "Binding OUT or IN OUT parameters".	
By default, beginning with TimesTen release 11.2.1.6.0, TTStatus	
objects are thrown as exceptions whenever an error or warning occurs. This allows C++ applications to use {try/catch}	
blocks to detect and recover from failure, which is the recommended mode of operation. However, to use TTClasses in this mode, you must compile the TTClasses library, as well as your applications, with the TTEXCEPT	
flag. (See information about this flag under "TTClasses compiler macros".) Old method signatures taking a TTStatus&	
parameter have been replaced by new signatures that do not take this parameter.	
Note that in this release it is possible to selectively suppress exceptions, use the old method signatures, and manually check the TTStatus	
objects for error or warning conditions. You can accomplish this by initializing the TTStatus	
object with the value TTStatus::DO_NOT_THROW	
, then passing a pointer to it as the last parameter of a method call. Most TTClasses	
methods documented in this manual still support that, although these signatures are no longer documented and it is generally not recommended to operate in this way.	
See "TTStatus".	
Be aware that there have been numerous method additions and changes, especially regarding TTStatus	
parameters in the calling sequences. Consult the documentation in Chapter 3, "Class Descriptions," carefully. Many methods were documented with a TTStatus	
parameter in previous releases, and while these are still supported for backward compatibility, using these methods is no longer documented or encouraged.	
The 11.2.1 release includes an optional Quick Start feature with introductory information, tutorials, and new or reworked demo applications. Note that the demos are in a different location than in earlier releases and some have been renamed.	
See "About the TimesTen TTClasses demos" and install_dir	
/quickstart.html	
in your installation.	
Perhaps the most significant overall change to previous functionality in TimesTen Release 11.2.1 is access control. TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, and sequences. This also affects access to certain TimesTen built-in procedures, utilities, and connection attributes.	
See "Considering TimesTen features for access control". For general information, see "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide.	
This chapter provides information to help you get started with your TTClasses development environment.	
TTClasses comes compiled and preconfigured during TimesTen installation. If you have a different C++ runtime than what TTClasses was compiled with, recompile the library using the make	
(UNIX) or nmake	
(Microsoft Windows) utility.	
The information here includes a discussion of environment variables and compilation for TTClasses itself, information for compiling and linking your TTClasses applications, and an introduction to the Quick Start demo applications for TTClasses. The following topics are covered:	
This section discusses how to set up TTClasses, covering the following topics:	
This section covers the following topics for setting up TTClasses in a UNIX environment:	
To use TTClasses, ensure that your shell environment variables are set correctly. You can optionally source one of the following scripts or add a line to source one of these scripts in your login initialization script (.profile	
or .cshrc	
), where install_dir	
is your TimesTen installation directory.	
If you have application linking problems, which can be caused by using a different C++ runtime than what TTClasses was compiled with, recompile the library using the make	
utility.	
To recompile TTClasses, change to the ttclasses	
directory, where install_dir	
is your TimesTen installation directory:	
Run make clean	
for a fresh start:	
You can recompile TTClasses for both direct and client/server connections as follows:	
Alternatively, to compile TTClasses for client/server only, use the MakefileCS	
Makefile:	
The following make	
target options are available when you compile TTClasses in a UNIX environment:	
all	
: Build a shared optimized library or libraries (default). When used with Makefile	
this can be for either direct or client/server connections. When used with MakefileCS	
this is for client/server only. shared_opt	
: Build a shared optimized library. Currently this has the same effect as all	
. shared_debug	
: Build a shared debug library. static_opt	
: Build a static optimized library. static_debug	
: Build a static debug library. opt	
: Build the optimized libraries (shared and static). debug	
: Build the debug libraries (shared and static). clean	
: Delete the TTClasses libraries and object files. To specify a make	
target, use the name of the make	
target on the command line.	
For example, to build a shared debug version of TTClasses:	
This section covers the following topics for setting up TTClasses in a Windows environment:	
Note: Installing TTClasses after compiling the TTClasses library happens automatically on Windows.	
Before recompiling, ensure that the PATH	
, INCLUDE	
, and LIB	
environment variables point to the correct Visual Studio directories. Execute the applicable Visual Studio C++ batch file (for example, VCVARS32.BAT	
or VSVARS32.BAT	
) to accomplish this.	
Then set environment variables for TimesTen (if they were not already set during installation) by running the following:	
If you have application linking problems, which can be caused by using a different C++ runtime than what TTClasses was compiled with, recompile the library using the nmake	
utility.	
To recompile TTClasses, change to the ttclasses	
directory, where install_dir	
is your TimesTen installation directory:	
Run nmake clean	
for a fresh start:	
Then recompile. By default this is for both direct and client/server connections:	
The following make	
target options are available when you compile TTClasses in a Windows environment:	
all	
: Build shared optimized libraries for direct and client/server connections (default). client	
: Build shared optimized library for client/server only. msdm	
: Build shared optimized library for Microsoft driver manager. clean	
: Delete the TTClasses libraries and object files. To specify a make	
target, use the name of the make	
target on the command line.	
For example, to build only the client/server TTClasses library:	
When necessary, you can modify the TTClasses Makefile manually to add flags for the TTClasses compiler macros. For UNIX, add -D	
flagname	
. For Windows, add /D	
flagname	
.	
This section includes information about the following compiler macros:	
Compile TTClasses, as well as your applications, with the -DTTEXCEPT	
flag to make TTClasses throw C++ exceptions. Put {try/catch}	
blocks around all TTClasses function calls and catch exceptions of type TTStatus	
. Beginning with TimesTen release 11.2.1.6.0, this is the preferred mode for TTClasses (as opposed to error handling using method calls with an explicit TTStatus&	
parameter, as in earlier releases). See "TTStatus".	
There are multiple types of C++ streams and they are not compatible with each other. TimesTen provides two related flags. Which streams you use in your application determines which flag to set, or whether you should set neither, as follows (from newer stream types to older):	
<iostream>	
and using the ostringstream	
class, set the TTC_USE_STRINGSTREAM	
flag. <iostream>	
and using the ostrstream	
class, set neither flag. This is the default for most platforms and compilers. <iostream.h>	
and using the ostrstream	
class, set the USE_OLD_CPP_STREAMS	
flag. This is the default for some older platforms and compilers. Check your TTClasses Makefile. If the flags are not set properly, then update the Makefile as appropriate, recompile TTClasses, and replace the previous TTClasses library file with the recompiled one.	
Also see the subsections that follow.	
This compiler flag is for use with C++ compilers that reliably support C++ stream types utilizing the ostringstream	
class. If your program uses C++ stream code where you include <iostream>	
and use ostringstream	
, then TTClasses must be compiled with the -DTTC_USE_STRINGSTREAM	
setting.	
Also note that in this case, the USE_OLD_CPP_STREAMS	
flag must not be set.	
Note: Withgcc version 3.2 or higher, the TTC_USE_STRINGSTREAM flag is set by default in the file install_dir /include/ttclasses/TTIostream.h .	
If your program uses C++ stream code where you include <iostream>	
and use the ostrstream	
class, neither the TTC_USE_STRINGSTREAM	
flag nor the USE_OLD_CPP_STREAMS	
flag should be set.	
This compiler flag is for older C++ compilers that do not support <iostream>	
. If your program uses old C++ stream code where you include <iostream.h>	
and use the ostrstream	
class, then TTClasses must be compiled with the -DUSE_OLD_CPP_STREAMS	
setting.	
Also note that in this case, the TTC_USE_STRINGSTREAM	
flag must not be set.	
Compile TTClasses with -DTTDEBUG	
to generate extra debugging information. This extra information reduces performance somewhat, so use this flag only in development (not production) systems.	
Compile TTClasses with -DTT_64BIT	
if you are writing a 64-bit TimesTen application.	
Note that 64-bit TTClasses has been tested on AIX, HP-UX, Solaris, Red Hat Linux, and Tru64.	
The following compiler macros are specific to a particular platform or compiler combination. You should not have to specify these compiler macros manually. Their use is determined by the Makefile chosen by the configure	
program.	
Compile TTClasses with the -DGCC	
flag when using gcc	
on any platform.	
Compile TTClasses with the -DHPUX	
flag when compiling on HP-UX.	
This section discusses how to compile and link your TTClasses applications on UNIX and Windows, including a section on considerations when using the ODBC driver manager on Windows.	
You can also refer to the following sections in Oracle TimesTen In-Memory Database C Developer's Guide for related information:	
For compiling your applications, include the TTClasses header files that are in the install_dir	
/include/ttclasses	
directory. You can accomplish this simply by including TTInclude.h	
from that directory, as follows.	
Use the following compile command:	
And use the following line in your code:	
TTClasses XLA programs must also include the following:	
Table 1-1 summarizes the TTClasses libraries available for linking your applications.	
Table 1-1 Summary of TTClasses libraries for UNIX	
Usage	Library
---	---
For TimesTen direct connections.	
For TimesTen client/server connections.	
The -L	
option tells the linker to search the TimesTen lib	
directory for library files. The -lttclassesCS	
option links in the driver.	
On AIX, when linking applications with the TimesTen ODBC client driver, the C++ runtime library must be included in the link command (because AIX does not link it automatically) and must follow the client driver:	
You can use the Makefile in the quickstart/sample_code/ttclasses	
directory to guide you in creating your own Makefile.	
For compiling your applications, include the TTClasses header files that are in the install_dir	
\include\ttclasses	
directory. You can accomplish this simply by including TTInclude.h	
from that directory, as follows.	
Use the following compile command:	
And use the following line in your code:	
TTClasses XLA programs must also include the following:	
Table 1-2 summarizes the TTClasses libraries available for linking your applications.	
Table 1-2 Summary of TTClasses libraries for Windows	
Usage	Library
---	---
For TimesTen direct connections.	
For TimesTen client/server connections.	
For the Microsoft ODBC driver manager.	
See the next section, "Considerations when using an ODBC driver manager (Windows)".	
Add the appropriate library, for example install_dir	
\lib\ttclasses1121.lib	
, to your link command.	
You can use the Makefile in the quickstart\sample_code\ttclasses	
directory to guide you in creating your own Makefile.	
Be aware of the following limitations in TTClasses when you use the ODBC driver manager on Windows. (These restrictions do not apply to the demo ttdm	
driver manager supplied with the TimesTen Quick Start.)	
In addition, the driver manager does not support the ODBC C types SQLBIGINT	
and SQLTINYINT	
when used with TimesTen. When using the driver manager, you cannot call methods that use either of these data types in their signatures. This includes the applicable overloaded versions of any of the following TTCmd	
methods: getColumn()	
, getColumnNullable()	
, getNextColumn()	
, getNextColumnNullable()	
, setParam()	
, getParam()	
, and BindParameter()	
.	
After you have configured your C++ environment, you can confirm that everything is set up correctly by compiling and running the TimesTen Quick Start demo applications. Refer to the Quick Start welcome page at install_dir	
/quickstart.html	
, especially the links under SAMPLE PROGRAMS, for information about the following:	
build_sampledb	
script creates a sample database and demo schema. You must run this before you start using the demos. ttquickstartenv	
script, a superset of the ttenv	
script generally used for TimesTen setup, sets up the demo environment. You must run this each time you enter a session where you want to compile and run any of the demos. install_dir	
/quickstart/sample_code	
directory. For instructions on compiling and running the demos, see the README files in the subdirectories. This chapter provides some general overview and best practices for TTClasses. It includes the following topics:	
The TimesTen C++ Interface Classes library (TTClasses) provides wrappers around the most common ODBC functionality to allow database access. It was developed to meet the demand for an API that is easier to use than ODBC but does not sacrifice performance. Refer to ODBC API reference documentation for detailed information about ODBC.	
In addition to providing a C++ interface to the TimesTen ODBC interface, TTClasses supplies an interface to the TimesTen Transaction Log API (XLA). XLA allows an application to monitor one or more tables in a database. When other applications change that table, the changes are reported through XLA to the monitoring application. TTClasses provides a convenient interface to the most commonly used aspects of XLA functionality. For general information about XLA, see "XLA and TimesTen Event Management" in Oracle TimesTen In-Memory Database C Developer's Guide.	
TTClasses is also intended to promote best practices when writing application software that uses the TimesTen Data Manager. The library uses TimesTen in an optimal manner. For example, autocommit is disabled by default. Parameterized SQL is strongly encouraged and its use is greatly simplified in TTClasses compared to hand-coded ODBC.	
While TTClasses can be used in several ways, the following general approach has been used successfully and can easily be adapted to a variety of applications.	
To achieve optimal performance, real-time applications should use prepared SQL statements. Ideally, all SQL statements that will be used by an application are prepared when the application begins, using a separate TTCmd	
object for each statement. In ODBC, and thus in TTClasses, statements are bound to a particular connection, so a full set of the statements used by the application will often be associated with every connection to the database.	
A convenient way to accomplish this is to develop an application-specific class that is derived from TTConnection	
. For an application named XYZ	
, you can create a class XYZConnection	
, for example. The XYZConnection	
class contains private TTCmd	
members representing the prepared SQL statements that can be used in the application, and provides new public methods to implement the application-specific database functionality through these private TTCmd	
members.	
Before a TTCmd	
object can be used, a SQL statement (such as SELECT	
, INSERT	
, UPDATE	
, or DELETE	
) must be associated with it. The association is accomplished by using the Prepare()	
method, which also compiles and optimizes the SQL statement to ensure it will be executed in an efficient manner. Note that the Prepare()	
method only prepares and does not execute the statement.	
With TimesTen, statements are typically parameterized for better performance. Consider the following SQL statements:	
It is more efficient to prepare a single parameterized statement and execute it multiple times:	
The value for "?	
" is specified at runtime by using the TTCmd::setParam()	
method.	
There is no need to explicitly bind columns or parameters to a SQL statement, as is necessary when you use ODBC directly. TTCmd	
automatically defines and binds all necessary columns at prepare time. Parameters are bound at execution time.	
Note that preparing is a relatively expensive operation. When an application establishes a connection to TimesTen, using TTConnection::Connect()	
, the application should prepare all TTCmd	
objects associated with the connection.	
In normal operations, where TTClasses and applications are compiled with the TTEXCEPT	
flag, a TTStatus	
object is thrown as an exception if an error or warning occurs during the operation. In general, anytime a TTClasses method encounters an error or warning, it throws an exception in this way, which the application should catch and handle appropriately. See "TTEXCEPT: Throw C++ exceptions" and "TTStatus" for additional information. Also, the TTClasses Quick Start demo applications show examples of how this is done. See "About the TimesTen TTClasses demos".	
Note: IfTTConnection and TTCmd lack any getter or setter methods you need, you can access underlying ODBC connection and statement handles directly, through the TTConnection::getHdbc() and TTCmd::getHandle() methods. Similarly, there is a TTGlobal::sqlhenv() method to access the ODBC environment handle.	
Example 2-1 Definition of a connection class	
This is an example of a class that inherits from TTConnection	
.	
In this example, an XYZConnection	
object is a connection to TimesTen that can be used to perform three application-specific operations: addUser()	
, updateUser()	
, and queryUser()	
. These operations are specific to the XYZ	
application. The implementation of these three methods can use the updateData	
, insertData	
, and queryData	
TTCmd	
objects to implement the database operations of the application.	
To prepare the SQL statements of the application, the XYZConnection	
class overloads the Connect()	
method provided by the TTConnection	
base class. The XYZConnection::Connect()	
method calls the Connect()	
method of the base class to establish the database connection and also calls the Prepare()	
method for each TTCmd	
object to prepare the SQL statements for later use.	
Example 2-2 Definition of a Connect() method	
This example shows an implementation of the XYZConnection::Connect()	
method.	
This Connect()	
method makes the XYZConnection	
object and its application-specific methods fully operational.	
This approach also works well with the design of the TTConnectionPool	
class. The application can create numerous objects of type XYZConnection	
and add them to a TTConnectionPool	
object. By calling TTConnectionPool	
::ConnectAll()	
, the application connects all connections in the pool to the database and prepares all SQL statements. Refer to the usage discussion under "TTConnectionPool", which includes important information.	
This application design allows database access to be easily separated from the application business logic. Only the XYZConnection	
class contains database-specific code.	
Examples of this application design can be found in several of the TTClasses sample programs that are included with the TimesTen Quick Start. See "About the TimesTen TTClasses demos".	
Note that other configurations are possible. Some customers have extended this scheme further, so that SQL statements to be used in an application are listed in a table in the database, rather than being hard-coded in the application itself. This allows changes to database functionality to be implemented by making database changes rather than application changes.	
TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide for general information about these features. Also see "Considering TimesTen features for access control" in Oracle TimesTen In-Memory Database C Developer's Guide.	
For any query, SQL DML statement, or SQL DDL statement discussed in this document or used in an example, it is assumed that the user has appropriate privileges to execute the statement. For example, a SELECT	
statement on a table requires ownership of the table, SELECT	
privilege granted on the table, or the SELECT ANY TABLE	
system privilege.	
Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for the privilege required for any given SQL statement.	
Privileges are granted through the SQL statement GRANT	
and revoked through the SQL statement REVOKE	
. Some privileges are granted to all users through the PUBLIC	
role, of which each user is a member. See "The PUBLIC role" in Oracle TimesTen In-Memory Database SQL Reference for information about that role.	
In addition, access control affects connecting to a database (as discussed in "Access control for connections"), setting connection attributes, using XLA (as discussed in "Access control impact on XLA"), and executing C utility functions.	
Notes:	
This section covers topics related to connecting to a database:	
Oracle TimesTen In-Memory Database Operations Guide contains information about creating a DSN (data source name) for a database. The type of DSN you create depends on whether your application will connect directly to the database or will connect by a client.	
If you intend to connect directly to the database, refer to "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database Operations Guide. There are sections on creating a DSN for a direct connection from UNIX or Windows.	
If you intend to create a client connection to the database, refer to "Working with the TimesTen Client and Server" in Oracle TimesTen In-Memory Database Operations Guide. There are sections on creating a DSN for a client/server connection from UNIX or Windows.	
Note: A TimesTen connection cannot be inherited from a parent process. If a process opens a database connection before creating a child process, the child must not use the connection.	
Based on the XYZConnection	
class discussed in "Using TTCmd, TTConnection, and TTConnectionPool", you could connect to and disconnect from TimesTen as shown in the following example.	
Example 2-4 Connecting to and disconnecting from TimesTen	
This section covers access control features related to how you connect to the database with TTClasses.	
For a general access control overview, refer to "Considering TimesTen features for access control".	
The following method signatures are defined for the TTConnection	
, TTConnectionPool	
, and TTXlaPersistConnection	
classes. (Note that in all cases, signatures are also supported with a TTStatus	
object as the last parameter, but using the methods with TTStatus	
is not typical.)	
Notes:	
Privilege to connect to a database must be explicitly granted to every user other than the instance administrator, through the CREATE SESSION	
privilege. This is a system privilege. It must be granted by an administrator to the user, either directly or through the PUBLIC	
role. Refer to "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide for additional information and examples.	
In addition to the CREATE SESSION	
privilege, a user must be granted the XLA privilege to create an XLA connection and execute XLA functionality, as noted in "Access control impact on XLA".	
This section covers the following topics for working with data.	
This section discusses parameter binding for SQL statements. The TTCmd	
class supplies the methods setParam()	
and BindParameter()	
(for batch operations) to bind parameters. It also supplies the method registerParam()	
to support output and input/output parameters or to override default bind types. There is also functionality to support either possible TimesTen DuplicateBindMode	
setting if there are duplicate parameters.	
These topics are covered in the following sections.	
For non-batch operations, use the TTCmd	
::setParam()	
method to bind IN	
parameters for SQL statements, specifying the parameter position and the value to be bound. For batch operations, use the TTCmd::BindParameter()	
method. (See Example 3-5, "Using the ExecuteBatch() method" for an example of batch operations.)	
For non-batch operations, Example 2-5 shows snippets from a class SampleConnection	
, where parameters are bound to insert a row into a table. (This example is from the TimesTen Quick Start demo basics.cpp	
. See "About the TimesTen TTClasses demos".) Implementation of the Connect()	
method is omitted here, but see Example 2-2 for a Connect()	
implementation.	
Assume a table basics	
, defined as follows:	
Example 2-5 Binding parameters to insert a row (non-batch)	
The TTCmd	
class provides the method registerParam()	
, which enables you to specify the SQL type, precision, and scale of a parameter (as applicable) and whether the parameter is IN	
, OUT	
, or IN OUT	
. A registerParam()	
call is required for an OUT	
or IN OUT	
parameter, which could be a REF CURSOR (OUT	
only) or a parameter from a PL/SQL RETURNING INTO	
clause (OUT	
only), procedure, or function.	
For an IN	
parameter, TTClasses by default derives the SQL type from the bound C type for the setParam()	
or BindParameter()	
call according to the mappings shown in Table 2-1. It is not typical to need a registerParam()	
call for an IN	
parameter, but you can call it if you have reason to use a particular SQL type or precision or scale.	
Table 2-1 TTClasses C type to SQL type mappings	
C type	SQL type
---	---
A registerParam()	
call can be either before or after the related setParam()	
or BindParameter()	
call and takes precedence regarding SQL type, precision, and scale (as applicable).	
The method signature is as follows:	
pno	
is the parameter position in the statement. inputOutputType	
can be TTCmd::PARAM_IN	
, TTCmd::PARAM_OUT	
, or TTCmd::PARAM_INOUT	
. sqltype	
is the SQL type of the data (for example, SQLINTEGER	
). precision	
and scale	
(both optional) are used the same way as in an ODBC SQLBindParameter	
call. For primitive types, precision	
and scale	
settings are ignored. Note: See the next section, "Binding OUT or IN OUT parameters", for an example. Also see "registerParam()" for additional reference information.	
TTClasses supports output and input/output parameters. This includes REF CURSORs (OUT	
only), parameters from a PL/SQL procedure or function that has OUT	
or IN OUT	
parameters, or a parameter from a RETURNING INTO	
clause (OUT	
only).	
You must use the TTCmd::registerParam()	
method, described in the preceding section, to inform TTClasses if a parameter in a SQL statement is OUT	
or IN OUT	
. For the intputOutputParameter	
setting in the method call, use TTCmd::PARAM_OUT	
or TTCmd::PARAM_INOUT	
as appropriate.	
For non-batch operations, after the SQL statement has been executed, use the appropriate TTCmd::getParam()	
method to retrieve the output value, specifying the parameter position and the variable into which the value is placed. There is a signature for each data type.	
For batch operations, TTCmd::BindParameter()	
is used for OUT	
or IN OUT	
parameters as well as for IN	
parameters, in either case before the statement is executed. After statement execution, the data for an OUT	
value will be in the buffer specified in the BindParameter()	
call. BindParameter()	
has a signature for each data type. Note that for an IN OUT	
parameter in batch operations, BindParameter()	
is called only once, before statement execution. Before execution the specified buffer contains the input, and after statement execution it contains the output.	
The following examples provide code fragments showing the use of OUT	
and IN OUT	
parameters.	
Example 2-6 Using IN and OUT parameters (non-batch)	
This example uses input and output parameters. The setParam()	
call binds the value of the input parameter :a	
. The getParam()	
call retrieves the value of the output parameter :b	
. The output parameter is also registered as required.	
Example 2-7 Using IN and OUT parameters (batch operations)	
This example uses input and output parameters in a batch operation. The first BindParameter()	
call provides the input data for the first parameter :a	
. The second BindParameter()	
call provides a buffer for output data for the second parameter :b	
.	
Example 2-8 Using IN OUT parameters	
This example uses an IN OUT	
parameter. It is registered as required. The setParam()	
call binds its input value and the getParam()	
call retrieves its output value.	
Example 2-9 Using OUT and IN OUT parameters	
This example uses OUT	
and IN OUT	
parameters. Assume a PL/SQL procedure as follows:	
The input parameters for the procedure are taken as constants in this example rather than as bound parameters, so only the OUT	
parameter and IN OUT	
parameter are bound. Both are registered as required. The setParam()	
call provides the input value for the IN OUT	
parameter :var1	
. The first getParam()	
call retrieves the value for the OUT	
parameter :sum	
. The second getParam()	
call retrieves the output value for the IN OUT	
parameter :var1	
.	
TimesTen supports two modes for binding duplicate parameters in a SQL statement. In the Oracle mode, where DuplicateBindMode=0	
(the default), multiple occurrences of the same parameter name are considered to be distinct parameters. In the traditional TimesTen mode, where DuplicateBindMode=1	
, multiple occurrences of the same parameter name are considered to be the same parameter (as in earlier TimesTen releases).	
Note: Refer to "DuplicateBindMode" in Oracle TimesTen In-Memory Database Reference and "Binding duplicate parameters in SQL statements" in Oracle TimesTen In-Memory Database C Developer's Guide for additional information.	
For illustration, consider the following query:	
In the Oracle mode, when parameter position numbers are assigned, a number is given to each parameter occurrence without regard to name duplication. The application must, at a minimum, bind a value for the first occurrence of each parameter name. For any subsequent occurrence of a given parameter name, the application can bind a different value for the occurrence or it can leave the parameter occurrence unbound. In the latter case, the subsequent occurrence takes the same value as the first occurrence. In either case, each occurrence still has a distinct parameter position number.	
In TimesTen mode, SQL statements containing duplicate parameters are parsed such that only distinct parameter names are considered as separate parameters. Binding is based on the position of the first occurrence of a parameter name. Subsequent occurrences of the parameter name are not given their own position numbers, and all occurrences of the same parameter name take on the same value.	
Example 2-10 Duplicate parameters: Oracle mode	
To use a different value for the second occurrence of a	
in the SQL statement above in the Oracle mode:	
To use the same value for both occurrences of a	
:	
Parameter b	
is considered to be in position 3 regardless, and the number of parameters is considered to be three.	
Example 2-11 Duplicate parameters: TimesTen mode	
For the SQL statement above, in TimesTen mode the two occurrences of a	
are considered to be a single parameter, so cannot be bound separately:	
Note that in TimesTen mode, parameter b	
is considered to be in position 2, not position 3, and the number of parameters is considered to be two.	
REF CURSOR is a PL/SQL concept, where a REF CURSOR is a handle to a cursor over a SQL result set and can be passed between PL/SQL and an application. In TimesTen, the cursor can be opened in PL/SQL, then the REF CURSOR can be passed to the application for processing. This usage is an OUT	
REF CURSOR, an OUT	
parameter with respect to PL/SQL. As with any OUT	
parameter, it must be registered using the TTCmd::registerParam()	
method. (See "Registering parameters" and "Binding OUT or IN OUT parameters".)	
In the TimesTen implementation, the REF CURSOR is attached to a separate statement handle. The application prepares a SQL statement that has a REF CURSOR parameter on one statement handle, then, before executing the statement, binds a second statement handle as the value of the REF CURSOR. After the statement is executed, the application can describe, bind, and fetch the results using the same APIs as for any result set.	
In TTClasses, because a TTCmd	
object encapsulates a single SQL statement, two TTCmd	
objects are used to support this REF CURSOR model.	
Important:	
Example 2-12 below demonstrates the following steps for using a REF CURSOR in TTClasses.	
TTCmd	
object for the PL/SQL statement that returns a REF CURSOR (cmdPLSQL	
in the example). TTCmd*	
pointer to point to a second TTCmd	
object for the REF CURSOR (cmdRefCursor	
in the example). TTCmd	
object (cmdPLSQL	
) to prepare the PL/SQL statement. TTCmd::registerParam()	
method of the first TTCmd	
object to register the REF CURSOR as an OUT	
parameter. TTCmd	
object to execute the statement. TTCmd::getParam()	
method of the first TTCmd	
object to retrieve the REF CURSOR into the second TTCmd	
object (using &cmdRefCursor	
). There is a getParam(int	
paramNo	
, TTCmd**	
rcCmd	
)	
signature for REF CURSORs. TTCmd	
object for the REF CURSOR and process as desired. TTCmd	
object. TTCmd	
object for the REF CURSOR. delete	
statement to delete the TTCmd	
object for the REF CURSOR. Example 2-12 Using a REF CURSOR	
This example retrieves and processes a REF CURSOR from a PL/SQL anonymous block. See the preceding steps for an explanation.	
Notes:	
Each row in a table has a unique identifier known as its rowid. An application can retrieve the rowid of a row from the ROWID	
pseudocolumn. Rowids can be represented in either binary or character format.	
An application can specify literal rowid values in SQL statements, such as in WHERE	
clauses, as CHAR	
constants enclosed in single quotes.	
The ODBC SQL type SQL_ROWID	
corresponds to the SQL type ROWID	
.	
For parameters and result set columns, rowids are convertible to and from the C types SQL_C_BINARY	
, SQL_C_WCHAR	
, and SQL_C_CHAR	
. SQL_C_CHAR	
is the default C type for rowids. The size of a rowid is 12 bytes as SQL_C_BINARY	
, 18 bytes as SQL_C_CHAR	
, and 36 bytes as SQL_C_WCHAR	
.	
Note that TTClasses has always supported rowids as character strings; however, a TTClasses application can now pass a rowid to a PL/SQL anonymous block as a ROWID	
type instead of a string. This involves using the TTCmd::registerParam()	
method to register the rowid input parameter as SQL_ROWID	
type, as shown in Example 2-13.	
Example 2-13 Using a rowid	
Refer to "ROWID data type" and "ROWID specification" in Oracle TimesTen In-Memory Database SQL Reference for additional information about rowids and the ROWID	
data type, including usage and life.	
Note: Oracle TimesTen In-Memory Database does not support the PL/SQL typeUROWID .	
TimesTen offers two ways for you to limit the time for SQL statements or procedure calls to execute, by setting either a timeout value or a threshold value. For the former, if the timeout duration is reached, the statement stops executing and an error is thrown. For the latter, if the threshold is reached, an SNMP trap is thrown but execution continues.	
The query timeout limit has effect only when a SQL statement is actively executing. A timeout does not occur during commit or rollback.	
Use the TTCmd	
methods setQueryTimeout()	
and setQueryThreshold()	
to specify these settings. There is also a getQueryThreshold()	
method to read the current threshold setting.	
In TTClasses, these features can be operated only at the statement level, not the connection level.	
For related information, see "Setting a timeout or threshold for executing SQL statements" in Oracle TimesTen In-Memory Database C Developer's Guide.	
TTClasses has a logging facility that allows applications to capture debugging information. TTClasses logging is associated with processes. You can enable logging for a specific process and produce a single output log stream for the process.	
TTClasses supports different levels of logging information. See Example 2-15 for more information about what is printed at each log level.	
Log level WARN	
is very useful while developing a TTClasses application. It can also be appropriate for production applications because in this log level, database query plans are generated.	
Note that at the more verbose log levels (INFO	
and DEBUG	
), so much log data is generated that application performance can be adversely affected. Do not use these log levels in a production environment.	
Although TTClasses logging can print to either stdout	
or stderr	
, the best approach is to write directly to a TTClasses log file. Example 2-14 demonstrates how to print TTClasses log information at log level WARN	
into the /tmp/ttclasses.log	
output file.	
Note: TTClasses logging is disabled by default.	
Example 2-14 Printing TTClasses log information	
First-time users of TTClasses should spend a little time experimenting with TTClasses logging to see how errors are printed at log level ERROR	
and how much information is generated at log levels INFO	
and DEBUG	
.	
See "TTGlobal" for more information about using the TTGlobal	
class for logging.	
The Transaction Log API (XLA) is a set of functions that enable you to implement applications that monitor TimesTen for changes to specified database tables and receive real-time notification of these changes.	
One of the purposes of XLA is to provide a high-performance, asynchronous alternative to triggers.	
XLA returns notification of changes to specific tables in the database and information about the transaction boundaries for those database changes. This section shows how to acknowledge updates only at transaction boundaries (a common requirement for XLA applications), using one example that does not use and one example that does use transaction boundaries.	
This section covers the following topics:	
For additional information about XLA, see "XLA and TimesTen Event Management" in Oracle TimesTen In-Memory Database C Developer's Guide. In addition, the TTClasses Quick Start demos include XLA demos. See "About the TimesTen TTClasses demos".	
Important: As noted in "Considerations when using an ODBC driver manager (Windows)", XLA functionality does not work when you use an ODBC driver manager.	
Example 2-15 below shows basic usage of XLA, without using transaction boundaries.	
Inside the HandleChange()	
method, depending on whether the record is an insert, update, or delete, the appropriate method from among the following is called: HandleInsert()	
, HandleUpdate()	
, or HandleDelete()	
.	
It is inside HandleChange()	
that you can access the flag that indicates whether the XLA record is the last record in a particular transaction. Thus there is no way in the Example 2-15 loop for the HandleChange()	
method to pass the information about the transaction boundary to the loop, so that this information can influence when to call conn.ackUpdates()	
.	
This is not an issue under typical circumstances of only a few records per transaction. Usually only a few records are returned when you ask XLA to return at most 1000 records with a fetchUpdatesWait()	
call. XLA returns records as quickly as it can, and even if huge numbers of transactions are occurring in the database, you usually can pull the XLA records out quickly, a few at a time, and XLA usually makes sure that the last record returned is on a transaction boundary. For example, if you ask for 1000 records from XLA but only 15 are returned, it is highly probable that the 15th record is at the end of a transaction.	
XLA guarantees one of the following:	
Or:	
Example 2-15 TTClasses XLA program	
This example shows a typical main loop of a TTClasses XLA program.	
XLA applications should verify whether the last record in a batch of XLA records has a transaction boundary, and call ackUpdates()	
only on transaction boundaries. This way, when the application or system or database fails, the XLA bookmark is at the start of a transaction after the system recovers. This is especially important when operations involve a large number of rows. If a bulk insert, update, or delete operation has been performed on the database and the XLA application asks for 1000 records, it may or may not receive all 1000 records. The last record returned through XLA will probably not have the end-of-transaction flag. In fact, if the transaction has made changes to 10,000 records, then clearly a minimum of 10 blocks of 1000 XLA records must be fetched before reaching the transaction boundary.	
Calling ackUpdates()	
for every transaction boundary is not recommended, however, because ackUpdates()	
is a relatively expensive operation. Users need to balance overall system throughput with recovery time and disk space requirements. (Recall that a TimesTen transaction log file cannot be deleted by a checkpoint operation if XLA has a bookmark that references that log file. See "ttLogHolds" in Oracle TimesTen In-Memory Database Reference for related information.) Depending on system throughput, recovery time, and disk space requirements, some applications may find it appropriate to call ackUpdates()	
once or several times per minute, while other applications may need only call it once or several times per hour.	
The HandleChange()	
method has a second parameter to allow passing information between HandleChange()	
and the main XLA loop. Compare Example 2-15 above with Example 2-16, specifically the do_acknowledge	
setting and the &do_acknowledge	
parameter of the HandleChange()	
call.	
Example 2-16 TTClasses XLA program using transaction boundaries	
In this example, ackUpdates()	
is called only when the do_acknowledge	
flag indicates that this batch of XLA records is at a transaction boundary.	
In addition to this change to the XLA main loop, the HandleChange()	
method must be overloaded to have two parameters (ttXlaUpdateDesc_t*, void*	
pData	
)	
. See "HandleChange()". Note that the Quick Start xlasubscriber1	
demo shows the use of a pData	
parameter. (See "About the TimesTen TTClasses demos".)	
"Considering TimesTen features for access control" provides a brief overview of how TimesTen access control affects operations in the database. Access control includes impact on XLA.	
Any XLA functionality requires the system privilege XLA	
. This includes connecting to TimesTen as an XLA reader, executing XLA-related TimesTen C functions, and executing XLA-related TimesTen built-in procedures.	
You can refer to "Access control impact on XLA" in Oracle TimesTen In-Memory Database C Developer's Guide for additional details.	
Note: A user with theXLA privilege can be notified of any DML statement that executes in the database. As a result, the user with XLA privilege can obtain information about database objects that he or she has not otherwise been granted access to. In practical terms, the XLA privilege is effectively the same as the SELECT ANY TABLE privilege.	
This reference chapter contains descriptions of TTClasses external classes and their methods. It is divided into the following sections:	
Note: Most methods documented in this chapter also support a signature with aTTStatus& parameter at the end of the calling sequence. This is for situations when you want to suppress exceptions for the method call and instead process the TTStatus object manually for errors. These signatures are not specifically documented, however, because this is not a recommended mode of use. For additional information and an example, see the Usage section under "TTStatus".	
This section discusses the following classes:	
The TTGlobal	
class provides a logging facility within TTClasses.	
The TTGlobal	
logging facility can be very useful for debugging problems inside a TTClasses program. Note, however, that the most verbose logging levels (TTLog::TTLOG_INFO	
and TTLog::TTLOG_DEBUG	
) can generate an extremely large amount of output. Use these logging levels during development or when trying to diagnose a bug instead of during production.	
When logging from a multithreaded program, you may encounter a problem where log output from different program threads is intermingled when written to disk. To alleviate this problem, disable ostream	
buffering with the ios_base::unitbuf	
I/O stream manipulator, as in the following example, which sends TTClasses logging to the app_log.txt	
file at logging level TTLog::TTLOG_ERR	
.	
See "Using TTClasses logging" for more information about using TTGlobal	
.	
Method	Description
---	---
disableLogging()	Disables TTClasses logging.
setLogLevel()	Specifies the verbosity level of TTClasses logging.
setLogStream()	Specifies where TTClasses logging information should be sent.
sqlhenv()	Returns the underlying ODBC environment object (type SQLHENV).
This method disables all TTClasses logging. Note that the following two statements are identical:	
This method specifies the verbosity level of TTClasses logging. Table 3-1 describes TTClasses logging levels. The levels are cumulative.	
Table 3-1 TTClasses logging levels	
Logging level	Description
---	---
No logging.	
Logs fatal errors (serious misuse of TTClasses methods).	
Logs all errors, such as	
(Default) Also logs warnings and all calls to	
Also logs informational messages, such as calls to most methods on	
Also logs debugging information, such as all bound parameter values for each call to	
To set the logging level to TTLog::TTLOG_ERR	
, for example, add the following line to your program:	
Specifies where TTClasses logging information should be sent. By default, if TTClasses logging is enabled, logging is to stderr	
. Using this method, an application can specify logging to a file (or any other ostream&	
), such as in the following example that sets logging to app_log.txt	
:	
The TTStatus	
class is used by other classes in the TTClasses library to catch error and warning exceptions. You can think of TTStatus	
as a value-added C++ wrapper around the SQLError	
ODBC function.	
Beginning with TimesTen release 11.2.1.6.0, the preferred mode for TTClasses error handling is for a TTStatus	
object to be thrown as an exception whenever an error or warning occurs. To accomplish this, you must build the TTClasses library, as well as your applications, with the TTEXCEPT	
preprocessor variable defined. This allows C++ applications to use {try/catch}	
blocks to detect and recover from failure.	
Example 3-1 shows typical use of TTStatus	
. Also see Example 3-3, "Exception handling, distinguishing between errors and warnings" below.	
Example 3-1 Exception handling	
Another supported (but not typical) mode of use for TTStatus	
is to selectively suppress exceptions and allow the application to manually check a TTStatus	
object for error conditions. You can use this mode for a particular method call by initializing a TTStatus	
object with the value TTStatus::DO_NOT_THROW	
, then passing that object as the last parameter of a method call. Most TTClasses methods documented in this chapter also support a signature with this TTStatus&	
parameter as the last parameter in the calling sequence.	
Example 3-2 that follows shows this usage.	
TTStatus	
has the following subclasses:	
TTError	
is a subclass of TTStatus	
and is used to encapsulate ODBC errors (return codes SQL_ERROR	
and SQL_INVALID_HANDLE	
).	
TTWarning	
is a subclass of TTStatus	
and is used to encapsulate ODBC warnings (return code SQL_SUCCESS_WITH_INFO	
).	
ODBC warnings are usually not as serious as ODBC errors and should be handled with different logic. Simply logging ODBC warnings is usually appropriate, but ODBC errors should typically be handled programmatically.	
Example 3-3 shows usage of the TTError	
and TTWarning	
subclasses.	
Example 3-3 Exception handling, distinguishing between errors and warnings	
This example shows the use of TTError	
and TTWarning	
. TTError	
objects are thrown for ODBC errors. TTWarning	
objects are thrown for ODBC warnings.	
Member	Description
---	---
rc	Return code from the failing ODBC call. Possible values for this field are SQL_SUCCESS , SQL_SUCCESS_WITH_INFO , SQL_ERROR , SQL_NO_DATA_FOUND , and SQL_INVALID_HANDLE .
native_error	TimesTen native error number (if any) for the failing ODBC call.
odbc_error	ODBC error state for the failing ODBC call.
err_msg	ASCII printable error message for the failing ODBC call.
TTSTATUS_ENUM	Use the value TTStatus::DO_NOT_THROW to initialize a TTStatus object to suppress exceptions for a method call. See Example 3-2.
Method	Description
---	---
isConnectionInvalid()	Indicates whether the database connection is invalid.
ostream()	Prints errors to a stream.
resetErrors()	Resets the TTStatus object or just the rc value, as specified.
throwError()	This is an alternative mechanism to throw an error from the TTStatus object (not typical use).
Returns TRUE	
if the database connection is invalid, or FALSE	
if it is valid. Specifically, "invalid" refers to situations when a TimesTen error 846 or 994 is encountered. See "Errors 0 - 999" in Oracle TimesTen In-Memory Database Error Messages and SNMP Traps for information about those errors.	
This method prints the error to a stream.	
Use this method to reset a TTStatus	
object (relevant only when using method calls with TTStatus&	
parameters). Use a value of TRUE	
to completely reset the TTStatus	
object, or FALSE	
(default) to reset only the rc	
value.	
Assuming exceptions are enabled (see TTStatus	
"Usage"), this is an alternative, but not typical, way to throw an exception. In most cases the following two blocks of code are equivalent, but the former is more typical:	
Or:	
The TTConnection	
class encapsulates the concept of a connection to a database. You can think of TTConnection	
as a value-added C++ wrapper around the ODBC connection (HDBC	
) handle.	
All applications that use TimesTen must create at least one TTConnection	
object.	
Multithreaded applications that use TimesTen from multiple threads simultaneously must create multiple TTConnection	
objects. Use one of the following strategies:	
TTConnection	
object for each thread when the thread is created. TTConnection	
objects when the application process starts. They are shared by the threads in the process. See "TTConnectionPool" for additional information about this option. A TimesTen connection cannot be inherited from a parent process. If a process opens a database connection before creating a child process, the child cannot use the same connection. Any attempt by a child to use a database connection of a parent will likely cause application failure or a core dump.	
Applications should not frequently make and then drop database connections, because connecting and disconnecting are both relatively expensive operations. In addition, short-lived connections eliminate the benefits of prepared statements. (See "Using TTCmd, TTConnection, and TTConnectionPool" for information about preparing statements.) Instead, establish database connections at the beginning of the application process and reuse them for the life of the process.	
Note: If you have reason to manipulate the underlying ODBC connection object directly, use theTTConnection::getHdbc() method.	
Note that privilege to connect to a database must be granted to users through the CREATE SESSION	
privilege, either directly or through the PUBLIC	
role. See "Access control for connections".	
Member	Description
---	---
DRIVER_COMPLETION_ENUM	This is to specify whether there will be a prompt for the database to connect to (also depending on whether a database is specified in the connect string). Valid values are
Method	Description
---	---
Commit()	Commits a transaction to the database.
CompactDataStore()	Compacts the database by calling the ttCompact or ttCompactTS TimesTen built-in procedure, as specified.
Connect()	Opens a new database connection.
Disconnect()	Closes a database connection.
DurableCommit()	Performs a durable commit operation on the database.
getHdbc()	Returns the ODBC connection handle (type HDBC) associated with this connection.
GetTTContext()	Returns the connection context value.
isConnected()	Returns TRUE if the object is connected to TimesTen.
Rollback()	Rolls back changes made to the database through this connection since the last call to Commit() or Rollback() .
SetAutocommitOff()	Disables autocommit for the connection.
SetAutoCommitOn()	Enables autocommit for the connection.
SetIsoReadCommitted()	Sets the transaction isolation level of the connection to be TXN_READ_COMMITTED .
SetIsoSerializable()	Sets the transaction isolation level of the connection to be TXN_SERIALIZABLE .
SetLockWait()	Sets the lock timeout interval for the connection by calling the ttLockWait TimesTen built-in procedure.
SetPrefetchCloseOff()	Turns off the TT_PREFETCH_CLOSE connection option.
SetPrefetchCloseOn()	Turns on the TT_PREFETCH_CLOSE connection option. This is useful for optimizing SELECT query performance for client/server connections to TimesTen.
SetPrefetchCount()	Allows a user application to tune the number of rows that the TimesTen ODBC driver SQLFetch call will prefetch for a SELECT statement.
Commits a transaction to the database. All other operations performed on this connection since the last call to the Commit()	
or Rollback()	
method will be committed. A TTStatus	
object is thrown as an exception if an error occurs. Also see Rollback()	
.	
Compacts the database, as specified:	
blocks	
value less than or equal to zero, it compacts the permanent and temporary data partitions in their entirety by calling the ttCompact	
TimesTen built-in procedure. blocks	
value greater than zero, it compacts a portion of the database, according to the number of blocks specified, by calling the ttCompactTS	
built-in procedure. Note: This method is supported for backward compatibility. New applications should not call it.	
Opens a new database connection. The connection string specified in the connStr	
parameter is used to create the connection. Specify a user and password, either as part of the connect string or as separate parameters, or a DRIVER_COMPLETION_ENUM	
value (refer to "Public members"). Also see Disconnect()	
.	
Note that privilege to connect to a database must be granted to users through the CREATE SESSION	
privilege, either directly or through the PUBLIC	
role. See "Access control for connections".	
Example 3-4 Using the Connect() method and checking for errors	
A TTStatus	
object is thrown as an exception if an error occurs. Any exception warnings are usually informational and can often be safely ignored. The following logic is preferred for use of the Connect()	
method.	
Note that TTWarning	
and TTError	
are subclasses of TTStatus	
.	
Closes a database connection. A TTStatus	
object is thrown as an exception if an error occurs. Also see Connect()	
.	
Performs a durable commit operation on the database. A durable commit operation flushes the in-memory transaction log buffer to disk. It calls the ttDurableCommit	
TimesTen built-in procedure.	
See "ttDurableCommit" in Oracle TimesTen In-Memory Database Reference.	
Returns the context value of the connection, a value that is unique for each database connection. The context of a connection can be used to correlate TimesTen connections with PIDs (process IDs) using the ttStatus	
TimesTen utility, for example.	
The context value is returned through the output	
parameter, which requires an array of CHAR[17]	
or larger.	
This method calls the ttContext	
TimesTen built-in procedure. See "ttContext" in Oracle TimesTen In-Memory Database Reference.	
Returns TRUE	
if the object is connected to TimesTen using the Connect()	
method or FALSE	
if not.	
Rolls back (cancels) a transaction. Any changes made to the database through this connection since the last call to Commit()	
or Rollback()	
will be undone. A TTStatus	
object is thrown as an exception if an error occurs. Also see Commit()	
.	
Disables autocommit for the connection. Also see SetAutoCommitOn()	
.	
This method is automatically called by TTConnection::Connect()	
, because TimesTen runs with optimal performance only with autocommit disabled.	
Note that when autocommit is disabled, committing SELECT	
statements requires explicit calls to TTCmd::Close()	
.	
Enables autocommit for the connection, which means that every SQL statement occurs in its own transaction. Also see SetAutocommitOff()	
.	
SetAutoCommitOn()	
is generally not advisable, because TimesTen runs much faster with autocommit disabled.	
Sets the transaction isolation level of the connection to be TXN_READ_COMMITTED	
. The Read Committed isolation level offers the best combination of single-transaction performance and good multiconnection concurrency. Also see SetIsoSerializable()	
.	
Sets the transaction isolation level of the connection to be TXN_SERIALIZABLE	
. In general, Serializable isolation level offers fair individual transaction performance but extremely poor concurrency. Read Committed isolation level is preferable over Serializable isolation level in almost all situations. Also see SetIsoReadCommitted()	
.	
Sets the lock timeout interval for the connection by calling the ttLockWait	
TimesTen built-in procedure with the secs	
parameter. In general, a two-second or three-second lock timeout is sufficient for most applications. The default lock timeout interval is 10 seconds.	
See "ttLockWait" in Oracle TimesTen In-Memory Database Reference.	
Turns off the TT_PREFETCH_CLOSE	
connection option. Also see SetPrefetchCloseOn()	
.	
Turns on the TT_PREFETCH_CLOSE	
connection option, which is useful for optimizing SELECT	
query performance for client/server connections to TimesTen. Note that this method provides no benefit for an application using a direct connection to TimesTen. Also see SetPrefetchCloseOff()	
.	
See "Bulk fetch rows of TimesTen data" in Oracle TimesTen In-Memory Database C Developer's Guide for more information about TT_PREFETCH_CLOSE	
.	
Allows a user application to tune the number of rows that the TimesTen ODBC driver internally fetches at a time for a SELECT	
statement. The value of numrows	
must be between 1 and 128, inclusive.	
Note: This method is not equivalent to executingTTCmd::FetchNext() multiple times. Instead, proper use of this parameter reduces the amount of time for each call to TTCmd::FetchNext() .	
See "Bulk fetch rows of TimesTen data" in Oracle TimesTen In-Memory Database C Developer's Guide for more information about TT_PREFETCH_COUNT	
.	
The TTConnectionPool	
class is used by multithreaded applications to manage a pool of connections.	
In general, multithreaded applications can be written using one of two basic strategies:	
TTConnectionPool	
class is not necessary. TTConnectionPool	
class assists with. Note: For best overall performance, TimesTen recommends having one or two concurrent direct connections to the database for each CPU of the database server. For no reason should your number of concurrent direct connections (the size of your connection pool) be more than twice the number of CPUs on the database server. In client/server mode, however, TimesTen supports many more connections per CPU efficiently.	
To use the TTConnectionPool	
class, an application creates a single instance of the class. It then creates several TTConnection	
objects, instances of either the TTConnection	
class or a user class that extends it, but does not call their Connect()	
methods directly. Instead, the application uses the TTConnectionPool::AddConnectionToPool()	
method to place connection objects into the pool, then calls TTConnectionPool::ConnectAll()	
to establish all the connections to TimesTen. In the background, ConnectAll()	
loops through all the TTConnection	
objects to call their Connect()	
methods.	
Threads for TimesTen applications use the getConnection()	
and freeConnection()	
methods to get and return idle connections.	
Important: If you want to useTTConnectionPool and extend TTConnection , do not override the TTConnection::Connect() method that has driverCompletion in the calling sequence, because there is no corresponding TTConnectionPool::ConnectAll() method. Instead, override either of the following Connect() methods: virtual void Connect(const char* connStr) virtual void Connect(const char* connStr, const char* username, const char* password) Then use the appropriate corresponding	
Note that privilege to connect to a database must be granted to users through the CREATE SESSION	
privilege, either directly or through the PUBLIC	
role. See "Access control for connections".	
Method	Description
---	---
AddConnectionToPool()	Adds a TTConnection object (possibly an object of a class derived from TTConnection) to the connection pool.
ConnectAll()	Connects all the TTConnection objects to TimesTen simultaneously.
DisconnectAll()	Disconnects all connections in the connection pool from TimesTen.
freeConnection()	Returns a connection to the pool for reassignment to another thread.
getConnection()	Checks out an idle connection from the connection pool for a thread.
getStats()	Queries the TTConnectionPool object for status information.
This method is used to add a TTConnection	
object (possibly an object of a class derived from TTConnection	
) to the connection pool. It returns -1 if there is an error. Also see freeConnection()	
.	
After TTConnection	
objects have been added to the connection pool by AddConnectionToPool()	
, the ConnectAll()	
method can be used to connect all of the TTConnection	
objects to TimesTen simultaneously. The connection string specified in the connStr	
parameter is used to create the connection. Specify a user and password, either as part of the connect string or as separate parameters. Also see DisconnectAll()	
A TTStatus	
object is thrown as an exception if an error occurs.	
Note that privilege to connect to a database must be granted to users through the CREATE SESSION	
privilege, either directly or through the PUBLIC	
role. See "Access control for connections".	
Disconnects all connections in the connection pool from TimesTen. Also see ConnectAll()	
.	
Applications must call DisconnectAll()	
before termination to avoid overhead associated with process failure analysis and recovery. A TTStatus	
object is thrown as an exception if an error occurs.	
Returns a connection to the pool for reassignment to another thread. Applications should not free connections that are in the middle of a transaction. TTConnection::Commit()	
or Rollback()	
should be called immediately before freeConnection()	
. Also see AddConnectionToPool()	
.	
Checks out an idle connection from the connection pool for use by a thread. A pointer to an idle TTConnection	
object is returned. The thread should then perform a transaction, ending with either Commit()	
or Rollback()	
, and then should return the connection to the pool using the freeConnection()	
method.	
If no idle connections are in the pool, the thread calling getConnection()	
will block until a connection is returned to the pool by a call to freeConnection()	
. An optional timeout, in milliseconds, can be provided. If this is provided, getConnection()	
waits for a free connection for no more than timeout_millis	
milliseconds. If no connection is available in that time then getConnection()	
returns NULL	
to the caller.	
Queries the TTConnectionPool	
for status information. The following data are returned:	
nGets	
: Number of calls to getConnection()	
. nFrees	
: Number of calls to freeConnection()	
. nWaits	
: Number of times a call to getConnection()	
had to wait before returning a connection. nTimeouts	
: Number of calls to getConnection()	
that timed out. maxInUse	
: High point for the most number of connections in use simultaneously. nForcedCommits	
: Number of times that freeConnection()	
had to call Commit()	
on a connection before checking it into the pool. If this counter is nonzero, the user application is not calling TTConnection::Commit()	
or Rollback()	
before returning a connection to the pool. A TTCmd	
object encapsulates a single SQL statement that will be used multiple times in an application program. You can think of TTCmd	
as a value-added C++ wrapper around the ODBC statement (HSTMT	
) handle.	
TTCmd	
has three categories of public methods:	
Important: SeveralTTCmd methods return an error when you use an ODBC driver manager. See "Considerations when using an ODBC driver manager (Windows)" for information.	
Each SQL statement executed multiple times in a program should have its own TTCmd	
object. Each of these TTCmd	
objects should be prepared once during program initialization, then executed with the Execute()	
method multiple times as the program runs.	
Only database operations that are to be executed a small number of times should use the ExecuteImmediate()	
method. Note that ExecuteImmediate()	
is not compatible with any type of SELECT	
statement. All queries must use Prepare()	
plus Execute()	
instead. ExecuteImmediate()	
is also incompatible with INSERT	
, UPDATE	
, or DELETE	
statements that are subsequently polled using getRowcount()	
to see how many rows were inserted, updated or deleted. These limitations have been placed on ExecuteImmediate()	
to discourage its use except in a few particular situations (for example, for creating or dropping a table).	
Note: If you have reason to manipulate the underlying ODBC statement object directly, use theTTCmd::getHandle() method.	
Note that TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. See "Considering TimesTen features for access control".	
Member	Description
---	---
TTCMD_PARAM_INPUTOUTPUT_TYPE	This is used to specify whether a parameter is IN , OUT , or IN OUT when registering the parameter. Supported values are PARAM_IN , PARAM_INOUT , and PARAM_OUT . See "Registering parameters".
Method	Description
---	---
Close()	Closes the result set when the application has finished fetching rows.
Drop()	Frees a prepared SQL statement and all resources associated with it.
Execute()	Invokes a SQL statement that has been prepared for execution.
ExecuteImmediate()	Invokes a SQL statement that has not been previously prepared.
FetchNext()	Fetches rows from the result set, one at a time. It returns 0 when a row was successfully fetched or 1 when no more rows are available.
getColumn()	Retrieves the value in the specified column of the current row of the result set.
getColumnLength()	Returns the length of the specified column, in bytes.
getColumnNullable()	Retrieves the value in the specified column of the current row of the result set and returns a boolean to indicate whether the value is NULL .
getHandle()	Retrieves the underlying ODBC statement handle.
getMaxRows()	Returns the current limit on the number of rows returned by a SELECT statement.
getNextColumn()	Retrieves the value in the next column of the current row of the result set.
getNextColumnNullable()	Retrieves the value in the next column of the current row of the result set and returns a boolean to indicate whether the value is NULL .
getParam()	Each call gets the output value of a specified OUT or IN OUT parameter after executing a prepared SQL statement.
getQueryThreshold()	Retrieves the query threshold value.
getRowCount()	Returns the number of rows that were affected by the recently executed SQL operation.
isColumnNull()	Indicates whether the value in the specified column of the current row is NULL .
Prepare()	Associates a SQL statement with the TTCmd object.
printColumn()	Prints the value in the specified column of the current row to an output stream.
registerParam()	Registers a parameter for binding. This is required for OUT or IN OUT parameters.
RePrepare()	Allows a statement to be re-prepared.
setMaxRows()	Sets a limit on the number of rows returned by a SELECT statement.
setParam()	Each call sets the value of a specified parameter before executing a prepared SQL statement.
setParamLength()	Sets the length, in bytes, of the specified input parameter.
setParamNull()	Sets the value of a parameter to NULL before executing a prepared SQL statement.
setQueryThreshold()	Sets a threshold time limit for execution of each SQL statement. If it is exceeded, a warning is written to the support log and an SNMP trap is thrown.
setQueryTimeout()	Sets a timeout value for SQL statements.
If a SQL SELECT	
statement is executed using the Execute()	
method, a cursor is opened which may be used to fetch rows from the result set. When the application is finished fetching rows from the result set, it must be closed with the Close()	
method.	
Failure to close the result set may result in locks being held on rows for too long, causing concurrency problems, memory leaks, and other errors.	
A TTStatus	
object is thrown as an exception if an error occurs.	
If a prepared SQL statement will not be used in the future, the statement and resources associated with it can be freed by a call to the Drop()	
method. The TTCmd	
object may be reused for another statement if Prepare()	
is called again.	
It is more efficient to use multiple TTCmd	
objects to execute multiple SQL statements. Use the Drop()	
method only if it is certain that a particular SQL statement will not be used again.	
A TTStatus	
object is thrown as an exception if an error occurs.	
This method invokes a SQL statement that has been prepared for execution with the Prepare()	
method, after any necessary parameter values are defined using setParam()	
calls.	
If the SQL statement is a SELECT	
statement, this method executes the query but does not return any rows from the result set. Use the FetchNext()	
method to fetch rows from the result set one at a time. Use the Close()	
method to close the result set when all appropriate rows have been fetched. For SQL statements other than SELECT	
, no cursor is opened, and a call to the Close()	
method is not necessary.	
A TTStatus	
object is thrown as an exception if an error occurs.	
Note that TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. Access control privileges are checked both when SQL is prepared and when it is executed in the database, with most of the performance cost coming at prepare time. See "Considering TimesTen features for access control".	
This method invokes a SQL statement that has not been previously prepared.	
ExecuteImmediate()	
is a convenient alternative to using Prepare()	
and Execute()	
when a SQL statement is to be executed only a small number of times. Use ExecuteImmediate()	
for DDL statements such as CREATE TABLE	
and DROP TABLE	
, and infrequently used DML statements that do not return a result set (for example, DELETE FROM	
table_name	
).	
ExecuteImmediate()	
is incompatible with SQL statements that return a result set. In addition, statements executed through ExecuteImmediate()	
cannot subsequently be queried by getRowCount()	
to get the number of rows affected by a DML operation. Because of this, ExecuteImmediate()	
calls getRowCount()	
automatically, and its value is the integer return value of this method.	
A TTStatus	
object is thrown as an exception if an error occurs.	
After executing a prepared SQL SELECT	
statement using the Execute()	
method, use the FetchNext()	
method to fetch rows from the result set, one at a time.	
After fetching a row of the result set, use the appropriate overloaded getColumn()	
method to fetch values from the current row.	
If no more rows remain in the result set, FetchNext()	
returns 1. If a row is returned, FetchNext()	
returns 0.	
After executing a SELECT	
statement using the Execute()	
method, the result set must be closed using the Close()	
method after all desired rows have been fetched. Note that after the Close()	
method is called, the FetchNext()	
method cannot be used to fetch additional rows from the result set.	
A TTStatus	
object is thrown as an exception if an error occurs.	
The getColumn()	
method, as well as the getColumnNullable()	
method, fetches the values for columns of the current row of the result set. Before getColumn()	
or getColumnNullable()	
can be called, the FetchNext()	
method must be called to fetch the next (or first) row from the result set of a SELECT	
statement. SQL statements are executed using the Execute()	
method.	
Each getColumn()	
call retrieves the value associated with a particular column. Columns are referred to by ordinal number, with "1" indicating the first column specified in the SELECT	
statement. In all cases the first argument passed to the getColumn()	
method, cno	
, is the ordinal number of the column whose value is to be fetched. The second argument, valueP	
, is a pointer to a variable which is to receive the value of the specified column. The type of this argument varies depending on the type of the column being returned. For NCHAR	
, NVARCHAR	
, and binary types, as shown in the table, the method call also includes byteLenP	
, a pointer to an integer value for the number of bytes.	
The TTClasses library does not support a large set of data type conversions. The appropriate version of getColumn()	
must be called for each output column in the prepared SQL. Calling the wrong version (attempting to fetch an integer column into a char*	
value, for example) may result in program failure.	
Integer type methods include one of the following functions: SQLTINYINT	
, SQLSMALLINT	
, SQLINTEGER	
, or SQLBIGINT	
. They are appropriate only for columns with the scale parameter set to zero, such as NUMBER(
p	
)	
or NUMBER(
p	
,0)	
. The functions have the following range of precision.	
Function	Precision Range
---	---
SQLTINYINT	0<=p <=2
SQLSMALLINT	0<=p <=4
SQLINTEGER	0<=p <=9
SQLBIGINT	0<=p <=18
To ensure that all values in the column will fit into the variable that the application uses to retrieve information from the database, you can use SQLBIGINT	
for all table columns of data type NUMBER(
p	
)	
, where 0 <= p	
<= 18. For example:	
Table 3-2 shows the supported SQL data types and the appropriate versions of getColumn()	
and getColumnNullable()	
to use for each parameter type.	
Table 3-2 getColumn() variants for supported data types	
Data type	getColumn() variants supported
---	---
getColumn(cno, SQLTINYINT* iP)	
getColumn(cno, SQLSMALLINT* iP)	
getColumn(cno, SQLINTEGER* iP)	
getColumn(cno, SQLBIGINT* iP)	
getColumn(cno, float* fP)	
getColumn(cno, double* dP)	
getColumn(cno, char** cPP) getColumn(cno, char* cP) getColumn(cno, SQLTINYINT* iP) getColumn(cno, SQLSMALLINT* iP) getColumn(cno, SQLINTEGER* iP) getColumn(cno, SQLBIGINT* iP) Note: The	
getColumn(cno, char** cPP) getColumn(cno, char* cP) Note: The	
getColumn(cno, SQLWCHAR** wcPP) getColumn(cno, SQLWCHAR** wcPP, byteLenP) Note: Optionally include the	
getColumn(cno, void** binPP, byteLenP) getColumn(cno, void* binP, byteLenP) Note: The	
getColumn(cno, TIMESTAMP_STRUCT* tsP)	
getColumn(cno, DATE_STRUCT* dP)	
getColumn(cno, TIME_STRUCT* tP)	
Other SQL data types are not supported in this release of the TTClasses library.	
Returns the length, in bytes, of the value in column number cno	
of the current row, not counting the NULL	
terminator. Or it returns SQL_NULL_DATA	
if the value is NULL	
. (For those familiar with ODBC, this is the value stored by ODBC in the last parameter, pcbValue	
, from SQLBindCol	
after a call to SQLFetch	
.) When there is a non-null value, the length returned is between 0 and the column precision, inclusive. See getColumnPrecision()	
.	
For example, assume a VARCHAR2(25)	
column. If the value is null, the length returned is -1. If the value is 'abcde	
', the length returned is 5.	
This method is generally useful only when accessing columns of type CHAR	
, VARCHAR2	
, NCHAR	
, NVARCHAR2	
, BINARY	
, and VARBINARY	
.	
The getColumnNullable()	
method is similar to the getColumn()	
method and supports the same data types and signatures as documented in Table 3-2 above. However, in addition to the behavior of getColumn()	
, the getColumnNullable()	
method also returns a boolean indicating whether the value is the SQL NULL	
pseudo-value. If the value is NULL	
, the second parameter is set to a distinctive value (for example, -9999) and the return value from the method is TRUE	
. If the value is not NULL	
, it is returned through the variable pointed to by the second parameter and the getColumnNullable()	
method returns FALSE	
.	
If you must manipulate the underlying ODBC statement object, use this method to retrieve the statement handle.	
This method returns the current limit of the number of rows returned by a SELECT	
statement from this TTCmd	
object. A return value of 0 means all rows are returned. Also see setMaxRows()	
.	
The getNextColumn()	
method, as well as the getNextColumnNullable()	
method, fetches the value of the next column of the current row of the result set. Before getNextColumn()	
or getNextColumnNullable()	
can be called, the FetchNext()	
method must be called to fetch the next (or first) row from the result set of a SELECT	
statement. When you use getNextColumn()	
, the columns are fetched in order. You cannot change the fetch order.	
See Table 3-2 for the supported SQL data types and the appropriate method version to use for each data type. This information can be used for getNextColumn()	
, except there is no column number parameter for getNextColumn()	
.	
The getNextColumnNullable()	
method is similar to the getNextColumn()	
method. However, in addition to the behavior of getNextColumn()	
, the getNextColumnNullable()	
method returns a boolean indicating whether the value is the SQL NULL	
pseudo-value. If the value is NULL	
, the second parameter is set to a distinctive value (for example, -9999) and the return value from the method is TRUE	
. If the value is not NULL	
, it is returned through the variable pointed to by the second parameter, and the method returns FALSE	
. When you use getNextColumnNullable()	
, the columns are fetched in order. You cannot change the fetch order.	
See Table 3-2 for the supported SQL data types and the appropriate method versions to use for each data type. This information can be used for getNextColumnNullable()	
, except there is no column number parameter for getNextColumnNullable()	
.	
Each getParam()	
version is used to retrieve the value of an OUT	
or IN OUT	
parameter, specified by parameter number, after executing a prepared SQL statement. SQL statements are prepared before use with the Prepare()	
method and are executed with the Execute()	
method. The getParam()	
method is used to provide a variable of appropriate data type for the value for each output parameter after executing the statement.	
The first argument passed to getParam()	
is the position of the parameter for the output value. The first parameter in a SQL statement is parameter 1. The second argument passed to getParam()	
is a variable for the output value. Overloaded versions of getParam()	
take different data types for the second argument.	
The getParam()	
method supports the same data types documented for getColumn()	
in Table 3-2. For NCHAR	
, NVARCHAR	
, and binary types, as shown in that table, the method call includes byteLenP	
, a pointer to an integer value for the number of bytes.	
The getParam()	
return is a boolean that is TRUE	
if the parameter value is NULL	
or FALSE	
otherwise.	
The TTClasses library does not support a large set of data type conversions. The appropriate overloaded version of getParam()	
must be called for each output parameter in the prepared SQL. Calling the wrong version (attempting to use an integer parameter for a char*	
value, for example) may result in program failure.	
See "Binding OUT or IN OUT parameters" for examples using getParam()	
.	
For REF CURSORs, the following signature is supported to use a TTCmd	
object as a statement handle for the REF CURSOR (data type SQL_REFCURSOR	
). See "Working with REF CURSORs" for information and an example.	
Returns the query threshold value, as described for setQueryThreshold()	
.	
If no value has been set with setQueryThreshold()	
, this method returns the value of the ODBC connection option TT_QUERY_THRESHOLD	
(if set) or of the TimesTen general connection attribute QueryThreshold	
.	
This method can be called immediately after Execute()	
to return the number of rows that were affected by the executed SQL operation. For example, after execution of a DELETE	
statement that deletes 10 rows, getRowCount()	
returns 10.	
This method provides another way to determine whether the value in column number cno	
of the current row is NULL	
, returning TRUE	
if so or FALSE	
otherwise.	
Also see information about the getColumnNullable()	
method.	
This method associates a SQL statement with the TTCmd	
object. It takes two parameters:	
TTConnection	
object, which should be connected to the database by a call to TTConnection::Connect()	
. const char*	
parameter for the SQL statement being prepared. Note that TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. Access control privileges are checked both when SQL is prepared and when it is executed in the database, with most of the performance cost coming at prepare time. See "Considering TimesTen features for access control".	
Also see RePrepare()	
.	
Note: To avoid unwanted round trips between client and server when in client/server mode, thePrepare() method performs what is referred to as a "deferred prepare", where the request is not sent to the server until required. See "TimesTen deferred prepare" in Oracle TimesTen In-Memory Database C Developer's Guide for more information.	
This method prints the value in column number cno	
of the current row to the output stream os	
. Use this method for debugging or for demo programs. Use nullString	
to specify what should be printed if the column value is NULL	
(for example, "NULL" or "?").	
Use this method to register a parameter for binding. This is required for OUT	
and IN OUT	
parameters and can also be used as appropriate to specify SQL type, precision (maximum number of digits that are used by the data type, where applicable), and scale (maximum number of digits to the right of the decimal point, where applicable). See "Registering parameters".	
This method allows a statement to be re-prepared. It is useful only when a statement handle in a prepared statement has been invalidated. Also see Prepare()	
.	
This method sets a limit on the number of rows returned by a SELECT	
statement. If the number of rows in the result set exceeds the set limit, the TTCmd::FetchNext()	
method will return 1 if it fetches beyond the maximum number of rows. Also see getMaxRows()	
.	
The default is to return all rows. To reset a limit to again return all rows, call setMaxRows()	
with nMaxRows	
set to 0. The limit is only meaningful for SELECT	
statements.	
All overloaded setParam()	
versions are described in this section.	
Each setParam()	
version is used to set the value of a parameter, specified by parameter number, before executing a prepared SQL statement. SQL statements are prepared before use with the Prepare()	
method and are executed with the Execute()	
method. If the SQL statement contains any parameter markers (the "?" character used where a literal constant would be legal), values must be assigned to these parameters before the SQL statement can be executed. The setParam()	
method is used to define a value for each parameter before executing the statement. See "Dynamic parameters" in Oracle TimesTen In-Memory Database SQL Reference.	
The first argument passed to setParam()	
is the position of the parameter to be set. The first parameter in a SQL statement is parameter 1. The second argument passed to setParam()	
is the value of the parameter. Overloaded versions of setParam()	
take different data types for the second argument.	
The TTClasses library does not support a large set of data type conversions. The appropriate overloaded version of setParam()	
must be called for each parameter in the prepared SQL. Calling the wrong version (attempting to set an integer parameter to a char*	
value, for example) may result in program failure.	
Values passed to setParam()	
are copied into internal buffers maintained by the TTCmd	
object. These buffers are statically allocated and bound by the Prepare()	
method. The parameter value is the value passed into setParam()	
at the time of the setParam()	
call, not the value at the time of a subsequent Execute()	
method call.	
Table 3-3 shows the supported SQL data types and the appropriate versions of setParam()	
to use for each type. Note that SQL data types not mentioned are not supported in this version of TTClasses. For NCHAR	
, NVARCHAR	
, and binary types, as shown in the table, the method call includes byteLen	
, an integer value for the number of bytes.	
See "Binding IN parameters" and "Binding OUT or IN OUT parameters" for examples using setParam()	
.	
Notes:	
Table 3-3 setParam() variants for supported data types	
Data type	setParam() variants supported
---	---
setParam(pno, SQLTINYINT value)	
setParam(pno, SQLSMALLINT value)	
setParam(pno, SQLINTEGER value)	
setParam(pno, SQLBIGINT value)	
setParam(pno, float value)	
setParam(pno, double value)	
setParam(pno, char* valueP) setParam(pno, const char* valueP) setParam(pno, SQLCHAR* valueP) setParam(pno, SQLTINYINT value) setParam(pno, SQLSMALLINT value) setParam(pno, SQLINTEGER value) setParam(pno, SQLBIGINT value) Note: The integer versions are appropriate only for columns declared with the scale parameter set to zero, such as	
setParam(pno, char* valueP) setParam(pno, const char* valueP) setParam(pno, SQLCHAR* valueP)	
setParam(pno, SQLWCHAR* valueP, byteLen)	
setParam(pno, const void* valueP, byteLen)	
setParam(pno, TIMESTAMP_STRUCT* valueP)	
setParam(pno, DATE_STRUCT* valueP)	
setParam(pno, TIME_STRUCT* valueP)	
(Version for non-batch operations.)	
Sets the length, in bytes, of the bound value for an input parameter specified by parameter number, before execution of the prepared statement.	
(Version for non-batch operations.)	
Sets a value of SQL NULL	
for a bound input parameter specified by parameter number.	
Use this method to specify a threshold time limit, in seconds, for SQL statements (not just queries). If the execution time of a statement exceeds the threshold, a warning is written to the support log and an SNMP trap is thrown. Execution continues and is not affected by the threshold. Also see getQueryThreshold()	
.	
The setQueryThreshold()	
method has the same effect as using SQLSetStmtOption	
to set TT_QUERY_THRESHOLD	
or setting the TimesTen general connection attribute QueryThreshold	
.	
See "Setting a timeout or threshold for executing SQL statements".	
Use this method to specify how long, in seconds, any SQL statement (not just a query) will execute before timing out. By default there is no timeout.	
This has the same effect as using SQLSetStmtOption	
to set SQL_QUERY_TIMEOUT	
or setting the TimesTen general connection attribute SqlQueryTimeout	
.	
See "Setting a timeout or threshold for executing SQL statements".	
There are several useful methods for asking questions about properties of the bound input parameters and output columns of a prepared TTCmd	
object. These methods generally provide meaningful results only when a statement has previously been prepared.	
Method	Description
---	---
getColumnName()	Returns the name of the specified column.
getColumnNullability()	Indicates whether data in the specified column can have the value NULL .
getColumnPrecision()	Returns the precision of the specified column.
getColumnScale()	Returns the scale of the specified column.
getColumnType()	Returns the ODBC data type of the specified column.
getNColumns()	Returns the number of output columns.
getNParameters()	Returns the number of input parameters.
getParamNullability()	Indicates whether the value of the specified parameter can be NULL .
getParamPrecision()	Returns the precision of the specified parameter in a prepared statement.
getParamScale()	Returns the scale of the specified parameter in a prepared statement.
getParamType()	Returns the ODBC data type of the specified parameter.
isBeingExecuted	Indicates whether the statement represented by the TTCmd object is being executed.
Indicates whether column number cno	
can NULL	
data. It returns SQL_NO_NULLS	
, SQL_NULLABLE	
, or SQLNULLABLE_UNKNOWN	
.	
Returns the precision of data in column number cno	
, referring to the size of the column in the database. For example, for a VARCHAR2(25)	
column, the precision returned would be 25.	
This value is generally interesting only when generating output from table columns of type CHAR	
, VARCHAR2	
, NCHAR	
, NVARCHAR2	
, BINARY	
, and VARBINARY	
.	
Returns the scale of data in column number cno	
, referring to the maximum number of digits to the right of the decimal point.	
Returns the data type of column number cno	
. The value returned is the ODBC type of the parameter (for example, SQL_INTEGER	
, SQL_REAL	
, SQL_BINARY	
, SQL_CHAR	
) as found in sql.h	
. Additional TimesTen types (SQL_WCHAR	
, SQL_WVARCHAR	
) can be found in the TimesTen header file timesten.h	
.	
Indicates whether parameter number pno	
can have the value NULL	
. It returns SQL_NO_NULLS	
, SQL_NULLABLE	
, or SQLNULLABLE_UNKNOWN	
.	
Note: In earlier releases this method returnedbool instead of int .	
Returns the precision of parameter number pno	
, referring to the maximum number of digits that are used by the data type. Also see information for getColumnPrecision()	
.	
Returns the scale of parameter number pno	
, referring to the maximum number of digits to the right of the decimal point.	
Returns the data type of parameter number pno	
. The value returned is the ODBC type (for example, SQL_INTEGER	
, SQL_REAL	
, SQL_BINARY	
, SQL_CHAR	
) as found in sql.h	
. Additional TimesTen types (SQL_WCHAR	
, SQL_WVARCHAR	
) can be found in the TimesTen header file timesten.h	
.	
TimesTen supports the ODBC function SQLBindParams	
for batch insert, update and delete operations. TTClasses provides an interface to the ODBC function SQLBindParams	
.	
Performing batch operations with TTClasses is similar to performing non-batch operations. SQL statements are first compiled using PrepareBatch()	
. Then each parameter in that statement is bound to an array of values using BindParameter()	
. Finally, the statement is executed using ExecuteBatch()	
.	
See the TTClasses bulktest	
sample program in the TimesTen Quick Start for an example of using a batch operation. Refer to "About the TimesTen TTClasses demos".	
This section describes the TTCmd	
methods that expose the batch INSERT	
, UPDATE	
, and DELETE	
functionality to TTClasses users.	
Method	Description
---	---
batchSize()	Returns the number of statements in the batch.
BindParameter()	Binds an array of values for one parameter of a statement prepared using PrepareBatch() .
ExecuteBatch()	Invokes a SQL statement that has been prepared for execution by PrepareBatch() . It returns the number of rows in the batch that were updated.
PrepareBatch()	Prepares batch INSERT , UPDATE , and DELETE statements.
setParamLength()	Sets the length, in bytes, of the value of the specified bound parameter before execution of the prepared statement.
setParamNull()	Sets the specified bound parameter to NULL before execution of the prepared statement.
The overloaded BindParameter()	
method is used to bind an array of values for a specified parameter in a SQL statement compiled using PrepareBatch()	
. This is to iterate through a batch of repeated executions of the statement with different values. The pno	
parameter indicates the position in the statement of the parameter to be bound, starting from the left, where the first parameter is 1, the next is 2, and so on.	
The batSz	
(batch size) value of this call must match the batSz	
value specified in PrepareBatch()	
, and the bound arrays should contain at least the batSz	
number of values. You must determine the correct data type for each parameter. Note that if an inappropriate type is specified, a runtime error will be written to the TTClasses global logging facility at the TTLog::TTLOG_ERR	
logging level.	
Table 3-4 below shows the supported SQL data types and the appropriate versions of BindParameter()	
to use for each parameter type.	
Before each invocation of ExecuteBatch()	
, the application should fill the arrays with valid parameter values. Note that you can use the setParamNull()	
method to set null values, as described in "setParamNull()".	
For the SQL types TT_CHAR	
, CHAR	
, TT_VARCHAR	
, and VARCHAR2	
, an additional maximum length parameter is required in the BindParameter()	
call:	
maxByteLen	
of type size_t	
is for the maximum length, in bytes, of any value for this parameter position. For the SQL types TT_NCHAR	
, NCHAR	
, TT_NVARCHAR	
, NVARCHAR2	
, BINARY	
, and VARBINARY	
, two additional parameters are required in the BindParameter()	
call, an array of parameter lengths and a maximum length:	
userByteLenP	
is an array of SQLLEN	
parameter lengths, in bytes, to specify the length of each value in the batch for this parameter position in the SQL statement. This array must be at least batSz	
in length and filled with valid length values before ExecuteBatch()	
is called. (You can store SQL_NULL_DATA	
in the array of parameter lengths for a null value, which is equivalent to using the setParamNull()	
batch method.) maxByteLen	
is as described above. This indicates the maximum length value that can be specified in any element of the userByteLenP	
array. For data types where userByteLenP	
is not available (or as an alternative where it is available), you can optionally use the setParamLength()	
batch method to set data lengths, as described in "setParamLength()", and use the setParamNull()	
batch method to set null values, as described in "setParamNull()".	
See Example 3-5 in "ExecuteBatch()" below for examples of BindParameter()	
use.	
Table 3-4 BindParameter() variants for supported data types	
SQL data type	BindParameter() variants supported
---	---
BindParameter(pno, batSz, SQLTINYINT* user_tiP)	
BindParameter(pno, batSz, SQLSMALLINT* user_siP)	
BindParameter(pno, batSz, SQLINTEGER* user_iP)	
BindParameter(pno, batSz, SQLBIGINT* user_biP)	
BindParameter(pno, batSz, float* user_fP)	
BindParameter(pno, batSz, double* user_dP)	
BindParameter(pno, batSz, char** user_cPP, maxByteLen)	
BindParameter(pno, batSz, char** user_cPP, maxByteLen)	
BindParameter(pno, batSz, SQLWCHAR** user_wcPP, userByteLenP, maxByteLen)	
BindParameter(pno, batSz, const void** user_binPP, userByteLenP, maxByteLen)	
BindParameter(pno, batSz, TIMESTAMP_STRUCT* user_tssP)	
BindParameter(pno, batSz, DATE_STRUCT* user_dsP)	
BindParameter(pno, batSz, TIME_STRUCT* user_tsP)	
After preparing a SQL statement with PrepareBatch()	
and calling BindParameter()	
for each parameter in the SQL statement, use ExecuteBatch()	
to execute the statement numRows	
times. The value of numRows	
must be no more than the batSz	
(batch size) value specified in the PrepareBatch()	
and BindParameter()	
calls, and can be less than batSz	
as required by application logic.	
This method returns the number of rows that were updated, with possible values in the range 0 to batSz	
, inclusive. (For those familiar with ODBC, this is the third parameter, *pirow	
, of an ODBC SQLParamOptions	
call. Refer to ODBC API reference documentation for information about SQLParamOptions	
.)	
Before calling ExecuteBatch()	
, the application should fill the arrays of parameters to be bound by BindParameter()	
with valid values.	
A TTStatus	
object is thrown as an exception if an error occurs (often due to violation of a uniqueness constraint). In this event, the return value is not valid and the batch is incomplete and should generally be rolled back.	
Example 3-5 shows how to use the ExecuteBatch()	
method. The bulktest	
Quick Start demo also shows usage of this method. (See "About the TimesTen TTClasses demos".)	
Example 3-5 Using the ExecuteBatch() method	
First, create a table with two columns:	
Here is the sample code. Populate the rows of the table in batches of 50:	
The number of rows updated (num_ins	
in the example) can be less than BATCH_SIZE	
if, for example, there is a violation of a uniqueness constraint on a column. You can use code similar to that in Example 3-6 to check for this situation and roll back the transaction as necessary.	
Note that TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. Access control privileges are checked both when SQL is prepared and when it is executed in the database, with most of the performance cost coming at prepare time. See "Considering TimesTen features for access control".	
Example 3-6 Using ExecuteBatch() and checking against BATCH_SIZE	
PrepareBatch()	
is comparable to the Prepare()	
method but for batch INSERT	
, UPDATE	
, or DELETE	
statements. The cP	
and sqlp	
parameters are used as for Prepare()	
. See "Prepare()".	
The batSz	
(batch size) parameter specifies the maximum number of insert, update, or delete operations that will be performed using subsequent calls to ExecuteBatch()	
.	
A TTStatus	
object is thrown as an exception if an error occurs.	
Note that TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, sequences, and synonyms. Access control privileges are checked both when SQL is prepared and when it is executed in the database, with most of the performance cost coming at prepare time. See "Considering TimesTen features for access control".	
Note: To avoid unwanted round trips between client and server when in client/server mode, thePrepareBatch() method performs what is referred to as a "deferred prepare", where the request is not sent to the server until required. See "TimesTen deferred prepare" in Oracle TimesTen In-Memory Database C Developer's Guide for more information.	
(Version for batch operations.)	
This method sets the length of a bound parameter value before a call to ExecuteBatch()	
. The pno	
argument specifies the parameter number in the SQL statement (where the first parameter is number 1). The rowno	
argument specifies the row number in the array of parameters being bound (where the first row is row number 1). The byteLen	
parameter specifies the desired length, in bytes, not counting the NULL	
terminator. Alternatively, byteLen	
can be set to SQL_NTS	
for a null-terminated string. (It can also be set to SQL_NULL_DATA	
, which is equivalent to using the setParamNull()	
batch method, described next.)	
Notes:	
(Version for batch operations.)	
This method sets a bound parameter value to NULL	
before a call to ExecuteBatch()	
. The pno	
argument specifies the parameter number in the SQL statement (where the first parameter is number 1). The rowno	
argument specifies the row number in the array of parameters being bound (where the first row is row number 1).	
Notes:	
These classes allow you to work with the TimesTen system catalog.	
You can use the TTCatalog	
class to facilitate reading metadata from the system catalog. A TTCatalog	
object contains easily accessible data structures with the information that was read.	
Each TTCatalog	
object internally contains an array of TTCatalogTable	
objects. Each TTCatalogTable	
object contains an array of TTCatalogColumn	
objects and an array of TTCatalogIndex	
objects.	
The following ODBC functions are used inside TTCatalog	
:	
SQLTables()	
SQLColumns()	
SQLSpecialColumns()	
SQLStatistics()	
This section discusses the following classes.	
The TTCatalog	
class is the top-level class used for programmatically accessing metadata information about tables in a database. A TTCatalog	
object contains an internal array of TTCatalogTable	
objects. Apart from the constructor, all public methods of TTCatalog	
are used to gain read-only access to that TTCatalogTable	
array.	
The TTCatalog	
constructor caches the conn	
parameter and initializes all the internal data structures appropriately.	
To use the TTCatalog	
object, call its fetchCatalogData()	
method, described shortly. Note that after fetchCatalogData()	
is called, use of the other TTCatalog	
methods does not use a database connection.	
Method	Description
---	---
fetchCatalogData()	Reads the catalogs in the database for information about tables and indexes and stores this information into TTCatalog internal data structures.
getNumSysTables()	Returns the number of system tables in the database.
getNumTables()	Returns the total number of tables (user tables plus system tables) in the database.
getNumUserTables()	Returns the number of user tables in the database.
getTable()	Returns a constant reference to the TTCatalogTable object for the specified table.
getTableIndex()	Returns the index in the TTCatalog object for the specified table.
getUserTable()	Returns a constant reference to the TTCatalogTable object corresponding to the n th user table in the system (where n is specified).
This is the only TTCatalog	
method that interacts with the database. It reads the catalogs in the database for information about tables and indexes, storing the information into TTCatalog	
internal data structures.	
Subsequent use of the constructed TTCatalog	
object is completely offline after it is constructed. It is no longer connected to the database.	
You must call this method before you use any of the TTCatalog	
accessor methods.	
This example demonstrates the use of TTCatalog	
.	
Example 3-7 Fetching catalog data	
Returns the number of system tables in the database. Also see getNumTables()	
and getNumUserTables()	
.	
Returns the total number of tables in the database (user plus system tables). Also see getNumSysTables()	
and getNumUserTables()	
.	
Returns the number of user tables in the database. Also see getNumSysTables()	
and getNumTables()	
.	
Returns a constant reference to the TTCatalogTable	
object for the specified table. Also see getUserTable()	
.	
For the first signature, this is for the table named tblname	
and owned by owner	
.	
For the second signature, this is for the table corresponding to table number tno	
in the system. This is intended to facilitate iteration through all the tables in the system. The order of the tables in this array is arbitrary. Note that the following relationship is asserted to hold:	
Also see "TTCatalogTable".	
This method fetches the index in the TTCatalog	
object for the specified owner.tblname	
object. It returns -2 if owner.tblname	
does not exist. It returns -1 if fetchCatalogData()	
was not called first.	
Example 3-8 retrieves information about the TTUSER.MYDATA	
table from a TTCatalog	
object. You can then call methods of TTCatalogTable	
, described next, to get information about this table.	
Example 3-8 Retrieving table information from a catalog	
Returns a constant reference to the TTCatalogTable	
object corresponding to user table number tno	
in the system. This method is intended to facilitate iteration through all of the user tables in the system. The order of the user tables in this array is arbitrary. Also see getTable()	
.	
Note that the following relationship is asserted to hold:	
Note: There is no equivalent method for system tables.	
A TTCatalogTable	
object is retrieved through the TTCatalog::getTable()	
method and stores all metadata information about the columns and indexes of a table.	
Method	Description
---	---
getColumn()	Returns a constant reference to the TTCatalogColumn corresponding to the i th column in the table.
getIndex()	Returns a constant reference to the TTCatalogIndex object corresponding to the n th index in the table, where n is specified.
getNumColumns()	Returns the number of columns in the table.
getNumIndexes()	Returns the number of indexes on the table.
getNumSpecialColumns()	Returns the number of special columns in this table. See "TTCatalogSpecialColumn".
getSpecialColumn()	Returns a special column (TTCatalogSpecialColumn object) from this table, according to the specified column number.
getTableName()	Returns the name of the table.
getTableOwner()	Returns the owner of the table.
getTableType()	Returns the table type as from an ODBC SQLTables call.
isSystemTable()	Returns TRUE if the table is a system table.
isUserTable()	Returns TRUE if the table is a user table.
Returns a constant reference to the TTCatalogColumn	
object corresponding to column number cno	
in the table. This method is intended to facilitate iteration through all the columns in the table.	
Note that the following relationship is asserted to hold:	
Returns a constant reference to the TTCatalogIndex	
object corresponding to index number num	
in the table. This method is intended to facilitate iteration through all the indexes of the table. The order of the indexes of a table in this array is arbitrary.	
Note that the following relationship is asserted to hold:	
Returns the number of special columns in this TTCatalogTable	
object. Because TimesTen supports only rowid special columns, this always returns 1.	
Also see "TTCatalogSpecialColumn".	
Returns a special column (TTCatalogSpecialColumn	
object) from this TTCatalogTable	
object, according to the specified column number. In TimesTen this can only be a rowid pseudocolumn.	
Also see "TTCatalogSpecialColumn".	
Returns the table type of this TTCatalogTable	
object, as from an ODBC SQLTables	
call. In TimesTen this may be TABLE	
, SYSTEM TABLE	
, VIEW	
, or SYNONYM	
.	
Returns TRUE	
if the table is a system table (owned by SYS	
or TTREP	
) or FALSE	
otherwise.	
The isSystemTable()	
method and isUserTable()	
method (described next) are useful for applications that iterate over all tables in a database after a call to TTCatalog	
::fetchCatalogData()	
, so that you can filter or annotate tables to differentiate the system and user tables. The TTClasses demo program catalog	
provides an example of how this can be done. (See "About the TimesTen TTClasses demos".)	
Returns TRUE	
if this is a user table, which is to say it is not a system table, or FALSE	
otherwise. Note that isUserTable()	
returns the opposite of isSystemTable()	
for any table. The description of isSystemTable()	
, immediately preceding, discusses the usage and usefulness of these methods.	
The TTCatalogColumn	
class is used to store all metadata information about a single column of a table. This table is represented by the TTCatalogTable	
object from which the column was retrieved through a TTCatalogTable::getColumn()	
call.	
Method	Description
---	---
getColumnName()	Return the name of the column.
getDataType()	Returns an integer representing the ODBC SQL data type of the column.
getLength()	Returns the length of the column, in bytes.
getNullable()	Indicates whether the column can contain NULL values.
getPrecision()	Returns the precision of the column.
getRadix()	Returns the radix of the column.
getScale()	Returns the scale of the column.
getTypeName()	Returns the database-dependent name of the type returned by getDataType() .
Returns an integer representing the data type of the column. This is the standard ODBC SQL Type.	
Indicates whether the column can contain NULL	
values. It returns SQL_NO_NULLS	
, SQL_NULLABLE	
, or SQL_NULLABLE_UNKNOWN	
.	
Returns the precision of data in the column, referring to the maximum number of digits that are used by the data type.	
Returns the radix of the column, according to ODBC SQLColumns	
functionality.	
Returns the scale of data in the column, referring to the maximum number of digits to the right of the decimal point.	
The TTCatalogIndex	
class is used to store all metadata information about an index of a table. This table is represented by the TTCatalogTable	
object from which the index was retrieved through a TTCatalogTable::getIndex()	
call.	
Method	Description
---	---
getCollation()	Returns the collation of the specified column in the index.
getColumnName()	Returns the name of the specified column in the index.
getIndexName()	Returns the name of the index.
getIndexOwner()	Returns the owner of the index.
getNumColumns()	Returns the number of columns in the index.
getTableName()	Returns the name of the table for which the index was created.
getType()	Returns the type of the index.
isUnique()	Indicates whether the index is a unique index.
Returns the collation of column number num	
in the index. Values returned are "A" for ascending order or "D" for descending order.	
Returns the name of column number num	
in the index.	
Returns the name of the table for which the index was created. This is the table represented by the TTCatalogTable	
object from which the index was retrieved through a TTCatalogTable::getIndex()	
call.	
Returns the type of the index. For TimesTen, the allowable values are PRIMARY_KEY	
, HASH_INDEX	
(the same as PRIMARY_KEY	
), and TTREE_INDEX	
.	
This class is a wrapper for results from an ODBC SQLSpecialColumns	
call on a table represented by a TTCatalogTable	
object. In TimesTen, a rowid pseudocolumn is the only type of special column supported, so a TTCatalogSpecialColumn	
object can only contain information about rowids.	
Obtain a TTCatalogSpecialColumn	
object by calling the getSpecialColumn()	
method on the relevant TTCatalogTable	
object.	
Method	Description
---	---
getColumnName()	Returns the name of the special column.
getDataType()	Returns the data type of the special column, as an integer.
getLength()	Returns the length of data in the special column, in bytes.
getPrecision()	Returns the precision of the special column.
getScale()	Returns the scale of the special column.
getTypeName()	Returns the data type of the special column, as a character string.
Returns an integer representing the ODBC SQL data type of the special column. In TimesTen this can be only SQL_ROWID	
.	
Returns the precision for data in the special column, referring to the maximum number of digits used by the data type.	
Returns the scale for data in the special column, referring to the maximum number of digits to the right of the decimal point.	
TTClasses provides a set of classes for applications to use with the TimesTen Transaction Log API (XLA).	
XLA is a set of C-callable functions that allow an application to monitor changes made to one or more database tables. Whenever another application changes a monitored table, the application using XLA is informed of the changes. For more information about XLA, see "XLA and TimesTen Event Management" in Oracle TimesTen In-Memory Database C Developer's Guide.	
The XLA classes support as many XLA columns as the maximum number of columns supported by TimesTen. For more information, see "System Limits" in Oracle TimesTen In-Memory Database System Tables and Limits Reference.	
Important: As noted in "Considerations when using an ODBC driver manager (Windows)", XLA functionality does not work in TTClasses when you use an ODBC driver manager.	
This section discusses the following classes:	
Use TTXlaPersistConnection	
to create an XLA connection to a database.	
An XLA application can create multiple TTXlaPersistConnection	
objects if needed. Each TTXlaPersistConnection	
object must be associated with its own bookmark, which is specified at connect time and must be maintained through the ackUpdates()	
and deleteBookmarkAndDisconnect()	
methods. Most applications require only one or at most two XLA bookmarks.	
After an XLA connection is established, the application should enter a loop in which the fetchUpdatesWait()	
method is called repeatedly until application termination. This loop should fetch updates from XLA as rapidly as possible to ensure that the transaction log does not fill up available disk space.	
Notes:	
After processing a batch of updates, the application should call ackUpdates()	
to acknowledge those updates and get ready for the next call to fetchUpdatesWait()	
. A batch of updates can be replayed using the setBookmarkIndex()	
and getBookmarkIndex()	
methods. Also, if the XLA application disconnects after fetchUpdatesWait()	
but before ackUpdates()	
, the next connection (with the same bookmark name) that calls fetchUpdatesWait()	
will see that same batch of updates.	
Updates that occur while a TTXlaPersistConnection	
object is disconnected from the database are not lost. They are stored in the transaction log until another TTXlaPersistConnection	
object connects with the same bookmark name.	
Note that privilege to connect to a database must be granted to users through the CREATE SESSION	
privilege, either directly or through the PUBLIC	
role. See "Access control for connections". In addition, the XLA privilege is required to create an XLA connection.	
Method	Description
---	---
ackUpdates()	Advances the bookmark to the next set of updates.
Connect()	Connects with the specified bookmark, or creates one if it does not exist (depending on the method signature).
deleteBookmarkAndDisconnect()	Deletes the bookmark and disconnects from the database.
Disconnect()	Closes an XLA connection to a database.
fetchUpdatesWait()	Fetches updates to the transaction log within the specified wait period.
getBookmarkIndex()	Gets the current transaction log position.
setBookmarkIndex()	Returns to the transaction log position that was acquired by a getBookmarkIndex() call.
Use this method to advance the bookmark to the next set of updates. After you have acknowledged a set of updates, the updates cannot be viewed again by this bookmark. Therefore, a setBookmarkIndex()	
call will not work after an ackUpdates()	
call. (See the descriptions of getBookmarkIndex()	
and setBookmarkIndex()	
for information about replaying a set of updates.)	
Applications should acknowledge updates when a batch of XLA records have been read and processed, so that the transaction log does not fill up available disk space; however, do not call ackUpdates()	
too frequently, because it is a relatively expensive operation.	
If an application uses XLA to read a batch of records and then a failure occurs before ackUpdates()	
is called, the records will be retrieved when the application reestablishes an XLA connection.	
Note: The transaction log is in a file system location according to the TimesTenLogDir attribute setting, if specified, or the DataStore attribute setting. Refer to "Data store attributes" in Oracle TimesTen In-Memory Database Reference.	
Each XLA connection has a bookmark name associated with it, so that after disconnecting and reconnecting, the same place in the transaction log can be found. The name for the bookmark of a connection is specified in the bookmarkStr	
parameter.	
For the first set of methods listed above, the createBookmarkFlag	
boolean parameter indicates whether the specified bookmark is new or was previously created. An error will be returned if you indicate that a bookmark is new (createBookmarkFlag	
==true	
) and it already exists, or if you indicate that a bookmark already exists (createBookmarkFlag	
==false	
) and it does not exist.	
For the second set of methods listed, without createBookmarkFlag	
, TTClasses first tries to connect reusing the supplied bookmark (behavior equivalent to createBookmarkFlag	
==false	
). If that bookmark does not exist, TTClasses then tries to connect and create a new bookmark with the name bookmarkStr	
(behavior equivalent to createBookmarkFlag	
==true	
). These methods are provided as a convenience, to simplify XLA connection logic if you would rather not concern yourself with whether the XLA bookmark exists.	
In either mode, with or without createBookmarkFlag	
, specify a user name and password either through the connection string or through the separate parameters, or specify a DRIVER_COMPLETION_ENUM	
value. Refer to "TTConnection" for information about DRIVER_COMPLETION_ENUM	
.	
Note that privilege to connect to a database must be granted to users through the CREATE SESSION	
privilege, either directly or through the PUBLIC	
role. See "Access control for connections". In addition, the XLA	
privilege is required to create an XLA connection.	
Note: Only one XLA connection can connect with a given bookmark name. An error will be returned if multiple connections try to connect to the same bookmark.	
This method first deletes the bookmark that is currently associated with the connection, so that the database no longer keeps records relevant to that bookmark, then disconnects from the database.	
To disconnect without deleting the bookmark, use the Disconnect()	
method instead.	
This method closes an XLA connection to a database. The XLA bookmark persists after you call this method.	
To delete the bookmark and disconnect from the database, use deleteBookmarkAndDisconnect()	
instead.	
Use this method to fetch a set of records describing changes to a database. A list of ttXlaUpdateDesc_t	
structures is returned. If there are no XLA updates to be fetched, this method waits the specified number of seconds before returning.	
Specify the number of seconds to wait, seconds	
, and the maximum number of records to receive, maxrecs	
. The method returns the number of records actually received, recsP	
, and an array of pointers, arry	
, that point to structures defining the changes.	
The ttXlaUpdateDesc_t	
structures that are returned by this method are defined in the XLA specification. No C++ object-oriented encapsulation of these methods is provided. Typically, after calling fetchUpdatesWait()	
, an application processes these ttXlaUpdateDesc_t	
structures in a sequence of calls to TTXlaTableList::HandleChange()	
.	
See "ttXlaUpdateDesc_t" in Oracle TimesTen In-Memory Database C Developer's Guide for information about that data structure.	
This method gets the current bookmark location, storing it into a class private data member where it is available for use by subsequent setBookmarkIndex()	
calls.	
This method returns to the saved transaction log index, restoring the bookmark to the address previously acquired by a getBookmarkIndex()	
call. Use this method to replay a batch of XLA records.	
Note that ackUpdates()	
invalidates the stored transaction log placeholder. After ackUpdates()	
, a call to setBookmarkIndex()	
returns an error because it is no longer possible to go back to the previously acquired bookmark location.	
Use TTXlaRowViewer	
, which represents a row image from change notification records, to examine XLA change notification record structures and old and new column values.	
Methods of this class are used to examine column values from row images contained in change notification records. Also see related information about the TTXlaTable	
class ("TTXlaTable").	
Before a row can be examined, the TTXlaRowViewer	
object must be associated with a row using the setTuple()	
method, which is invoked inside the TTXlaTableHandler::HandleInsert()	
, HandleUpdate()	
, or HandleDelete()	
method, or by a user-written overloaded method. Columns can be checked for null values using the isNull()	
method. Non-null column values can be examined using the appropriate overloaded Get()	
method.	
Method	Description
---	---
columnPrec()	Returns the precision of the specified column in the row image.
columnScale()	Returns the scale of the specified column in the row image.
Get()	Fetches the value of the specified column in the row image.
getColumn()	Returns the specified column from the row image.
isColumnTTTimestamp()	Indicates whether the specified column in the row image is a TT_TIMESTAMP column.
isNull()	Indicates whether the specified column in the row image has the value NULL .
numUpdatedCols()	Returns the number of columns in the row image that have been updated.
setTuple()	Associates the TTXlaRowViewer object with the specified row image.
updatedCol()	Returns the column number in the row image of a column that has been updated, typically during iteration through all updated columns.
Returns the precision of data in column number cno	
of the row image, referring to the maximum number of digits that are used by the data type.	
Returns the scale of data in column number cno	
of the row image, referring to the maximum number of digits to the right of the decimal point.	
Fetches the value of column number cno	
in the row image. These methods are very similar to the TTCmd	
::getColumn()	
methods.	
Table 3-5 that follows shows the supported SQL data types and the appropriate versions of Get()	
to use for each data type. Design the application according to the types of data that are stored. For example, data of type NUMBER(9,0)	
can be accessed by the Get(int, int*)	
method without loss of information.	
Table 3-5 Get() variants for supported data types	
XLA data type	Database data type
---	---
Get(cno, char** cPP)	
Get(cno, SQLWCHAR** wcPP, byteLenP)	
Get(cno, char** cPP)	
Get(cno, SQLWCHAR** wcPP, byteLenP)	
Get(cno, SQLTINYINT* iP)	
Get(cno, short* iP)	
Get(cno, int* iP)	
Get(cno, SQLBIGINT* biP)	
Get(cno, float* fP)	
Get(cno, double* dP)	
Get(cno, char** cPP)	
Get(cno, TIME_STRUCT* tP)	
Get(cno, DATE_STRUCT* dP)	
Get(cno, TIMESTAMP_STRUCT* tsP)	
Get(cno, const void** binPP, byteLenP)	
Get(cno, const void** binPP, byteLenP)	
Get(cno, double* dP) Get(cno, char** cPP) Get(cno, short* iP) Get(cno, int* iP) Get(cno, SQLBIGINT* biP)	
Get(cno, TIMESTAMP_STRUCT* tsP)	
Get(cno, TIMESTAMP_STRUCT* tsP)	
Get(cno, char** cPP)	
Get(cno, SQLWCHAR** wcPP, byteLenP)	
Get(cno, char** cPP)	
Get(cno, SQLWCHAR** wcPP, byteLenP)	
Get(cno, double* dP) Get(cno, char** cPP)	
Returns a TTXlaColumn
object with metadata for column number cno
in the row image.
Returns TRUE
if column number cno
in the row image is a TT_TIMESTAMP
column or FALSE
otherwise.
Indicates whether the column number cno
in the row image has the value NULL
, returning TRUE
if so or FALSE
if not.
Returns the number of columns that have been updated in the row image.
Before a row can be examined, this method must be called to associate the TTXlaRowViewer
object with a particular row image. It is invoked inside the TTXlaTableHandler::HandleInsert()
, HandleUpdate()
, or HandleDelete()
method, or by a user-written overloaded method. You would typically call it when overloading the TTXlaTableHandler::HandleChange()
method. The Quick Start xlasubscriber1
demo provides an example of its usage. (See "About the TimesTen TTClasses demos".)
The ttXlaUpdateDesc_t
structures that are returned by TTXlaPersistConnection
::fetchUpdatesWait()
contain either zero, one, or two rows. Note the following:
The setTuple()
method takes two arguments:
ttXlaUpdateDesc_t
structure defining a database change. INSERTED_TUP
: Examine the inserted row. DELETED_TUP
: Examine the deleted row. UPDATE_OLD_TUP
: Examine the row before it was updated. UPDATE_NEW_TUP
: Examine the row after it was updated. Returns the column number of a column that has been updated. For the input parameter you can iterate from 1 through n
, where n
is the number returned by numUpdatedCols()
. Example 3-9 shows a snippet from the TimesTen Quick Start demo xlasubscriber1
, where updatedCol()
is used with numUpdatedCols()
to retrieve each column that has been updated. (See "About the TimesTen TTClasses demos".)
Example 3-9 Using TTXlaRowViewer::numUpdatedCols() and updatedCol()
The TTXlaTableHandler
class provides methods that enable and disable change tracking for a table. Methods are also provided to handle update notification records from XLA. It is intended as a base class from which application developers write customized classes to process changes to a particular table.
The constructor associates the TTXlaTableHandler
object with a particular table and initializes the TTXlaTable
data member contained within the TTXlaTableHandler
object:
Also see "TTXlaTable".
Application developers can derive one or more classes from TTXlaTableHandler
and can put most of the application logic in the HandleInsert()
, HandleDelete()
, and HandleUpdate()
methods of that class.
One strategy is to derive multiple classes from TTXlaTableHandler
, one for each table. Business logic to handle changes to customer data might be implemented in a CustomerTableHandler
class, for example, while business logic to handle changes to order data might be implemented in an OrderTableHandler
class.
Another strategy is to derive one or more generic classes from TTXlaTableHandler
to handle various scenarios. For example, a generic class derived from TTXlaTableHandler
could be used to publish changes using a publish/subscribe system.
See the xlasubscriber1
and xlasubscriber2
demos in the TimesTen Quick Start for examples of classes that extend TTXlaTableHandler
. (Refer to "About the TimesTen TTClasses demos".)
Member | Description |
---|---|
TTXlaTable tbl | The metadata associated with the table being handled. |
TTXlaRowViewer row | Used to view the row being inserted or deleted, or the old image of the row being updated, in user-written HandleInsert() , HandleDelete() , and HandleUpdate() methods. |
TTXlaRowViewer row2 | Used to view the new image of the row being updated in user-written HandleUpdate() methods. |
Method | Description |
---|---|
DisableTracking() | Disables XLA update tracking for the table. |
EnableTracking() | Enables XLA update tracking for the table. |
generateSQL() | Returns the SQL associated with a given XLA record. |
HandleChange() | Dispatches a record from ttXlaUpdateDesc_t to the appropriate handling routine for processing. |
HandleDelete() | Invoked when the HandleChange() method is called to process a delete operation. |
HandleInsert() | Invoked when the HandleChange() method is called to process an insert operation. |
HandleUpdate() | Invoked when the HandleChange() method is called to process an update operation. |
Disables XLA update tracking for the table. After this method is called, XLA will not return information about changes to the table.
Enables XLA update tracking for the table. Until this method is called, XLA will not return information about changes to the table.
This method prints the SQL associated with a given XLA record. The SQL string is returned through the buffer
parameter. Allocate space for the buffer and specify its maximum length, maxByteLen
. The actualByteLenP
parameter returns information about the actual length of the SQL string returned.
If maxByteLen
is less than the length of the generated SQL string, a TTStatus
error will be thrown, and the contents of buffer
and actualByteLenP
will not be modified.
Dispatches a ttXlaUpdateDesc_t
object to the appropriate handling routine for processing. The update description is analyzed to determine if it is for a delete, insert or update operation. The appropriate handing method is then called: HandleDelete()
, HandleInsert()
, or HandleUpdate()
.
Classes that inherit from TTXlaTableHandler
can use the optional pData
parameter when they overload the TTXlaTableHandler::HandleChange()
method. This optional parameter is useful for determining whether the batch of XLA records that was just processed ends on a transaction boundary. Knowing this will help an application decide the appropriate time to invoke TTConnection::ackUpdates()
. See "Acknowledging XLA updates at transaction boundaries" for an example that uses the pData
parameter.
Also see "HandleChange()" for TTXlaTableList
objects.
This method is invoked whenever the HandleChange()
method is called to process a delete operation.
HandleDelete()
is not implemented in the TTXlaTableHandler
base class. It must be provided by any classes derived from it, with appropriate logic to handle deleted rows.
The row that was deleted from the table is available through the protected member row
of type TTXlaRowViewer
.
This method is invoked whenever the HandleChange()
method is called to process an insert operation.
HandleInsert()
is not implemented in the TTXlaTableHandler
base class. It must be provided by any classes derived from it, with appropriate logic to handle inserted rows.
The row that was inserted into the table is available through the protected member row
of type TTXlaRowViewer
.
This method is invoked whenever the HandleChange()
method is called to process an update operation.
HandleUpdate()
is not implemented in the TTXlaTableHandler
base class. It must be provided by any classes derived from it, with appropriate logic to handle updated rows.
The previous version of the row that was updated from the table is available through the protected member row
of type TTXlaRowViewer
. The new version of the row is available through the protected member row2
, also of type TTXlaRowViewer
.
The TTXlaTableList
class provides a list of TTXlaTableHandler
objects and is used to dispatch update notification events to the appropriate TTXlaTableHandler
object. When an update notification is received from XLA, the appropriate Handle
Xxxxxx
()
method of the appropriate TTXlaTableHandler
object is called to process the record.
For example, if an object of type CustomerTableHandler
is handling changes to table CUSTOMER
, and an object of type OrderTableHandler
is handling changes to table ORDERS
, the application should include both of these objects in a TTXlaTableList
object. As XLA update notification records are fetched from XLA, they can be dispatched to the correct handler by a call to TTXlaTableList::HandleChange()
.
The constructor has two forms:
Where num_tbls_to_monitor
is the number of database objects to monitor.
Or:
Where cP
references the database connection to be used for XLA operations. This form of the constructor can monitor up to 150 database objects.
By registering TTXlaTableHandler
objects in a TTXlaTableList
object, the process of fetching update notification records from XLA and dispatching them to the appropriate methods for processing can be accomplished using a loop.
Method | Description |
---|---|
add() | Adds a TTXlaTableHandler object to the list. |
del() | Deletes a TTXlaTableHandler object from the list. |
HandleChange() | Processes a record obtained from a ttXlaUpdateDesc_t structure. |
When a ttXlaUpdateDesc_t
object is received from XLA, it can be processed by calling this method, which determines which table the record references and calls the HandleChange()
method of the appropriate TTXlaTableHandler
object.
See "HandleChange()" for TTXlaTableHandler
objects, including a discussion of the pData
parameter.
The TTXlaTable
class encapsulates the metadata for a table being monitored for changes. It acts as a metadata interface for the TimesTen ttXlaTblDesc_t
C data structure. (See "ttXlaTblDesc_t" in Oracle TimesTen In-Memory Database C Developer's Guide.)
When a user application creates a class that extends TTXlaTableHandler
, it will typically call TTXlaTable::getColNumber()
to map a column name to its XLA column number. You can then use the column number as input to the TTXlaRowViewer::Get()
method. This is shown in the xlasubscriber2
demo in the TimesTen Quick Start. (Refer to "About the TimesTen TTClasses demos".)
This class also provides useful metadata functions to return the name, owner, and number of columns in the table.
Method | Description |
---|---|
getColNumber() | Returns the column number of the specified column in the table. |
getNCols() | Returns the number of columns in the table. |
getOwnerName() | Returns the name of owner of the table. |
getTableName() | Returns the name of the table. |
For a specified column name in the table, this method returns its column number, or -1 if there is no column by that name.
A TTXlaColumn
object contains the metadata for a single column of a table being monitored for changes. It acts as a metadata interface for the TimesTen ttXlaColDesc_t
C data structure. (See "ttXlaColDesc_t" in Oracle TimesTen In-Memory Database C Developer's Guide.) Information including the column name, type, precision, and scale can be retrieved.
Applications can associate a column with a TTXlaColumn
object by using the TTXlaRowViewer::getColumn()
method.
Method | Description |
---|---|
getColName() | Returns the name of the column. |
getPrecision() | Returns the precision of the column. |
getScale() | Returns the scale of the column. |
getSize() | Returns the size of the column data, in bytes. |
getSysColNum() | Returns the system-generated column number of this column as stored in the database. |
getType() | Returns the data type of the column, as an integer. |
getUserColNum() | Returns a column number optionally specified by the user, or 0. |
isNullable() | Indicates whether the column allows NULL values |
isPKColumn() | Indicates whether the column is the primary key for the table. |
isTTTimestamp() | Indicates whether the column is a TT_TIMESTAMP column. |
isUpdated() | Indicates whether the column was updated. |
Returns the precision for data in the column, referring to the maximum number of digits that are used by the data type.
Returns the scale for data in the column, referring to the maximum number of digits to the right of the decimal point.
This is the system-generated column number of the column, numbered from 1. It equals the corresponding COLNUM
value in SYS.COLUMNS
. (See "SYS.COLUMNS" in Oracle TimesTen In-Memory Database System Tables and Limits Reference.)
Returns an integer representing the TimesTen XLA data type (TTXLA_
xxx
) of the column. This is a value from the dataType
field of the TimesTen ttXlaColDesc_t
data structure. In some cases this corresponds to an ODBC SQL data type (SQL_
xxx
) and the corresponding standard integer value.
Refer to "About XLA data types" in Oracle TimesTen In-Memory Database C Developer's Guide for information regarding TimesTen XLA data types. The corresponding integer values are defined for use in any TTClasses application that includes the TTXla.h
header file.
Also refer to "ttXlaColDesc_t" in Oracle TimesTen In-Memory Database C Developer's Guide for information about that data structure.
Returns a column number optionally specified by the user through the ttSetUserColumnID
TimesTen built-in procedure, or 0.
See "ttSetUserColumnID" in Oracle TimesTen In-Memory Database Reference.
Returns TRUE
if null values are allowed in the column, or FALSE
otherwise.
Returns TRUE
if this column is the primary key for the table, or FALSE
otherwise.
Returns TRUE
if this column is a TT_TIMESTAMP
column, or FALSE
otherwise.
 Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved. |