Troubleshooting Procedures Guide
Release 11.2.1
E13075-07
January 2011
Oracle TimesTen In-Memory Database Troubleshooting Procedures Guide, Release 11.2.1
E13075-07
Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle TimesTen In-Memory Database is a memory-optimized relational database. Deployed in the application tier, Oracle TimesTen In-Memory Database operates on databases that fit entirely in physical memory using standard SQL interfaces. High availability for the in-memory database is provided through real-time transactional replication.
This guide describes how to troubleshoot some of the problems users encounter when using the Oracle TimesTen In-Memory Database.
To work with this guide, you should understand how database systems work and have some knowledge of SQL (Structured Query Language).
TimesTen documentation is available on the product distribution media and on the Oracle Technology Network:
TimesTen supports multiple platforms. Unless otherwise indicated, the information in this guide applies to all supported platforms. The term Windows refers to Windows 2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux, HP-UX and AIX.
Note: In TimesTen documentation, the terms "data store" and "database" are equivalent. Both terms refer to the TimesTen database unless otherwise noted. |
This document uses the following text conventions:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
italic monospace	Italic monospace type indicates a variable in a code example that you must replace. For example:
Replace	
[]	Square brackets indicate that an item in a command line is optional.
{ }	Curly braces indicated that you must choose one of the items separated by a vertical bar (
	A vertical bar (or pipe) separates alternative arguments.
. . . | An ellipsis (. . .) after an argument indicates that you may use more than one argument on a single command line. |
% | The percent sign indicates the UNIX shell prompt. |
| The number (or pound) sign indicates the UNIX root prompt. |
TimesTen documentation uses these variables to identify path, file and user names:
Convention	Meaning
install_dir	The path that represents the directory where the current release of TimesTen is installed.
TTinstance	The instance name for your specific installation of TimesTen. Each installation of TimesTen must be identified at install time with a unique alphanumeric instance name. This name appears in the install path.
bits or bb	Two digits, either 32 or 64, that represent either the 32-bit or 64-bit operating system.
release or rr	Three numbers that represent the first three numbers of the TimesTen release number, with or without a dot. For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.
jdk_version	Two digits that represent the version number of the major JDK release. Specifically, 14 represent JDK 1.4; 5 represents JDK 5.
timesten	A sample name for the TimesTen instance administrator. You can use any legal user name as the TimesTen administrator. On Windows, the TimesTen instance administrator must be a member of the Administrators group. Each TimesTen instance can have a unique instance administrator name.
DSN	The data source name.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/	
.	
Accessibility of Code Examples in Documentation	
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.	
Accessibility of Links to External Web Sites in Documentation	
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.	
Access to Oracle Support	
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html	
or visit http://www.oracle.com/accessibility/support.html	
if you are hearing impaired.	
For information about obtaining technical support for TimesTen products, go to the following Web address:	
This section summarizes the new features and functionality of Oracle TimesTen In-Memory Database Release 11.2.1 that are documented in this guide, providing links into the guide for more information.	
This guide has information about the following new enhancements:	
This guide now has more information about improving performance for the IMDB cache, which are described in the following sections:	
This guide has information about the following new features:	
On Windows, if the NLS_LANG	
environment variable is set to an unsupported value, such as NA, you could experience problems connecting. See "Troubleshooting OCI and Pro*C/C++ applications".	
See "Cannot attach PL/SQL shared memory" on how to recover if you receive error 8517 "Cannot attach PL/SQL shared memory; PLSQL_MEMORY_ADDRESS not valid or already in use.	
"	
If you modify an object in a cache group and then the changes do not appear on a subsequent SQL statement, then see "Changes not visible after updating object in cache group".	
To monitor the cache administration user tablespace, you can use either Oracle Enterprise Manager alerts or set the TimesTen tablespace threshold parameter. See "Monitoring the usage of the cache administration user's tablespace" for details.	
With Oracle tables that are cached in a TimesTen database, you can configure them to use incremental automatic refresh. See "Considerations when the cache administration user's tablespace is full" on how to specify what is to occur when the cache administration user's tablespace is full.	
There is a new method for improving autorefresh performance: "Unresponsive or dead TimesTen database degrades autorefresh performance".	
Additional methods for improving replication or XLA performance were added to "Poor replication or XLA performance".	
The following sections in this chapter describe how to use the TimesTen utilities and other tools that are used to diagnose problems with the TimesTen database:	
The ttIsql	
utility allows you to interactively execute SQL statements and report status information on your TimesTen database.	
All TimesTen SQL operations can be executed from a ttIsql	
Command>	
prompt.	
Example 1-1 Using the ttIsql utility	
To start the ttIsql	
utility for the demo database, enter:	
You should see output similar to the following:	
You can then execute SQL statements or ttIsql	
commands at the Command>	
prompt.	
"Using the ttIsql Utility" in the Oracle TimesTen In-Memory Database Operations Guide describes how to use the most common ttIsql	
commands. The following ttIsql	
commands are commonly used when troubleshooting:	
monitor	
formats the contents of the SYS.MONITOR	
table. See "Displaying database structure information" in the Oracle TimesTen In-Memory Database Operations Guide.	
dssize	
prints database size information. See "Displaying database structure information" in the Oracle TimesTen In-Memory Database Operations Guide.	
showplan	
prints the optimizer execution plans for selects, updates, and deletes in this transaction. See "Viewing and changing query optimizer plans" in the Oracle TimesTen In-Memory Database Operations Guide.	
isolation	
sets or displays the isolation level. See "Working with transactions" in the Oracle TimesTen In-Memory Database Operations Guide.	
timing	
prints query timing. See "Timing ODBC function calls" in the Oracle TimesTen In-Memory Database Operations Guide.	
optprofile	
prints the current optimizer flag settings and join order. See "Viewing and changing query optimizer plans" in the Oracle TimesTen In-Memory Database Operations Guide.	
For the full list of ttIsql	
features, see the lists of options and commands under the description of the ttIsql	
utility in the Oracle TimesTen In-Memory Database Reference.	
Use the ttStatus	
utility to check the status of the TimesTen daemon and the state of all TimesTen connections.	
Example 1-2 ttStatus shows TimesTen daemon is not running	
In this example, the output from ttStatus	
indicates that no TimesTen daemon is running. If the daemon has stopped unexpectedly, see "No response from TimesTen daemon or subdaemon" for troubleshooting information.	
On Windows:	
On UNIX platforms:	
Example 1-3 ttStatus shows TimesTen daemon is running	
In this example, the output from ttStatus	
indicates that the TimesTen daemon is running. It recognizes one database named demo	
.	
The first line indicates that the TimesTen daemon is running as process 884 on port 17000 for the TimesTen instance MYINSTANCE	
. The second line indicates the TimesTen Server is running as process 2308 on port 17002.	
There are currently seven connections to the database: one user and six subdaemon connections. You may see up to 2047 connections.	
The restart policies for the cache agent and the replication agent in the database are set to manual	
.	
Note: This example was produced on Windows. The results are the same on UNIX platforms except for the formats of the database path and the shared memory key.	
Example 1-4 ttStatus shows replication information	
In this example, the output from ttStatus	
indicates that the TimesTen daemon is running. It recognizes three databases: demo	
, subscriber1ds	
, and masterds	
. The subscriber1ds	
and masterds	
databases are replicated databases. In this example, the output from ttStatus	
indicates that the replication agents for the replicated databases have been started. Bidirectional replication has been configured between masterds	
and subscriber1ds	
. Each replication agent has five connections to the database.	
Example 1-5 ttStatus shows cache group information	
This example shows the cache agent running on rep1	
database. There is one cache group in the database. The cache agent has five connections to the database.	
Example 1-6 ttStatus shows connection to old instance	
This example shows a connection to an old instance of a database. This can occur when a database is invalidated, but some users have not disconnected from the invalidated copy of the database still in memory. After all users disconnect, the memory can be freed.	
The ttCapture	
utility captures information about the configuration and state of your TimesTen system into a file that provides Technical support with a snapshot of your system at the time the ttCapture	
utility is running. The ttCapture	
utility generates a file named ttcapture.	
date.time.	
log	
. By default, the file is written to the directory from which you invoke the ttCapture	
utility. Use the ttCapture	
-dest	
option to direct the output file to be written to another directory.	
If you run ttCapture	
again, it writes the information to a new file.	
On Windows platforms, running ttCapture	
also produces an XML file named ttcapture.	
date.time	
.nfo	
that contains output from the msinfo32	
utility.	
When you experience a problem with a TimesTen database, run ttCapture	
with the DSN	
option for the database as soon as possible, either when you are encountering the problem or immediately afterward.	
Note: Always double-quote directory and file names in case there are spaces in the names.	
When you contact Technical support, upload the ttcapture.	
date.number.	
log	
file to the Service Request. Windows users should also upload the ttcapture.	
date.time	
.nfo	
file.	
See "ttCapture" in the Oracle TimesTen In-Memory Database Reference for information about additional options.	
TimesTen uses a TimesTen daemon to manage access to the databases. As the daemon operates, it generates error, warning and informational messages. These messages may be useful for TimesTen system administration and for debugging applications.	
By default, informational messages are stored in:	
See "Modifying informational messages" in the Oracle TimesTen In-Memory Database Operations Guide for information about configuring the logs, including their location and size.	
Use the ttTraceMon	
utility to log various trace information on a number of TimesTen components. Each TimesTen component can be traced at different levels of detail. You can list all of the traceable TimesTen components and their current tracing level by specifying ttTraceMon	
with the show	
subcommand. The full list of options for ttTraceMon	
is described in the "ttTraceMon" section in the Oracle TimesTen In-Memory Database Reference.	
TimesTen tracing severely impacts application performance and consumes a great deal of disk space if trace output is directed to a file. In addition, when using AWT cache groups, you must restart the replication agent when trying to trace the ORACON	
component with ttTraceMon	
. Use the ttTraceMon	
utility only when diagnosing problems. When you are finished, reset tracing to the default values.	
Example 1-7 Default trace levels for components	
This example shows that the levels for most tracing components are set to level 0 (off) for the demo database. Both the ERR	
and DEADLOCK	
components are set to 1 for tracing by default. See "ERR tracing".	
The output for most TimesTen components is of interest only to Technical support. However, the output for the SQL	
, API	
, LOCK	
, ERR	
, AGING	
and AUTOREFRESH	
components may be useful to you when you are troubleshooting application problems.	
The rest of this section includes the following topics:	
Start a new trace by specifying ttTraceMon	
datastore	
. For example, to start a trace on the demo	
database, enter:	
At the Trace	
prompt, specify the type of trace and its level. For example, to start tracing the SQL	
component at level 3, enter:	
At this point you can run your application and the TimesTen trace information is written to a trace buffer. There are two ways to read the contents of the trace buffer:	
Trace	
prompt, use the outfile	
command to direct the trace buffer data to a file. You must do this before running your application. When writing tracing information to a file, new trace information is concatenated to the existing contents of the file. Trace	
prompt, use the dump	
command to display the trace buffer data to your screen. Note: The contents of the trace buffer accumulate with each new trace. To clear the trace buffer, use theflush command from a ttTraceMon prompt. Clear the buffered trace records for a specific component by specifying the component with the flush command.	
Each record from the trace buffer has the following format:	
The fields in the records are defined as follows:	
timestamp	
is the time at which the operation was executed. sequence	
is the incremental number that identifies the trace line. component	
is the TimesTen component being traced (such as SQL	
, API	
, LOCK	
, or ERR	
). level	
is the trace level associated with the trace line. The range of trace levels differs by component, but for all components, the lowest trace level generates the least verbose output and highest trace level generates the most verbose output. For example, if you are tracing SQL	
at level 4, your output includes lines for levels 2 (prepare), 3 (execute), and 4 (open, close, fetch). Note: Trace levels for some components are not a continuous range of numbers. If you enter a number that does not correspond to a supported level for a component, tracing occurs at the highest supported level that is less than the number you entered. For example, if tracing levels for a component are 1, 2, 3, 4, and 6 and you enter 5, tracing events for level 1, 2, 3, and 4 are generated.	
connection	
is the internal connection ID identifying the connection that generated the trace. This number corresponds to the ConnID	
shown in the ttStatus	
output. The connection ID is also used as the first element of the transaction ID. processid	
is the operating system process ID for the process that generated the trace. operation	
is the operation that occurred (such as SQL statement, API operation, or error message). For example, a line from the trace buffer after a SQL trace at level 3 might look like this:	
Using ttTraceMon	
with the SQL	
component provides information about the SQL being prepared or executed by the TimesTen engine. Table 1-1 describes the levels for SQL tracing. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-1 SQL tracing levels	
Level	Output
---	---
2	SQL commands being prepared.
3	+ SQL commands being executed
4	+ The effect of command pooling (prepares not being done because the prepared command already exists in the pool), the need for reprepares (for example, because an index was created), and commands being destroyed. At this level,
5	+ Some internal data, such as command numbers, which are not generally useful for customer-level debugging.
Note: TimesTen recommends tracing SQL at level 3 or 4. SQL tracing does not show any information about the optimizer. Optimizer tracing is managed by a separate component (OPT) at level 4 only, and is not designed for customer use.	
Example 1-8 SQL trace	
In this example, we execute ttTraceMon	
to do a SQL trace at level 4 on the demo	
database. We direct the output from the SQL trace to the SQLtrace.txt	
file. We then flush the buffer so that the trace does not report past SQL statements.	
At this point, we execute an application that includes the following SQL statement:	
The trace information is written to the SQLtrace.txt	
file:	
When the application has completed, we turn off SQL tracing and exit ttTraceMon	
.	
API traces are generated for database operations such as connecting to a database, changing a connection attribute, and committing a transaction. Table 1-2 describes the levels for API tracing. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-2 API tracing levels	
Level	Output
---	---
1	All rollback attempts by the subdaemon. This occurs if an application exits abruptly and the subdaemon recovers its connection.
2	+ Some low-on-space conditions.
3	+ Create, connect, disconnect, checkpoint, backup, and compact operations for the database, as well as commit and rollback for each connection, and a few other operations.
4	+ Most other operations conducted at TimesTen's internal API level. It does not show numerous operations on the storage manager and indexes that are done internally.
Note: TimesTen recommends tracing at level 3.	
Example 1-9 API trace	
In this example, we execute ttTraceMon	
to do a API trace at level 3 on the demo	
database. The output from the API trace is written to the APItrace.txt	
file. Before saving the API trace to the buffer, we use the flush	
command to empty the buffer.	
At this point, we execute the application. When the application has completed, we turn off API tracing and exit ttTraceMon	
:	
The contents of APItrace.txt	
are similar to the sample output shown below. The output shows connection to the database, setting the connection character set, setting the isolation level, and committing a transaction.	
Use the DEADLOCK	
component to trace the occurrences of all deadlocks for all applications.	
Table 1-3 describes the DEADLOCK	
tracing levels. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-3 DEADLOCK tracing levels	
Level	Output
---	---
1	Logs deadlock cycles as they are discovered.
4, 6	+ Provides detail information about how the deadlock is detected.
Example 1-10 DEADLOCK trace	
In this example, we execute ttTraceMon	
to do a DEADLOCK	
trace at level 1, which is the default, on myDSN	
database.	
We make two connections to myDSN	
. For the first connection, autocommit is on. We create table test	
and insert two rows. Then, we set autocommit off and update the x1=1	
row of table test. Because autocommit is off, the row is not inserted into the table until we commit. A lock is held until we commit or roll back the transaction.	
For the second connection to myDSN	
, autocommit is set to off. We update the x1=2	
row of table test.	
Now, we create a deadlock situation by executing update statements in both connections for rows that are locked by each other. The first connection executes an update against the row where x1=2	
.	
The second connection executes an update against the row where x1=1	
.	
We use the flush	
command to empty the buffer.	
The trace buffer contains the following information showing all level 1 deadlock traces, as evidenced by '1L	
'.:	
If you want more information, set DEADLOCK tracing to a higher value. For example, the following sets DEADLOCK tracing to level 4 in ttTraceMon	
:	
Use the LOCK	
component to trace the locking behavior of your application to detect trouble with deadlocks or lock waits. LOCK	
tracing generates a great deal of volume, so it is important to choose the appropriate level of tracing. Level 3, for example, begins to generate a large number of traces, as traces are written for fairly common events. In addition, the traces themselves may be somewhat hard to read in places. If you cannot discern enough information for your purposes, contact Technical support for more information.	
Table 1-4 describes the LOCK	
tracing levels. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-4 LOCK tracing levels	
Level	Output
---	---
1	Deadlock cycles as they are discovered.
2	+ Failures to grant locks for any reason.
3	+ Lock waits (which may or may not be granted).
4	+ All lock grants/releases, some routine calls, and the mechanism of the deadlock detector.
6	+ Each step in cycle traversal.
Example 1-11 LOCK trace	
In this example, we execute ttTraceMon	
to do a LOCK	
trace at level 4 on myDSN	
database.	
We make two connections to myDSN	
. For the first connection, we set autocommit on. We create table test	
and insert three rows. We create a materialized view using table test	
.	
We turn on tracing at level 4 and use the flush	
command to empty the buffer.	
For the second connection to myDSN	
, we set autocommit off. We insert a row into table test. Because autocommit is off, the row is not inserted into the table until we commit. A lock is held until we commit or roll back the transaction.	
If we use the dump	
command to display the contents of the trace buffer, we see that there are no records in the trace buffer:	
From the first connection, we try to drop the materialized view. We cannot drop the view because there is a transaction that has not been committed or rolled back:	
The trace buffer contains the following information:	
When finished with the trace, we set LOCK	
tracing back to its default setting (0) and exit ttTraceMon	
:	
It may be useful to trace the ERR	
component. For example, an ERR	
trace at level 4 shows all of the error messages that are pushed in the TimesTen direct driver (not all errors are output to the user because they are handled internally). ERR	
tracing at level 1 is the default. No output is written for ERR	
tracing at level 2 and 3.	
Table 1-5 describes ERR	
tracing levels. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-5 ERR tracing levels	
Level	Output
---	---
1 (set by default)	Fatal errors
4	+ All other error messages, many of which are handled internally by TimesTen.
Example 1-12 ERR trace	
In this example, we execute ttTraceMon	
to do a ERR	
trace at level 4 on myDSN	
database.	
First we create a table:	
Next we turn on tracing at level 4. Rather than direct the trace output to a file as in the previous examples, we read it directly from the trace buffer. Before saving the ERR	
trace to the buffer, we use the flush	
command to empty the buffer.	
Now we execute a SQL script with three errors in it. The errors are:	
CHAR	
data into a TT_INTEGER	
column The trace information is written to the trace buffer. We display it by using the dump	
command.	
Set ERR tracing back to its default setting (1) and exit ttTraceMon	
:	
Use the ttTraceMon	
utility to obtain the following information:	
See "Implementing aging in your tables" in the Oracle TimesTen In-Memory Database Operations Guide.	
Table 1-6 describes the AGING	
tracing levels. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-6 AGING tracing levels	
Level	Description
---	---
1	Displays messages about the following events:
2	+ Displays messages about the following events for each table:
3	+ Detailed report on how many rows were deleted during each aging cycle.
4	+ Message every time the aging subdaemon wakes up.
Example 1-13 AGING trace	
In this example, we execute ttTraceMon	
to do an AGING	
trace on myDSN	
database. The database contains TTUSER.MYTAB	
table, which has a time-based aging policy. The table is described as follows:	
The table contains the following rows before the aging cycle begins:	
We execute ttTraceMon	
to do an AGING	
trace at level 3. Rather than direct the trace output to a file, we read it directly from the trace buffer. Before saving the AGING	
trace to the buffer, we use the flush	
command to empty the buffer.	
Display the trace information in the buffer by using the dump	
command.	
We set AGING	
tracing back to its default setting (0) and exit ttTraceMon	
:	
Use the ttTraceMon	
utility to obtain information about the progress of autorefresh operations for cache groups with the AUTOREFRESH	
cache group attribute.	
See "AUTOREFRESH cache group attribute" in the Oracle In-Memory Database Cache User's Guide.	
Table 1-7 describes AUTOREFRESH	
tracing levels. Each level with a '+' sign includes the trace information described for that level, plus all levels preceding it.	
Table 1-7 AUTOREFRESH tracing levels	
Level	Description
---	---
1	Autorefresh summary for the interval:
Note: Times and information about root table rows are reported for full autorefresh.	
2	+ Autorefresh summary at the cache group level:
Note: Times and information about root table rows are reported for full autorefresh.	
3	+ Autorefresh summary at the table level:
4	+ Autorefresh details for each table:
Example 1-14 AUTOREFRESH trace	
In this example, we use the ttTraceMon	
utility to trace autorefresh operations on the cgDSN	
database. When we set the trace level to 1, we see information that is similar to the output of the ttCacheAutorefreshStatsGet	
built-in procedure.	
Tracing at level 4 produces additional information about autorefresh operation 1415. Information about autorefresh is provided for the testuser.readcache	
cache group, the testuser.readtab	
root table and the autorefresh interval.	
We set AUTOREFRESH	
tracing back to its default setting (0) and exit ttTraceMon	
:	
The ttXactAdmin	
utility displays ownership, status, log and lock information for each outstanding transaction. You can also use it to show all current connections to a database. The ttXactAdmin	
utility is useful for troubleshooting problems with replication, XLA, and asynchronous writethrough cache groups.	
Example 1-15 Using ttXactAdmin to diagnose a lock timeout	
Use ttXactAdmin	
to diagnose a lock timeout. Consider two connections that are trying to update the same row. The following transaction by Connection 1 is in progress:	
Connection 2 attempts to make the following update:	
Connection 2 receives the following error:	
The details of the error indicate that transaction 1.21 has a lock on row 0x00156bbc, the row that transaction 2.3 wants to update. ttXactAdmin	
displays this information in output that pertains to actions in the entire database:	
See "ttXactAdmin" in the Oracle TimesTen In-Memory Database Reference.	
On Windows, use the ODBC trace facility to verify the sequence and content of your commands. The ODBC trace facility works only if you have linked your application with the ODBC Driver Manager. Enable tracing by double-clicking ODBC in the Control Panel. This opens the ODBC Data Source Administrator. Choose the Tracing tab.	
On UNIX platforms, ODBC tracing is available only when using a driver manager. To turn on tracing, set the Trace	
and TraceFile	
attributes.	
Network management software uses SNMP (Simple Network Management Protocol) to query or control the state of network devices such as routers and switches. These devices can generate alerts called traps to inform the network management systems of problems.	
TimesTen sends SNMP traps for particular critical events to help facilitate user recovery mechanisms. These events are also recorded in the support log. Exposing them through SNMP traps allows network management software to take immediate action.	
How to configure TimesTen to generate SNMP traps as well as how to receive the traps is described in "Diagnostics through SNMP Traps" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
Each TimesTen database contains a group of system tables that store metadata about the current state of the database. The system tables are described in "System Tables" in the Oracle TimesTen In-Memory Database System Tables and Limits Reference.	
Note: You can executeSELECT statements on a system table, but you cannot execute a statement such as INSERT , UPDATE or DELETE on these tables.	
Of particular interest when troubleshooting is the SYS.MONITOR	
table, which contains statistics about certain events that have occurred since the first connection to the database. For example, the SYS.MONITOR	
table contains information about the number of connections to the database; the number of checkpoints taken; the size of the database; and the amount of memory currently in use. Check the contents of the SYS.MONITOR	
table by executing SELECT	
statements on the columns or by using the ttIsql	
monitor	
command. For an example of how to use the ttIsql	
monitor	
command, see "Using the ttIsql Utility" in the Oracle TimesTen In-Memory Database Operations Guide.	
The SYS.MONITOR	
table is useful for troubleshooting performance problems. See "Reading query plan from the PLAN table" in the Oracle TimesTen In-Memory Database Operations Guide for details. Check the contents of the SYS.MONITOR	
table by executing SELECT	
statements on the columns or by using the ttIsql	
showplan	
command, as described in "Viewing and changing query optimizer plans" in the Oracle TimesTen In-Memory Database Operations Guide.	
The query optimizer is an important tool for performance tuning.	
For details about using the query optimizer, see:	
If you find that a given query runs more slowly than expected, confirm that the query optimizer has the latest statistics for the tables in your query, as described in "Update query optimizer statistics". If, after updating your statistics, your query still runs too slowly, it is possible that the TimesTen optimizer is not choosing the optimal query plan to answer that query. Under these circumstances, you can adjust how the optimizer generates a plan by using the ttOpt	
procedures described in "Modifying plan generation" in the Oracle TimesTen In-Memory Database Operations Guide.	
The following sections provide information to help you diagnose and remedy some of the problems encountered while using a TimesTen database:	
Note: If you are still having problems with your database after following the troubleshooting recommendations in this chapter, please contact Technical support.	
This section describes what to check if you are unable to start or stop the TimesTen main daemon.	
Possible cause	What to do
---	---
Incorrect privilege	You need the ADMIN privilege to start or stop the TimesTen daemon. Ensure that you are using the ttDaemonAdmin utility to start the daemon. The output from ttDaemonAdmin shows whether you have the correct privilege.
Another process is using the TimesTen daemon port.	Use the ttVersion utility to verify what port number the TimesTen daemon is expected to use. Use an operating system command like netstat to check whether another process is listening on the port. If there is a conflict, either change the port number used by the other process or use ttmodinstall to change the port used by TimesTen.
TimesTen daemon is already running.	Ensure that you are using the ttDaemonAdmin utility to start the daemon. The output from ttDaemonAdmin shows whether the daemon is already running.
Other problems	Inspect the user error log produced by the daemon. See "Using the logs generated by the TimesTen daemon".
The following sections describe what to do if one or more of the TimesTen processes appears to be unavailable:	
If you receive an error that indicates the TimesTen subdaemon has stopped, inspect the user error log, as described in "Using the logs generated by the TimesTen daemon".	
If the TimesTen daemon crashes, it cannot send anything to the user error log, but the subdaemons send a 'main daemon vanished' message to the log before exiting:	
Restart the daemon. The next connection to each database causes TimesTen to recover from the checkpoint and transaction log files. See "Working with the Oracle TimesTen Data Manager Daemon" in the Oracle TimesTen In-Memory Database Operations Guide.	
If you experience a crash by one of the TimesTen processes on a UNIX system and have exhausted all of the diagnostic options, check to see if TimesTen has generated a core file. Use the ttVersion	
utility to find the core file. Look for a line in the output that shows a path for the daemon home directory:	
After locating the core file, attach to the debugger on the system and extract the stack trace from the core file and send the trace results to Technical support.	
On Windows systems you can obtain diagnostic information for a service failure by enabling the 'allow service to interact with desktop' option in the properties dialog for the TimesTen data manager in the Service menu. If a fatal fault occurs in the TimesTen data manager service, a pop-up asks if you would like to start the debugger. Contact Technical support and provide the stack trace.	
You may receive an error that indicates that a shared segment could not be created:	
Using the Linux ipcs	
command may display information like this:	
A status of dest	
means the memory segment is marked to be destroyed. nattch	
shows the number of processes still attached to the memory segment. The ipcrm	
command cannot free the shared memory until the processes detach from the segment or exit. If an application connects to TimesTen and then becomes inactive, nothing can free the shared memory until the user exits or stops the application.	
This section describes what to check if your application is unable to connect to a database in direct mode.	
Possible cause	See...
---	---
Mismatch between the release of TimesTen and database	"Upgrading your database"
User does not have the CREATE SESSION privilege.	"Privileges to connect to database"
Incorrect file permissions	"Check file system permissions to access database"
TimesTen daemon or Data Manager service not running	"Check that the TimesTen daemon is running"
Incompatible connection attributes or incorrect path name for database set in the DSN	"Check DSN definition"
No available shared memory segment or maximum size of shared memory segment too small	"Manage semaphores and shared memory segments"
Not enough swap space	"Check available swap space (virtual memory)"
Inadequate number of file descriptors	"Increase the number of available file descriptors"
Other possible causes	"Using the logs generated by the TimesTen daemon"
A database is only guaranteed to be accessible by the same minor release of TimesTen that was used to create the database. When you upgrade the TimesTen software and you would like to use the new release to access a database that was previously created, create a database with the new release. Then use the ttMigrate	
utility to copy the tables, indexes, and table data from the old database to the new one.	
See "Database Upgrades" in the Oracle TimesTen In-Memory Database Installation Guide for details.	
The user must have the CREATE SESSION	
privilege to connect to the database. If you do not have access, the administrator must use the GRANT	
statement to grant you the CREATE SESSION	
privilege. See "Granting privileges to connect to the database" in the Oracle TimesTen In-Memory Database Operations Guide.	
A "permission denied	
" error is generated if you attempt to connect to a database and you do not have the proper permissions to access the checkpoint or transaction log files or the directory where those files reside. Check the file system permissions on the files located in the directory specified in the DataStore	
attribute in your DSN.	
If the TimesTen daemon or Data Manager service is not running, an attempt to connect to a database generates TimesTen error 799 "Unable to connect to daemon; check daemon status.	
"	
Use the ttStatus	
utility as described in "Check the TimesTen user error log" to check the status of the TimesTen daemon.	
In your DSN description, perform the following:	
Certain connection options or DSN attribute settings combinations are not compatible. In cases where incompatible settings are used, an error is returned to the application when it attempts to connect to a database.	
Confirm that you have specified the correct path names in the DataStore	
and LogDir	
attributes in your DSN. Also confirm that the path names are absolute path names, rather than relative. Otherwise, the path name will be relative to the directory where the application was started.	
On Windows, be careful to distinguish between User and System DSNs in the ODBC Data Source Administrator. Do not create user DSNs because they are visible only to the user who defines them. System DSNs are visible to all users. In particular, if you run a TimesTen application as a Windows service, it runs as the user SYSTEM	
by default and does not see any User DSNs. Make sure that you are not using a mapped drive in the database path name.	
An error is generated if you attempt to connect to or create a shared database whose size is larger than the maximum size of shared memory segments configured on your system. Also, an error is generated if the system cannot allocate any more shared memory segments.	
On UNIX systems, use commands similar to the following:	
ipcs -ma	
to check if you have other shared memory segments using up memory, such as Oracle instances or other instances of TimesTen. ipcrm	
to remove a message queue, semaphore set or shared memory segment identifier. Use ipcrm	
to clean up semaphores or shared memory segments after a faulty TimesTen shutdown, instance crash, daemon crash or other application issues that use shared memory segments and semaphores. Use -m	
to remove a shared memory segment. Use -s	
to remove a semaphore. ps -eafl	
to see how much memory is being used by running processes. ulimit -a	
to see if there are any limits on the maximum amount of memory one process can address, maximum file size, and the maximum number of open files. If a shared memory segment is available but is too small to hold your database, use the ttSize	
utility to estimate the amount of memory required for your tables and then check the values of the PermSize	
and TempSize	
attributes to verify the amount of memory established for your database. "Monitoring PermSize and TempSize attributes" in the Oracle TimesTen In-Memory Database Operations Guide describes guidelines for setting the size of your permanent and temporary data partitions. If the amount of memory established for your database is too large, reset PermSize	
and TempSize	
to smaller values. See "Check the amount of memory allocated to the database" for more information. Another option is to increase the maximum size of the shared memory segment, as described below.	
If a database becomes invalidated because of a system or application failure, a subsequent connection recovers the database. If recovery fails because you have run out of database space, then reconnect to the database with a larger PermSize	
and TempSize	
value than the ones that are currently in effect. If recovery fails because you do not have enough shared memory, then you should increase the maximum size of the shared memory segments for the system.	
For more information on how to configure shared memory for TimesTen, see "Installation prerequisites" in the Oracle TimesTen In-Memory Database Installation Guide.	
There must be enough swap space to back up shared memory.	
On UNIX systems, use the swap command to check and add virtual memory to your system.	
On Windows systems, check and reset the size of your virtual memory from the Advanced tab in your Computer Management Properties dialog window.	
Each process connected to a TimesTen database keeps at least one operating system file descriptor open. Additional file descriptors may be opened for each connection if checkpoints are issued, and transactions are committed or rolled back. If you receive an error that all file descriptors are in use when attempting to connect to a database, then increase the allowable number of file descriptors. See your operating system documentation for limits on file descriptors and information about changing the number of file descriptors.	
This section includes the following topics:	
You have not correctly identified the system where the TimesTen Server is running.	
On a Windows client machine, select the TimesTen Server in the TimesTen Data Source Setup dialog that is displayed as part of the ODBC Data Source Administrator. To verify the TimesTen Server:	
Note: If you typed the hostname or network address directly into the Server Name field of the TimesTen Client DSN Setup, the Client tries to connect to the TimesTen Server using the default port.	
If the Network Address and Port Number values are correct, the TimesTen Server may not be running. See "Starting and stopping the Oracle TimesTen Data Manager service on Windows" in the Oracle TimesTen In-Memory Database Operations Guide for information about starting the server manually. See "Testing connections" in the Oracle TimesTen In-Memory Database Operations Guide for more information about identifying this problem.	
On UNIX, specify the TimesTen Server with the TTC_Server	
connection attribute in the odbc.ini	
file on the client machine. If the value specified for TTC_Server	
is an actual hostname or IP address, the client tries to connect to the TimesTen Server using the default port. In TimesTen, the default port is associated with the TimesTen release number. If the value specified for TTC_Server	
is a logical ServerName, this logical ServerName must be defined in the ttconnect.ini	
file. The ttconnect.ini	
entry for this ServerName needs to correctly define the hostname/IP address and port number on which the TimesTen Server is listening.	
If the Network Address and Port Number values are correct, the TimesTen Server may not be running or did not start. See "Starting and stopping the daemon on UNIX" in the Oracle TimesTen In-Memory Database Operations Guide for information about starting the server manually. See "Testing connections" in the Oracle TimesTen In-Memory Database Operations Guide for more information about identifying this problem.	
Check the server's log file. Server log messages are stored in the files specified by the -userlog	
and -supportlog	
options in the ttendaemon.options	
file. See "Creating and configuring Client DSNs on UNIX" and "Managing TimesTen daemon options" in the Oracle TimesTen In-Memory Database Operations Guide.	
The maximum number of concurrent IPC connections to the Server of a particular TimesTen instance is 24,999. However, TimesTen has a limit of 2043 connections (direct or client/server) to a single DSN.	
Client/server users can change the file descriptor limit to support a large number of connections. For an example, see "Installation prerequisites" in the Oracle TimesTen In-Memory Database Installation Guide.	
On UNIX, verify that the Server DSN is defined in the sys.odbc.ini	
file on the machine running the TimesTen Server.	
On Windows, verify that the Server DSN is defined as a System DSN in the ODBC Data Source Administrator on the machine running the TimesTen Server. See "Creating and configuring a logical server name on Windows" in the Oracle TimesTen In-Memory Database Operations Guide.	
This error only occurs on UNIX platforms. Open the sys.odbc.ini	
file on the machine running the TimesTen Server and locate the Server DSN you are trying to connect. Verify that the dynamic library specified in the DRIVER	
attribute for the Server DSN exists and is executable.	
The default TimeOut interval is 60 seconds.	
To increase this interval on UNIX, change the value of the TTC_Timeout	
attribute in the odbc.ini	
file.	
To set the timeout interval on Windows, see the instructions in "Setting the timeout interval and authentication" in the Oracle TimesTen In-Memory Database Operations Guide.	
Check to see if the error was due to the Client timing out. Check the TimesTen Server's log to see why the Server may have severed connection with the Client. Use ping to determine if your network is up or try using telnet	
to connect to the TimesTen Server port number.	
While using shared memory segment (SHM) as IPC, the application may see the following error message from the TimesTen Client ODBC Driver if the application reaches the system-defined per-process file-descriptor-limit.	
This may happen during a connect operation to the Client DSN when the shmat	
system call fails because the application has more open file descriptors than the system-defined per-process file descriptor limit. To correct this problem, you must increase your system-defined per-process file descriptor limit. For more information about file descriptor limits, see "System Limits" in the Oracle TimesTen In-Memory Database System Tables and Limits Reference.	
On Windows XP, by default, there can be approximately 47 child server processes. You can increase the number of connections by setting the MaxConnsPerServer	
connection attribute in the ttendaemon.options	
file or in the DSN. This increases the number of connections to 47 times the MaxConnsPerServer	
value.	
On Solaris, you may receive messages in the user error log about thread stack overflow. On other platforms, you may receive messages about a segmentation fault that mention a possible thread stack overflow.	
If these messages occur, increase the server stack size by one of the following methods:	
-ServerStackSize	
option in the ttendaemon.options	
file. The ttendaemon.options	
file applies to all DSNs in the TimesTen instance. ServerStackSize	
connection attribute for a specific DSN. This takes precedence over the value in the ttendaemon.options	
file. Increasing the server stack size decreases the number of concurrent connections that can be made before running out of swap space.	
See "Working with the TimesTen Client and Server" in the Oracle TimesTen In-Memory Database Operations Guide.	
You may receive "out of space" messages if you change a DSN to specify a new database while there are existing connections to the original database in a system with multiple client connections. This can happen on 32-bit platforms if either database is close to 2 GB.	
Close all connections to the original database. This causes a new server process to be created for connections to the database that is now specified in the DSN. Use the ttStatus	
utility to list the connections for the old database. Alternatively, you can restart the server by using the ttDaemonAdmin	
utility with the -restartServer	
option, which resets all client connections on all DSNs in the instance.	
This section describes what to check if you encounter slow connects and disconnects to a database.	
Possible cause	See...
---	---
Database is being recovered.	"Check if database is being recovered"
ODBC tracing is enabled.	"Check ODBC tracing"
Other possible causes	"API tracing"
A slow connect may indicate that a TimesTen database is being recovered. This happens only for a first connect.	
On Windows platforms, if ODBC tracing is enabled, it can slow connect and disconnect speeds. Double-click ODBC in the Control Panel to open the ODBC Data Source Administrator. Select the Tracing tab and confirm tracing is disabled. See "Using ODBC tracing".	
If an application becomes disconnected from a TimesTen database, one of the following events occurs:	
This section describes what to check if your application unexpectedly disconnects from the database.	
Possible cause	See...
---	---
Internal application error.	"Check for ODBC or JDBC errors"
Failure of a concurrent application thread.	"Check for ODBC or JDBC errors"
If using a client/server connection, the client may have disconnected from the application.	"Troubleshooting Client/Server problems"
An error in the TimesTen library	Contact Technical support.
Check for the following types of errors:	
SQLError	
function SQLException	
class The application may have encountered a problem that caused it to exit prematurely, which in turn may have caused other connections to be forced to disconnect. Call SQLError	
after each ODBC call to identify error or warning conditions when they first happen. Examples of SQLError	
usage can be found in the demo programs and in "Retrieving errors and warnings" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
In more extreme cases, it may be helpful to use ttTraceMon	
to generate a level 4 ERR	
trace for the application and review all of the errors messages that are pushed in the TimesTen direct driver. See "ERR tracing" for details.	
If a TimesTen application disconnects without returning an ODBC error or any other warning, look through the user error log. See "Using the logs generated by the TimesTen daemon".	
For details on how to maximize the performance of your application and TimesTen database, see:	
This section describes some of the issues that impair performance.	
Possible cause	See...
---	---
Using client/server mode	"Consider connection mode"
Outdated database statistics	"Update statistics for your tables"
Committing transactions too frequently	"Turn off autocommit mode" in the Oracle TimesTen In-Memory Database Operations Guide
DurableCommits attribute enabled	"Use durable commits appropriately" in the Oracle TimesTen In-Memory Database Operations Guide
Not preparing SQL statements used more than once	"Prepare statements in advance" in the Oracle TimesTen In-Memory Database Operations Guide
Wrong kind of index, too many indexes, wrong size for hash index	"Select hash, range, or bitmap indexes appropriately" in the Oracle TimesTen In-Memory Database Operations Guide "Size hash indexes appropriately" in the Oracle TimesTen In-Memory Database Operations Guide
Inefficient use of locks	"Verify lock and isolation levels"
Improperly configured materialized view	"Performance implications of materialized views" and "Materialized view tuning" in the Oracle TimesTen In-Memory Database Operations Guide
If replication is used, configuration of replication scheme or network environment may be impacting application.	"Poor replication or XLA performance"
If IMDB Cache is used, IMDB Cache configuration or environment may be impacting application.	"Poor autorefresh performance"
Too many table partitions	"Check partition counts for the tables"
Tracing is unnecessarily enabled for one or more TimesTen components.	"Check trace settings"
Client/server connections are slower than direct connections to TimesTen databases. Driver manager connections can also moderately impact performance. The performance overhead imposed by client/server connections can be significant because of the network latencies involved in all communication with the database.	
If your application must run on a different machine from the one hosting the database, see "Client/Server tuning" in the Oracle TimesTen In-Memory Database Operations Guide.	
The TimesTen query optimizer in general is very good at choosing the most efficient query plan. However, it needs additional information about the tables involved in complex queries in order to choose the best plan. By knowing the number of rows and data distributions of column values for a table, the optimizer has a much better chance of choosing an efficient query plan to access that table.	
Before preparing queries that will access a TimesTen table, use the ttOptUpdateStats	
procedure to update the statistics for that table. When updating the statistics for a table, you get the best results if you update statistics on your tables after loading them with data, but before preparing your queries. For example, if you update statistics on a table before populating it with data, then your queries are optimized with the assumption that the tables contain no rows (or very few). If you later populate your tables with millions of rows and then execute the queries, the plans that worked well for the situation where your tables contained few rows may now be very slow.	
For more information about updating statistics, see "The TimesTen Query Optimizer" in the Oracle TimesTen In-Memory Database Operations Guide.	
The manner in which multiple applications concurrently access the database can have a major impact on performance.	
An application can acquire locks on the entire database, individual tables, and individual rows. Additionally, applications can set an isolation level that determines whether they hold read and update locks until their transactions commit or roll back.	
Check the SYS.MONITOR	
table or use the ttXactAdmin	
utility to detect whether an application is spending time waiting for locks. See "Check for deadlocks and timeouts" and "Using the ttXactAdmin utility".	
If lock contention is high, you may be able to improve the overall performance of your system by implementing the following:	
LockLevel	
configuration attribute or use the ttLockLevel	
procedure to place locks on rows, rather than on the entire database. Row locking is the default. ttOptSetFlag	
procedure to prevent the query optimizer from placing locks on tables. Table locks are sometimes the default, particularly for updates that affect many rows. Isolation	
=1, the default) for those applications do not require serializable access to the transaction data. If you see a lot of lock contention, but the above settings are all set to minimize contention, then the contention may be related to the application itself. For example, concurrent threads may be repeatedly accessing the same row. The ttXactAdmin	
utility can sometimes help you detect this sort of contention. Tracing can also be useful in this situation.	
For more information about locks and isolation levels, see "Concurrency control through isolation and locking" in the Oracle TimesTen In-Memory Database Operations Guide.	
Use ttTraceMon	
-e show	
as described in "Using the ttTraceMon utility" to confirm tracing is off on all TimesTen components. ERR	
should be set to 1; all other components should be set to 0. Trace levels are preserved when a database is reloaded.	
On Windows platforms, confirm that ODBC tracing is disabled. Double-click ODBC in the Control Panel to open the ODBC Data Source Administrator. Select the Tracing tab and confirm tracing is disabled. See "Using ODBC tracing".	
When a table is created, it has one partition. When you use ALTER TABLE ... ADD COLUMN	
to add new columns, a new partition is added to the table. Adding multiple columns with a single ALTER TABLE ... ADD COLUMN	
statement only adds one partition.	
There is a limit of 255 partitions per table. Exceeding this number generates error 8204. An extra read for each new partition slightly degrades performance for each of the new partitions. A high partition count should be avoided. On replicated tables that have multiple partitions, additional space is used for each update on the subscriber side, proportional to the number of partitions. This can result in the subscribers using slightly more perm space than the master.	
The partition value for each table is tracked in the SYS16	
column of the system table, SYS.TABLES	
. Obtain the partition counts for tables by using the following query:	
If you discover that a table has too many partitions, do one of the following:	
ttMigrate -c	
to create a migration file. Then restore the table without additional partitions by using ttMigrate -r -noRepUpgrade	
. ALTER TABLE ... DROP COLUMN	
does not remove partitions from a table. On replicated systems, all master and subscriber databases must be migrated using the -noRepUpgrade	
option. Replication does not occur for tables that have different partition structures.	
This section describes what to check if your application is unresponsive and appears to be hung.	
Possible cause	See...
---	---
All causes	"Check logs and gather trace information"
Internal application error	"Check for ODBC errors"
Inconsistent connection attributes set in DSN	"Consider connection mode"
Excessive lock contention	"Check for deadlocks and timeouts"
If your application hangs, check the transaction log by using the ttXactAdmin	
utility. See "Using the ttXactAdmin utility".	
Also check the user error log for errors, as described in "Using the logs generated by the TimesTen daemon" .	
You can also generate a trace log to detect the activities on various TimesTen components as described in "Using the ttTraceMon utility" .	
Check the ODBC errors returned by the SQLError	
function in all applications to determine whether one of them has encountered a problem that caused it to hang. Call SQLError	
after each ODBC call to identify error or warning conditions when they first happen. Examples of SQLError	
usage can be found in the demo programs and in "Retrieving errors and warnings" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
If the problem is repeatable, use ttTraceMon	
to generate a SQL trace to determine where the application is hanging. See "SQL tracing" for details. In more extreme cases, it may be helpful to generate a level 4 ERR	
trace for the application and review all of the errors messages that are pushed in the TimesTen direct driver. See "ERR tracing" for details.	
If there is no connect problem, a deadlock or timeout may be the problem. The SYS.MONITOR	
table records information about deadlocks and timeouts. See "Monitoring the TimesTen system tables" for information on how view the contents of this table. You can also use the ttXactAdmin	
utility to detect the types of locks currently held by uncommitted transactions and the resources on which they are being held.	
If a deadlock occurs, the TimesTen subdaemon negotiates the problem by having an application involved in the deadlock generate TimesTen error 6002, "Lock request denied because of deadlock.	
" The error message contains the SQL that the lock holder is running, which can help you diagnose the cause of the deadlock. If your application encounters this error, it should roll back the transaction and then reissue the statements for that transaction. Deadlocks can be caused if your application issues statements in a particular order that results in a circular wait, and can sometimes be prevented by changing the order in which the statements are issued.	
An application encounters TimesTen error 6003, "Lock request denied because of timeout	
," if it is unable to acquire a lock within the time period defined by the lock timeout interval set by the LockWait	
attribute in the DSN or by the ttLockWait	
procedure in your application. Upon encountering a timeout error, your application can reissue the statement. Keeping transactions short reduces the possibility of lock timeout errors.	
System tables are a common source of lock contention. Reduce contention on the system tables by executing prepared statements, rather than executing the same statements directly each time.	
In multithreaded applications, a thread that issues requests on different connection handles to the same database may encounter lock conflict with itself. TimesTen resolves these conflicts with lock timeouts.	
This section describes what to check if your application is unable to locate previously created tables, indexes, sequences or views in the database.	
Possible cause	See...
---	---
No owner or incorrect owner specified	"Specify object owner"
User does not have SELECT privileges to tables.	"Check privilege to access tables"
Database is temporary.	"Check temporary DSN attribute"
Overwrite attribute is enabled.	"Check Overwrite DSN attribute"
Path name specified in DSN is relative.	"Check path name to database"
Tables, indexes and sequences can be created either with a single name, such as PARTS,	
or with a qualified name incorporating an owner and table name, such as STAN.PARTS	
. When accessing a table or index, if no owner is specified, TimesTen first assumes that the owner is the login ID of the user (the value of the UID	
attribute). If TimesTen cannot find the table or index under the user's login ID, it then assumes that the owner is user SYS	
.	
If applications need to connect to a database as different users and share objects, explicitly specify the owners of the objects when they are created and referenced.	
All privileges for the user can be viewed in the SYS.USER_SYS_PRIVS	
table, which contains all of the system-level privileges for a given user, and the SYS.USER_TAB_PRIVS	
table, which contains all of the object-level privileges for a given user. Check these tables to verify if you have SELECT	
privilege for the tables. If you do not have SELECT	
privilege for the tables, the privilege may be granted with the GRANT	
statement. The method for granting privileges is described in the "Managing Access Control" chapter in the Oracle TimesTen In-Memory Database Operations Guide.	
Temporary databases (DSN attribute: Temporary	
=1) persist until all connections to the database have been removed. When attempting to access a table in a temporary database and the table does not exist, it is possible that the database in which the table resided in has been dropped.	
If the Overwrite	
and AutoCreate	
DSN attributes are enabled and the database already exists, TimesTen drops that database and creates a new one. Any tables that were created in the old database are dropped.	
To ensure that you are always accessing the same database when connecting to a particular DSN, use an absolute database path name instead of a relative one. For example, if the demo database is in the datastore	
directory, specify:	
rather than:	
In the latter case, the database path name is relative to the directory where the application was started. If you are unable to find a table and you are using a relative database path name, it is possible that the database in which the table resides in does exist but the database (checkpoint and log) files are in a different directory than the one that you are accessing.	
See "Specifying Data Source Names to identify TimesTen databases" in the Oracle TimesTen In-Memory Database Operations Guide.	
On Windows, the NLS_LANG	
setting is taken from the registry if it is not in the environment. If NLS_LANG	
is set to an unsupported value, such as NA, an OCI connection failed error or an ORA-12705	
error is thrown. If your OCI or Pro*C/C++ program has trouble connecting to TimesTen, verify that the setting of HKEY_LOCAL_MACHINE\Software\ORACLE\NLS_LANG	
is valid and indicates a character set supported by TimesTen. This is likely only an issue on machines that previously had Oracle9i or earlier Oracle versions installed.	
Refer to the "Globalization support" section in the OCI chapter of the Oracle TimesTen In-Memory Database C Developer's Guide for more information on NLS_LANG	
.	
This section describes what to check if TimesTen runs out of resources such as memory space, disk space, file descriptors, and semaphores.	
Symptom	See...
---	---
Memory consumption seems high.	"Operating system tools and shared memory"
Running out of memory space	
Running out of disk space	"Check transaction log file use of disk space"
Running out of transaction log space	"Check transaction log file use of disk space"
Running out of file descriptors	"Increase the number of available file descriptors"
Running out of semaphores	"Check the semaphore limit"
Running out of CPU	Obtain a stack trace and contact Technical support.
Operating system tools such as top	
, vmstat	
, and sar	
provide statistics about processes and memory usage. The output from these tools can be misleading as an indicator of TimesTen memory consumption because they report shared memory usage for each process but do not report total shared memory usage. Adding together various memory statistics for TimesTen processes overestimates the amount of memory used by TimesTen because shared memory is by definition shared.	
TimesTen uses both permanent and temporary data partitions. The amount of memory allocated for these partitions is set by the PermSize	
and TempSize	
attributes in the DSN definition for the database.	
When the TimesTen database fills up, it is important to determine whether it is the permanent or the temporary segment that is filling up. Use the ttIsql	
dssize	
command to list allocated, in-use, and high water mark sizes for the permanent and temporary data partitions. The dssize	
command selects the following values from SYS.MONITOR	
:	
PERM_ALLOCATED_SIZE	
PERM_IN_USE_SIZE	
PERM_IN_USE_HIGH_WATER	
TEMP_ALLOCATED_SIZE	
TEMP_IN_USE_SIZE	
TEMP_IN_USE_HIGH_WATER	
The permanent segment consists of table and index data, while the temporary segment consists of internal structures, such as locks, sorting areas, and compiled commands.	
Keeping transactions short and making sure there is enough temporary space in the database prevents locks from occupying all of the remaining temporary space. You can also use table locks if transactions are acquiring tens of thousands of row locks.	
For tips on how to estimate the size of your database, see "Size your database correctly" in the Oracle TimesTen In-Memory Database Operations Guide.	
Consider whether you can drop any indexes. You may want to look at query plans to see which indexes are actually used. See "Viewing and changing query optimizer plans" in the Oracle TimesTen In-Memory Database Operations Guide. You can also use the ttRedundantIndexCheck	
procedure to discover redundant indexes. The procedure returns suggestions about which indexes to drop.	
Use the ttSize	
utility to estimate the amount of memory used by each table in the database. If the amount of data you need to store is too big, you may need to reset the PermSize	
attribute for the database to increase the size of the permanent segment. Alternatively, you may need to partition your data into several different databases if, for example, you cannot shrink the temporary segment or create a bigger database because of limits on the memory segment size.	
Sometimes when the permanent segment fills up, copying the data out of the database, deleting all the data, and copying it back in frees up space. This can be done more efficiently by using the ttMigrate	
utility with the -noRepUpgrade	
option to migrate the data out, destroy and re-create the database, and migrate the data back in. This operation is described in "Reducing database size" in the Oracle TimesTen In-Memory Database Installation Guide.	
Finally, you may have to configure the operating system to allow a larger amount of shared memory to be allocated to a process. You may also have to allocate more swap space for virtual memory. See "Check available swap space (virtual memory)".	
Some commands may be allocating too much space because of out-of-date statistics. See "Update query optimizer statistics".	
If updating the statistics does not reduce temporary segment memory usage, disconnect all connections and then reconnect them. Verify that all connections have been disconnected by using the ttStatus	
utility. That frees up all temporary space, but you must reprepare commands.	
Diagnose memory usage by queries. See "Check memory used by queries".	
If the problem is chronic, monitor the database to try to identify the source of the problem. Use the ttWarnOnLowMemory	
procedure to enable warnings in the user log that indicate that the database is filling up.	
If the database seems to have enough free space but runs out of database space when executing a query, make sure you have updated the optimizer statistics with the ttOptUpdateStats	
or ttOptEstimateStats	
procedure. To execute some queries, TimesTen needs to allocate temporary space. The amount of temporary space required is estimated from statistics about the tables used by the query. Without correct statistics, the temporary space required may be underestimated.	
You can check the memory that a query uses by observing the high water mark for temporary memory usage. The high water mark represents the largest amount of in-use temporary space used since the high water mark was initialized or reset.	
Complete the following tasks:	
ttIsql	
dssize	
command to check TEMP_IN_USE_SIZE	
and TEMP_IN_USE_HIGH_WATER	
. Alternatively, you can query the SYS.MONITOR	
table for these values. ttMonitorHighWaterReset	
procedure to reset the TEMP_IN_USE_HIGH_WATER	
to the current value for TEMP_IN_USE_SIZE	
. dssize	
to check TEMP_IN_USE_HIGH_WATER	
for peak memory usage for the query. If you receive an error indicating that you have run out of swap space, you may need to increase the amount of available swap space (also referred to as "virtual memory").	
On UNIX systems, use the swap	
command to check and reset the amount of virtual memory currently established for your system.	
On Windows systems, check and reset the size of your virtual memory by choosing Control Panel > System > Advanced.	
Fatal errors, such as errors 846 and 994, invalidate a TimesTen database. However, the database remains in memory, which is only freed after all users have disconnected from the database. If the database is restarted while users are connected to the invalidated database, both old and new instances exist in memory at the same time. In this case, users could receive out-of-memory conditions. To prevent an "Out of memory"	
error, disconnect all active connections at the time of the fatal error before reconnecting.	
TimesTen saves a copy of the database in one of two checkpoint files, which are stored in the directory specified by the DataStore	
attribute. Each checkpoint file can grow on disk to be equivalent to the size of the database in shared memory. For each permanent database, you must have enough disk space for the two checkpoint files and for transaction log files.	
Transaction log files accumulate in the directory specified by the LogDir	
attribute and are only deleted when checkpoints are performed. If the LogDir	
attribute is not specified in the DSN, transaction log files accumulate in the directory specified by the DataStore	
attribute. The maximum size of your transaction log files is set by the LogFileSize	
attribute.	
When a disk fills up with TimesTen data, it is most often due to a build-up of transaction log files. Transaction log files are used for numerous purposes in TimesTen, including checkpointing, backups, and replication. It is important to determine which operation is putting a "hold" on the transaction log files, so that appropriate action can be taken to allow the transaction log files to be purged. This can be done by using the ttLogHolds	
built-in procedure. There are six types of log holds. They are discussed in detail below.	
ttCkpt	
or ttCkptBlocking	
procedure to checkpoint the data and free up the space on the disk. If checkpoints are done very infrequently, a large number of transaction log files may accumulate, particularly if many changes are made to the database during that interval. See "Checkpoint Operations" in the Oracle TimesTen In-Memory Database Operations Guide. ttXlaAcknowledge	
C function. Call ttXlaAcknowledge	
frequently enough to prevent transaction log files building up. See "Retrieving update records from the transaction log" in the Oracle TimesTen In-Memory Database C Developer's Guide. The following attributes are related to disk use:	
LogPurge	
attribute indicates whether transaction log files that no longer have a hold on them are purged (removed from the disk) or simply archived (renamed). If the LogPurge	
attribute is set to the default value of 0, TimesTen renames transaction log files that it no longer needs by appending the string .arch	
to the name. Once renamed, you must delete the transaction log files manually when they are no longer needed. If transaction log files are not purged, they continue to accumulate space, even when no longer needed by TimesTen. Preallocate	
attribute indicates whether disk space should be reserved for checkpoint files at connect time. This is useful for big databases, to ensure that the disk always has room for the checkpoint files as data is added to the database. When tracing to a file has been enabled, the file may grow so large that a process attempting an operation may exceed the file limits. Tracing always appends to an existing file.	
On certain platforms, the file size is limited to 2G. If you reach this limit, the process is terminated unless you catch the SIGXFSZ	
signal. The error shown is the "FILESIZE LIMIT EXCEEDED	
" error. Ensure that you want tracing enabled when using environments with strict file size limits.	
When creating multiple client/server connections to a TimesTen database configured to allow shared memory segment as IPC, you may encounter errors that indicate TimesTen was unable to create a semaphore.	
Semaphore limits are platform-dependent. See your operating system documentation and "Increase number of semaphores" in the Oracle TimesTen In-Memory Database Installation Guide.	
Using read-committed isolation level can lead to duplicates in a result set. A SELECT	
statement selects more or fewer rows than the total number of rows in the table if some rows are added or removed and committed in the range in which the SELECT	
scan is occurring. This may happen when an UPDATE	
, INSERT	
or DELETE	
statement adds or deletes a value from an index and the SELECT	
scan is using this index. This can also happen when an INSERT	
or DELETE	
adds or deletes rows from the table and the SELECT	
operation is using an all-table scan.	
Index values are ordered. An UPDATE	
of an index value may delete the old value and insert the new value into a different place. In other words it moves a row from one position in the index to another position. If an index scan sees the same row in both positions, it returns the row twice. This does not happen with a serial scan because table pages are unordered and rows do not need to be moved around for an UPDATE	
. Hence once a scan passes a row, it will not see that same row again.	
The only general way to avoid this problem is for the SELECT	
statement to use Serializable isolation. This prevents a concurrent INSERT	
, DELETE	
or UPDATE	
operation. There is no reliable way to avoid this problem with INSERT	
or DELETE	
by forcing the use of an index because these operations affect all indexes. With UPDATE	
, this problem can be avoided by forcing the SELECT	
statement to use an index that is not being updated.	
For more information about Serializable isolation, see "Concurrency control through isolation and locking" in the Oracle TimesTen In-Memory Database Operations Guide.	
The PLSQL_MEMORY_ADDRESS	
first connection attribute determines the virtual address at which the PL/SQL shared memory segment is loaded into each process that uses the TimesTen direct drivers. Since each operating system platform has different mappings for its address space, the default values for the PL/SQL address space defined in the PLSQL_MEMORY_ADDRESS	
connection attribute are different for each platform, which avoids conflict with operating system mapped address space.	
However, if your application overlaps with the PL/SQL mapped address space, you may receive error 8517 "Cannot attach PL/SQL shared memory; PLSQL_MEMORY_ADDRESS not valid or already in use.	
" In this case, modify the setting for the PLSQL_MEMORY_ADDRESS	
connection attribute to eliminate the overlap. The reasons for receiving error 8517 can be one of the following:	
To recover, specify a virtual address that is free for all processes that may connect to the database. If you have a 32-bit program that allocates large amounts of memory before connecting to TimesTen, it may clash with the PL/SQL shared memory segment. In this case, either allocate memory after connecting to TimesTen or use a 64-bit application. In a 64-bit environment, the options for reassigning to another memory address are less complicated than for a 32-bit operating system, where options are limited and potential for overlap is more common.	
If an application accesses two or more TimesTen databases at the same time, you must modify the default setting for the PLSQL_MEMORY_ADDRESS	
attribute in all but one of the TimesTen databases, since the default settings would map the PL/SQL memory address to the same address for all TimesTen databases.	
The following sections in this chapter describe how to troubleshoot some of the problems you may encounter when using Oracle In-Memory Database Cache (IMDB Cache):	
If you are having problems with an AWT cache group, see also Chapter 5, "Troubleshooting AWT Cache Groups".	
This section describes some of the problems you might encounter when executing the CREATE CACHE GROUP	
statement.	
Possible cause	What to do
---	---
User does not have the correct Oracle privileges to create the cache group type.	See "Check Oracle privileges".
User has insufficient access to database.	You must have CACHE_MANAGER privilege to create a cache group.
The internal/external user does not match the Oracle user.	The TimesTen user name must be the same as the Oracle user name.
Cannot connect to Oracle	See:
Check the network status.	
Cache administration user ID or password not set (when trying to create AWT or autorefresh cache groups)	See "Set the cache administration user id and password".
Unsupported data type mapping	See "Unsupported data type mapping".
Different nullability setting in Oracle	See "Null constraint does not match Oracle".
Failure to specify primary key in root table	The root table of a cache group must have a primary key. See "Defining cache groups" in the Oracle In-Memory Database Cache User's Guide.
This section describes some of the problems you might encounter when starting or stopping the cache agent.	
Possible cause	What to do
---	---
Cache agent already running	See "Check status of the cache agent".
Unable to locate Oracle libraries	
ORACLE_HOME is invalid.	See "Check ORACLE_HOME environment variable".
Insufficient privileges	You must have CACHE_MANAGER privilege to start or stop the cache agent.
Wrong OracleID	Ensure that the OracleID set in your DSN definition matches the Oracle Service Name for the Oracle instance that contains the tables to cache in TimesTen.
Check the status of the cache agent by using the ttStatus	
utility as described in "Using the ttStatus utility" to check the status of the cache agent.	
If the cache agent is not running, start it as described in "Starting the cache agent" in the Oracle In-Memory Database Cache User's Guide. If attempts to start the cache agent fail, then investigate the possible causes and reboot the machine before attempting to start the cache agent.	
On UNIX or Linux platforms, check that the ORACLE_HOME	
environment variable is set correctly for the shell from which you are starting the cache agent and the TimesTen daemon. Use the ttmodinstall	
utility if you need to change the setting for ORACLE_HOME	
.	
See "Environment variables" in Oracle TimesTen In-Memory Database Installation Guide.	
NLS environment variables are set in the environment where the TimesTen application is running, even though TimesTen is not using the NLS environment variables. Unset the NLS environment variables and restart the TimesTen daemon, the cache agent, and the replication agent.	
The server may experience a system failure or an unexpected reboot, such as with a power outage. In this case, the cache grid exits unexpectedly without the normal shutdown procedure.	
The following sections describe how to recover when the system unexpectedly shuts down for two scenarios:	
When the server shuts down, some of the cache grid notes exited unexpectedly, but others are still active. In this case, you must detach the dead nodes first by executing ttGridDetachList	
from an attached node, as follows:	
ttGridDetachList	
to force a detach of all dead nodes from the grid. ttRepStart	
. ttGridAttach	
. If all cache grid nodes exited unexpectedly when the server shut down, perform the following tasks to recover the cache grid:	
ttRepStart	
. The replication agent will flush the existing log, even if the log is current. ttGridAttach	
on each node, which will fail with a communication error because it cannot communicate with other members. The failed attach cleans up the node information. ttGridAttach	
should succeed. At this point you have cleaned up all nodes, so execute ttGridAttach	
on all nodes again to attach each node to the grid. If you receive error ORA-12514	
indicating "could not resolve service name	
":	
TNSPING	
utility to verify that the service can be reached. OracleID	
set in your DSN definition matches the Oracle Service Name for the Oracle instance that contains the tables to cache in TimesTen. Check the cache administration user name and password on Oracle with SQL*Plus to make sure this service name works. For example:	
OracleHost	
cache_admin_user	
is the cache administration user name, cache_admin_pwd	
is the cache administration user password, and OracleHost	
is the OracleID	
specified in your DSN definition.	
Note: Your cache administration user may be different from your regular Oracle user. See "Create the Oracle users" in the Oracle In-Memory Database Cache User's Guide.	
tnsnames.ora	
on your TimesTen machine. Also check the permission on tnsnames.ora	
. ORACLE_HOME	
environment variable points to the correct Oracle installation directory. For example: You may receive ORA-12154	
"TNS:could not resolve the connect identifier specified" when you try to connect to a a database.	
This can occur when you are trying to use IMDB Cache and Oracle on the same machine and the TNS_ADMIN	
environment variable does not point to the proper tnsnames.ora	
file for Oracle. For example, you may have several instances of the Oracle Database running on a laptop.	
In a production environment, you typically have TimesTen and Oracle running on different machines. In this case, do not reset the TNS_ADMIN	
environment variable to point to a tnsnames.ora	
file on the machine where TimesTen is running. The Oracle client uses the TNS_ADMIN	
setting to resolve the connection, but the TimesTen main daemon, the cache agent, the Web server, and the replication agent are unaware of the TNS_ADMIN	
setting. IMDB Cache cannot operate properly when the Oracle client and TimesTen use different tnsnames.ora	
files.	
On Windows, set the TNS_ADMIN	
environment variable as follows:	
TNS_ADMIN	
as a system environment variable so that it points to the directory that contains the tnsnames.ora	
file that you wish to use. You can include other tnsnames.ora	
files with the INAME	
command inside the tnsnames.ora	
file. If you receive connection timeout errors such as ORA-12170	
or ORA-12535	
, or if you receive ORA-03134	
(server version not supported), verify that you are using an Oracle client and Oracle server whose versions are compatible.	
Metalink Documentation Note 207303.1, "Client/Server/Interoperability Support Between Different Oracle Versions", lists the client/server combinations supported by Oracle.	
See "Oracle In-Memory Database Cache" in the Oracle TimesTen In-Memory Database Installation Guide for information about Oracle clients and servers supported for use with TimesTen. Also check Oracle and TimesTen release notes for known problems with client/server versions.	
This section describes some of the problems you might encounter when using the Oracle username and password.	
Possible cause	See...
---	---
The library environment variable is not set correctly	"Check library path environment variable".
Oracle processes not running	"Check status of TNS listener and Oracle Server".
User does not have the correct Oracle privileges	"Check Oracle privileges".
Incorrectly configured DSN	"Check DSN definition".
Problems with cache administration user ID or password	"Set the cache administration user id and password".
Inconsistent user and system environments	"Check user and system environment".
Dynamic libraries not loading	"Verify the loaded dynamic libraries".
Check the library path environment variable on your platform.	
On this platform...	Check this variable...
---	---
UNIX except HP-UX	LD_LIBRARY_PATH On 64-bit platforms,
HP-UX	SHLIB_PATH
Windows	PATH
The library path environment variable must include the following information:	
TimesTen and platform bit combination	Setting
---	---
64-bit TimesTen or 32-bit TimesTen on 32-bit platform	$ORACLE_HOME/LIB and $ORACLE_HOME/NETWORK/LIB
32-bit TimesTen on 64-bit platform	$ORACLE_HOME/LIB32 and $ORACLE_HOME/NETWORK/LIB32
Try to connect to the Oracle database by using SQL*Plus or use Oracle Enterprise Manager to verify the status.	
From an Oracle SQL*Plus command prompt, list the current Oracle privileges granted to you by entering:	
Compare the privileges listed against the required privileges for the various IMDB Cache operations that are specified in "Grant privileges to Oracle users" in the Oracle In-Memory Database Cache User's Guide. Contact your Oracle Administrator if you require additional privileges.	
OracleID	
and OraclePWD	
used in your DSN definition to confirm they are correct. If the Oracle client was installed and the machine has not been restarted, then the TimesTen daemon is still running under the "old" environment before the Oracle client install. Reboot your machine so the TimesTen can start under the "new" environment.	
From a ttIsql	
session, connect to the database and enter the following:	
If it returns an error, then check the Oracle ID, the cache administration user ID and cache administration password. Also check whether the Oracle instance is running.	
Test to see if the problem is due to differences in user and system environment. This procedure requires two session windows (Command Prompt windows in Windows or shell windows in UNIX).	
In one session window, start the Timesten daemon as a regular user.	
On Windows:	
On UNIX:	
Some messages will flash by, and then it goes into a wait state.	
In another session window, try to restart the cache agent.	
kill	
command on UNIX to stop the TimesTen daemon you started for the other session in Step 2. oci.dll	
? Are there any differences in the path name to the oci.dll	
library between the user and system environments? If you are running on a Windows system with Visual C++ installed, verify the loaded dynamic libraries. This works only if you can start the cache agent without autorefresh:	
ttora1121.exe	
and highlight it. Right-click on it and select Debug. This brings you into Visual C++ and you should see the loaded DLL in the debug window, as described in "Unable to resolve Oracle Service Name". Example 3-1 List of loaded dlls	
This partial list was created with the Oracle client.	
Error 5105, "OCI initialization failed	
," may occur when an operation requires contact with the Oracle database. For example, the error might occur in the following situations:	
Error 5105 contains additional information about its cause:	
ORACLE_HOME	
is invalid. See "Check ORACLE_HOME environment variable". When you try to create a cache group, you may receive the following error:	
name	
For example, table tab on Oracle can be described as follows:	
Try to create the cache group as follows:	
Error 5119 is displayed and the cache group is not created because the statement attempts to map a column of NUMBER	
data type to a column of CHAR	
data type.	
See "Data type mappings allowed for key columns" in the Oracle In-Memory Database Cache User's Guide.	
When you try to create a cache group, you may receive the following warning:	
name	
has different nullability setting in OracleFor example, table tab	
on Oracle can be described as follows:	
Try to create the cache group as follows:	
Warning 5119 is displayed because col2	
on Oracle does not have a NULL	
constraint, but col2	
in the cache group is defined as NOT NULL	
.	
DDL operations that are performed on an Oracle table that is being cached in TimesTen may cause a failure on the cache group. For example, the user drops a column on the Oracle table that is being cached in TimesTen. When the cache group is propagated or flushed, TimesTen will update the column that no longer exists in the Oracle table. When the cache group loads or refreshes, then TimesTen attempts to retrieve data from the column that has been dropped.	
The following cache group operations may fail:	
If you suspect the cache group operations are not working properly because of a DDL operation on the Oracle base table, then use DDL tracking to diagnose the issue. DDL tracking saves the change history for all the cached Oracle tables. The SQL statement and when it was executed are each written to a TimesTen table in the cache administrator user schema on Oracle.	
For more information on how to create the DDL tracking objects and how to enable DDL tracking for the base table within Oracle, see "Monitoring DDL operations on Oracle tables" in the Oracle In-Memory Database Cache User's Guide. For details on the built-in procedures used for initializing and enabling DDL tracking, see the Oracle TimesTen In-Memory Database Reference.	
If you modify an object in a cache group and then the changes do not appear on a subsequent SQL statement, then one of the following may have occurred:	
OracleNetServiceName	
DSN or connection attribute after creating the cache group, which points to an Oracle database other than the one that the cache group was created upon. For example, if the user creates an AWT cache group. Then, the user added rows to a table. When the user performs a SELECT * FROM	
the table, the rows did not appear. The ttmesg.log	
error file does not display an error that Oracle is not available. Instead, it displays the following messages:	
To recover, perform the following:	
If the LOAD CACHE GROUP	
or REFRESH CACHE GROUP	
statement fails when you specify COMMIT EVERY	
n	
ROWS	
and n	
is greater than 0, the contents of the target cache group could be in an inconsistent state. Some cache instances may be partially loaded.	
Unload the cache group and then load it again. In some situations, it may be easier to drop and re-create the cache group.	
This section includes the following topics:	
The ttCacheAutorefreshStatsGet	
procedure returns information about the last ten autorefresh operations on a specified cache group.	
The ttCacheAutorefreshStatsGet	
procedure returns information only when the cache agent is running and the autorefresh state is ON	
or PAUSED	
. All of the return fields are set to 0 when the cache agent is restarted or the autorefresh state is changed to OFF	
.	
Example 3-2 Calling ttCacheAutorefreshStatsGet	
This example uses testcache	
, which is a READONLY cache group with one table and an incremental autorefresh interval of 10 seconds.	
Table 3-1 describes the results from the first row of output.	
Table 3-1 ttCacheAutorefreshStatsGet results from last autorefresh operation	
Result	Field name
---	---
1164260	
Cache group ID	
2007-07-23 15:43:52.000000	
Timestamp when autorefresh started for this interval	
850280	
Number of cache agent clock ticks in milliseconds at the time the autorefresh transaction started for this interval. This value is cumulative and is reset when the cache agent process starts.	
44	
Autorefresh number	
0	
The number of milliseconds spent in this autorefresh operation. It is zero because the operations is in progress.	
75464	
The number of rows autorefreshed in this autorefresh operation. This would include all rows in the root table and child tables if the cache group had child tables. Note: This information is not provided for full autorefresh.	
528255	
The number of bytes transferred from Oracle in this autorefresh operation. Note: This information is not provided for full autorefresh.	
75464	
The number of root table rows autorefreshed in this autorefresh operation.	
310	
The duration in milliseconds for the autorefresh query to execute on Oracle. Note: This information is not provided for full autorefresh.	
110	
The duration in milliseconds for the autorefresh query to fetch rows from Oracle. Note: This information is not provided for full autorefresh.	
6800	
The duration in milliseconds for TimesTen to apply the updated rows to the cache group. Note: This information is not provided for full autorefresh.	
1890912	
The total number of rows autorefreshed since the cache agent started. Note: This information is not provided for full autorefresh.	
12439795	
The total number of bytes transferred from Oracle since the cache agent started. Note: This information is not provided for full autorefresh. Note: This information is not provided for full autorefresh. Note: This information is not provided for full autorefresh.	
1890912	
The total number of root table rows autorefreshed since the cache agent started.	
160020	
The total autorefresh duration in milliseconds since the cache agent started.	
InProgress	
Status. The status can also be Complete or Failed.	
Note that the total number of autorefreshed rows (1890912) is the same as the total number of autorefreshed root table rows in this example because there are no child tables.	
The number of autorefreshed rows in TimesTen does not necessarily reflect the number of rows updated on Oracle. The Oracle updates may be applied in TimesTen more than once, or multiple Oracle updates on the same row may be applied as one update in TimesTen.	
TimesTen provides a SQL script that gathers information from the change log tables that exist on the Oracle database for autorefresh cache groups. See "Oracle objects used to manage a caching environment" in the Oracle In-Memory Database Cache User's Guide for more information about change log tables.	
The script displays the following information for each cached table:	
The log sequence number (logseq	
) acts as a marker for the autorefresh operation.	
Run the script as the cache administration user on the Oracle database using SQL*Plus. If you run the script as a different user, it reports that the change log tables do not exist.	
The script is in the following location:	
install_dir	
/oraclescripts/cacheInfo.sqlThe support log contains messages that show the progress of autorefresh. For example, testcache	
is a READONLY cache group with an autorefresh interval of 10 seconds (10,000 milliseconds).	
The support log shows when autorefresh starts:	
The message includes the following information:	
15:43:33.96	
) 5264	
) 5676	
) The thread ID is important because autorefresh numbers are unique only for a specific interval. Always check both the thread ID and the autorefresh number when you are tracking a specific autorefresh operation.	
The support log also contains a longer message that reports information similar to the ttCacheAutorefreshStatsGet	
procedure. 108544 rows were updated in this autorefresh interval, and 1815448 rows have been updated since the cache agent was started. Note that the total number of rows and the total number of root table rows are the same in this message because there is only one table in the cache group. Number	
refers to the autorefresh number. All times are expressed in milliseconds.	
Additional messages show that the autorefresh operation completes successfully:	
Inspect the timestamps to determine whether autorefresh is progressing as expected.	
See "Managing TimesTen daemon options" in the Oracle TimesTen In-Memory Database Operations Guide for information about setting the support log location.	
If ttCacheAutorefreshStatsGet	
shows that the status of an autorefresh operation is Failed, check the support log for messages related to the autorefresh operation with number the number shown in the ttCacheAutorefreshStatsGet	
output. Look for errors that occurred after the autorefresh operation started.	
Example 3-3 ttCacheAutorefreshStatsGet output shows autorefresh failure	
This row of output from ttCacheAutorefreshStatsGet	
shows a failed autorefresh operation.	
The autorefresh number is 9.	
The support log shows the start message for autorefresh number 9:	
The thread ID for autorefresh number 9 is 4724. Look for error messages with this thread ID.	
The following messages appear in the support log:	
The error message for thread ID 4724 shows that the change log table, TT_03_81799_L, is missing. The introduction to "Autorefresh not refreshing cache at the specified interval" has a table entry that describes what to do in this situation.	
You can use the ttTraceMon	
utility to diagnose autorefresh performance problems. See "AUTOREFRESH tracing".	
TimesTen tracing severely impacts application performance and consumes a great deal of disk space if trace output is directed to a file. When you are finished, reset tracing to the default values.	
Enable SNMP traps to alert you when autorefresh problems occur.The SNMP traps related to autorefresh include:	
ttCacheAutoRefQueFullTrap	
ttCacheIncAutoRefFailedTrap	
ttCacheValidationErrorTrap	
ttCacheValidationWarnTrap	
ttCacheValidationAbortedTrap	
See "Diagnostics through SNMP Traps" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
The following recommendations may optimize performance for the IMDB Cache:	
Note: Each of these suggestions involve performance trade-offs, which may not always be beneficial for optimal use. Consider and test each performance suggestion for your own configured environment.	
ALTER TABLE	
<table_name> CACHE	
statement to indicate to the Oracle database that these tables should be stored in the keep portion of the SGA buffer cache. Pinning IMDB Cache tables in the SGA increases the probability that any given datablock needed for a IMDB Cache refresh operation will be available in the SGA when the refresh is performed and will not force a disk read. This minimizes physical disk reads executed during TimesTen cache refresh operations. For more information about Oracle buffer cache management, see "Configuring and Using Memory" in the Oracle Database Performance Tuning Guide. dbms_shared_pool.keep	
procedure. Pinning triggers into the shared pool for applications where updates to the cache group base tables are infrequent keeps the trigger from having to be reloaded and reparsed. This is not necessary for highly volatile tables where the trigger will be executed frequently and will remain in the shared pool under any circumstances. ALTER TABLE PARALLEL	
command. Build an N-partition primary key index against the table. The following table shows possible causes for autorefresh problems.	
Possible cause	What to do
---	---
Cache agent not started with a cache administration user	Specify a cache administration user ID and password when starting the cache agent, as described in "Starting the cache agent" in the Oracle In-Memory Database Cache User's Guide.
Object ID of the base table has changed.	See "Recover and reset autorefresh Oracle objects".
Autorefresh trigger not enabled	See "Recover and reset autorefresh Oracle objects".
Current log sequence number recorded in the TT_ version _USER_COUNT table is less than to the maximum log sequence number in the autorefresh log table.	See "Recover and reset autorefresh Oracle objects".
There is no row in the TT_ version _USER_COUNT table with usercount > 0 for every active incrementally autorefresh table	See "Recover and reset autorefresh Oracle objects".
Change log table is empty.	See "Recover and reset autorefresh Oracle objects".
User count is less than 0 or any TT_ version _USER_COUNT log sequence anomalies	See "Recover and reset autorefresh Oracle objects".
Autorefresh log table, trigger, or sequence associated with a cached table does not exist or is not valid.	Check whether the cache agent was started with the correct cache administration user ID. If the cache administration user ID is correct, follow the procedure described in "Recover and reset autorefresh Oracle objects". Check the user error log for messages about "fatal anomalies". This indicates corrupt or missing Oracle objects.
TT_ version _USER_COUNT table is missing.	Check whether the cache agent was started with the correct cache administration user ID. If the cache administration user ID is correct, follow the procedure in "Recover and reset autorefresh Oracle objects". Check the user error log for messages about "fatal anomalies". This indicates corrupt or missing Oracle objects.
If the current log sequence number in the TT_ version _USER_COUNT table changes, is different from the bookmark and the associated cached table is not refreshed by the next committed autorefresh.	Restart the cache agent. If that does not work, follow the procedure in "Recover and reset autorefresh Oracle objects".
Resource problem	Restart the cache agent.
Incremental autorefresh does not work if the TRUNCATE	
statement is used on an Oracle base table. If TRUNCATE	
is used on an Oracle base table, then you must reset autorefresh by using the ALTER CACHE GROUP	
statement to set the autorefresh state to OFF	
followed by another ALTER CACHE GROUP	
to reset the autorefresh state to ON	
.	
If you know or suspect the Oracle objects used by autorefresh are the cause of the problem, use the following procedure to re-create the Oracle objects.	
ALTER CACHE GROUP	
to reset the autorefresh state to OFF	
on all cache groups on all databases that have the affected cached table: On the Oracle database, execute the following statement:	
If the count is not zero, set the count to zero:	
ALTER CACHE GROUP	
to reset the autorefresh state back to ON	
: ALTER CACHE GROUP	
to reset the autorefresh state back to ON	
for all of the affected cache groups on all databases. If incremental autorefresh is not progressing, verify that:	
ON	
Inspect the support log for the conditions described in the following table:	
Table summary is in the first heading cell.	
Condition	What to do
---	---
Oracle server connection errors or warnings	See "Troubleshooting Client/Server problems" for information about resolving connection problems.
Lock timeout errors or warnings on TimesTen	This usually occurs because of an open DDL transaction on the cache group. Commit the DDL transaction so that autorefresh can get the necessary locks.
Insufficient permanent data partition errors on TimesTen	Increase PermSize .
Autorefresh Oracle object validations errors or warnings	See "Recover and reset autorefresh Oracle objects".
Cache agent exits unexpectedly.	Contact Technical support.
Core files in main daemon directory	Contact Technical support.
Warnings about incremental autorefresh becoming full refresh	See "Incremental autorefresh becomes full autorefresh".
Warnings that autorefresh has not finished for a long time	The autorefresh transaction can take a long time if many transactions have occurred since the last autorefresh. Note: Cache groups with the same autorefresh interval are autorefreshed in one transaction.
The cache agent automatically verifies that Oracle objects exist and that they are valid so that autorefresh can progress. In normal operation, you should not see object validation errors or warnings in the user error log. If you see object validation errors, contact Technical support.unless one of the following conditions has occurred:	
DROP CACHE GROUP	
statement. The cache group needs to be re-created if one of the preceding conditions has occurred.	
Incremental autorefresh can become full autorefresh if the cache administration user tablespace becomes full.	
This section includes the following topics:	
You can detect when incremental autorefresh becomes full refresh by several methods:	
ttCacheAutorefreshStatsGet	
procedure. autoRefNumRows	
) was autorefreshed than usual, full autorefresh may have occurred. Check the support log for messages about full autorefresh.	
ttCacheRecoveryAutorefreshTrap	
SNMP trap indicates a full autorefresh. TimesTen strongly recommends creating a separate tablespace for the cache administration user. This tablespace is used as the cache administration user's default tablespace. The tablespace contains autorefresh triggers for each Oracle table, change log tables for each Oracle table, and other objects that TimesTen needs for each cache administration user. If you do not specify a separate tablespace, then these objects are placed in the Oracle system tablespace.	
Specify the tablespace when you create the cache administration user on Oracle. You can also specify the tablespace after user creation with the DEFAULT TABLESPACE	
clause of the Oracle ALTER USER	
statement.	
Change log tables for each of the cached Oracle tables reside in the cache administration user tablespace. For each update on an Oracle table, one row (a change log record) is inserted into the change log table for that Oracle table. The size of a change log record in bytes is as follows:	
The number of records in a change log table depends on the update rate on the Oracle table and on the autorefresh interval on TimesTen. Every 20 seconds, TimesTen removes change log records that have been applied to all databases that cache the associated Oracle table.	
When change logs are removed, a message similar to the following is displayed in the support log:	
There are options on how to manage what happens when the cache administration user tablespace is filled. See "Considerations when the cache administration user's tablespace is full" for more information.	
Check for the following conditions if the cache administration user tablespace is full:	
PAUSED	
? Change log records accumulate when the state is PAUSED	
. PAUSED	
. ttDestroy	
-force	
. Overwrite	
connection attribute set to 1, but the cache groups that were in the old database are not re-created. If the database still exists, connect to the abandoned database and drop the cache group.	
Use the cacheInfo.sql	
script to find out how large the change log tables are for each cached Oracle table. Use the output to verify that the databases are still in use. See "Displaying information from the change log tables".	
If the databases are still in use, verify that the cache agents are running.	
Compare the autorefresh progress on TimesTen to the maximum log sequence number on the change log table. If TimesTen is behind, then call the ttCacheAutorefreshStatsGet	
procedure to see whether the autorefresh operations are successful. See "Using the ttCacheAutorefreshStatsGet procedure".	
If the status is InProgress longer than seems reasonable, see "Poor autorefresh performance".	
You may need to decrease the autorefresh interval or increase the size of the cache administration user tablespace.	
There are options on how to manage what happens when the cache administration user tablespace is filled. See "Considerations when the cache administration user's tablespace is full" for more information.	
To monitor the cache administration user tablespace, you can use either Oracle Enterprise Manager alerts or set the TimesTen tablespace threshold parameter.	
The cache agent can be configured to periodically monitor the tablespace usage and issue a warning when it exceeds a specified threshold. Set the tablespace threshold percentage with the TblspaceThreshold	
parameter of the ttCacheConfig	
built-in procedure. For example, if you set the TblspaceThreshold	
parameter to 80, then a warning is issued when more than 80% of the tablespace is used.	
For example, to configure for a warning to be issued if the tablespace exceeds 80%, execute the following:	
For full details of the ttCacheConfig	
built-in procedure, see the "ttCacheConfig" section in the Oracle TimesTen In-Memory Database Reference.	
With Oracle tables that are cached in a TimesTen database, you can configure them to use incremental automatic refresh. For these tables, you can specify which one of the following is to occur when the cache administration user's tablespace is full:	
The tablespace full recovery is set to none. The application receives an "Out of Tablespace	
" error from Oracle when the tablespace is full. At that point, the application will need to rollback the transaction.	
Setting the tablespace full recovery to none is configured when you set the Param	
parameter to TblSpaceFullRecovery	
and the Value	
parameter to None	
with the ttCacheConfig	
built-in procedure. For example, the following configures Param	
to TblSpaceFullRecovery	
and Value	
to None	
for the employees	
table that is owned by terry	
:	
When the cache administration user's tablespace is full, any application that is executing DML statements on the autorefresh cached Oracle tables continues to execute. A trigger executes to free up space for new change log records by deleting existing change log records. This can result in a full automatic refresh on cache groups that have the incremental automatic refresh mode configured. However, if the Oracle table is not configured for incremental automatic refresh, then no trigger executes.	
To set the operation to allow the application to continue and cause an autorefresh, set the Param	
parameter to TblSpaceFullRecovery	
and the Value	
parameter to Reload	
with the ttCacheConfig	
procedure. The user will see stale data until the full autorefresh is complete.	
However, even if the user sets the cache configuration parameter TblSpaceFullRecovery	
with the value of Reload	
, the tablespace may not be able to be emptied enough to handle the case of a growing index. Deleting rows from the change log table may not free up enough space for the index that is on the change log table. If the index is growing so fast that it uses all the tablespace to the point where purging the change log tables does not help, then the user's application may receive the following error:	
For full details of the ttCacheConfig	
built-in procedure, see the "ttCacheConfig" section in the Oracle TimesTen In-Memory Database Reference.	
Poor autorefresh performance is usually the result of large autorefresh operations. Use the ttCacheAutorefreshStatsGet	
procedure to check the autorefresh duration and observe whether the status remains InProgress for a long time.	
Factors that can cause large autorefresh operations include:	
Enable an AUTOREFRESH trace to diagnose autorefresh performance problems. See "AUTOREFRESH tracing".	
Note: Automatic recovery for TimesTen cache groups only applies to read-only and user managed cache groups that use theAUTOREFRESH cache group attribute. In this section, all references to autorefresh cache groups are read-only and user managed cache groups that use the AUTOREFRESH cache group attribute.	
If any TimesTen databases containing autorefresh cache groups are destroyed or no longer in use, TimesTen continues to track autorefresh changes to the Oracle tables for the TimesTen database for which the cache agent is not running. This causes automatic refresh to cache groups in active TimesTen databases to slow down.	
The cache agent is responsible for detecting if a database is unresponsive or no longer in use. You can specify if and how a dead TimesTen database is to be recovered. However, you cannot recover a TimesTen database if all of the Oracle objects have been removed.	
The following sections describe how you can avoid a degraded autorefresh performance for inactive TimesTen databases:	
You can instruct TimesTen to mark the database as dead and no longer accepting updates if the cache agent has not communicated with the Oracle server within a specific timeout period.	
Set the timeout for the TimesTen database and the recovery method for each autorefresh cache group with the AgentTimeOut	
parameter in the ttCacheConfig	
built-in procedure. The timeout value applies to the all TimesTen databases that use the same cache administration user. You should set the timeout value greater than the time necessary to load the TimesTen database into memory on first connect and start the cache agent. Otherwise, the TimesTen database could be incorrectly marked as dead. For any planned maintenance for the TimesTen instance, you could temporarily set the AgentTimeOut	
value to zero to disable the timeout. For full details of the ttCacheConfig	
built-in procedure, see the "ttCacheConfig" section in the Oracle TimesTen In-Memory Database Reference.	
For example, the following sets the timeout value for the TimesTen database to 6000 seconds or 100 minutes. If the cache agent does not contact the Oracle server within a 100-minute period, then the TimesTen database is marked as dead.	
You can recover a TimesTen database and autorefresh cache groups if they are not synchronizing with the Oracle database. If there is no synchronization, then updates on the Oracle tables are not automatically refreshed to the corresponding TimesTen cache tables.	
You can configure the DeadDbRecovery	
parameter of the ttCacheConfig	
built-in procedure to specify how to recover the synchronization for the TimesTen database and all autorefresh cache groups. The setting for DeadDbRecovery	
applies to all TimesTen databases that use the same cache administrator user. Set the DeadDbRecovery	
parameter to Normal	
, Manual	
or None	
to describe how TimesTen is to recover the database and all autorefresh cache groups. The DeadDbRecovery	
setting applies to all TimesTen databases that use the same cache administration user. While TimesTen is recovering the database and its autorefresh cache groups, there is an autorefresh status for the TimesTen database and the autorefresh cache groups that describes the recovery status for each of these entities. The TimesTen database can have an automatic refresh status of Alive, Dead or Recovering. The autorefresh cache groups can have an automatic refresh status of OK, Dead or Recovering. The TimesTen database status changes are linked to changes in the status for the autorefresh cache groups, as follows:	
Note: You can determine the autorefresh status of the TimesTen database and autorefresh cache groups with thettCacheDbCgStatus built-in procedure, which is described in the "ttCacheDbCgStatus" section in the Oracle TimesTen In-Memory Database Reference.	
When communication between the cache agent and the Oracle server is re-established, TimesTen determines how to recover the autorefresh cache groups. TimesTen follows the recovery method you configured in the DeadDbRecovery	
parameter in the ttCacheConfig	
built-in procedure. This parameter can be set to one of the following:	
Normal	
: This is the default. The autorefresh cache groups will each be recovered with a full automatic refresh. After the first full refresh, the cache group is recovered and will incrementally perform autorefresh. The autorefresh cache groups within the same automatic refresh interval will be transactionally consistent. Because it is a full refresh, it is not as performant as an incremental refresh.	
The autorefresh sets the status to Recovering. When the full autorefresh is completed successfully, the autorefresh cache group status is set to OK.	
Manual	
: You must manually refresh an autorefresh cache group to recover it, or unload it if the cache group is dynamic. None	
: The autorefresh cache group will never be recovered by a TimesTen autorefresh. Drop and recreate the cache group to recover it. The database status changes as the first autorefresh cache group status changes. If there is at least one cache group that is in the process of recovery, then the database status is set to Recovering. Once all cache groups have been recovered, the status of the TimesTen database is marked as Alive.	
The following example sets the DeadDbRecovery	
parameter to Normal	
for all autorefresh cache groups. The dead TimesTen database will be recovered when all of its autorefresh cache groups have each been recovered with a full automatic refresh.	
When TimesTen databases participating in an active standby pair replication scheme contains cache groups, if the autorefresh status of the active master database is Dead and the autorefresh status of the standby master database is Alive, the standby master does not automatically assume the role of the active master. The recovery requires that you manually ensure that the cache and replication agents are executing. The specifics for each situation is as follows:	
Table 3-2 Recovery for cache groups involved in active standby replication pair	
DeadDbRecovery Setting	Active Master
---	---
Normal	Alive
Normal	Dead
Normal	Dead
Manual	Alive
Manual	Dead
Manual	Dead
None	Alive
None	Dead
None	Dead
During an autorefresh cache group refresh, there can be excessive buffer busy waits, row lock waits, and deadlocks on updates in the Oracle database, which can negatively affect the throughput performance. When there are multiple deadlocks on updates in the Oracle database involving the autorefresh log tables, the following may appear in the support log:	
You can improve your performance by modifying the INITRANS	
and FREELISTS	
settings, which can affect the concurrent inserts into the autorefresh log table as well as internal maintenance of these tables. The application updating the base table that is being autorefreshed encounters a throughput performance hit when these settings are not appropriately configured.	
You can automatically or manually manage these settings as follows:	
FREELISTS	
. FREELISTS	
and INITRANS	
for the autorefresh log table on the Oracle database. The following details how to manually modify INITRANS	
and FREELISTS	
for the autorefresh log table on the Oracle database:	
Under the cache administration user login, execute the SQL*Plus script cacheInfo.sql	
that lists the autorefresh change log table name, along with other items. The following example executes the cacheInfo.sql	
script that lists the autorefresh change log table name as tt_05_1216726_L, as shown in bold:	
INITRANS	
and FREELISTS	
settings for the bar.tt_05_1279699_L table. Note: See "INITRANS integer" and "FREELISTS" in the Oracle Database SQL Language Reference for details on what are the correct values for configuring these settings.	
INITRANS	
and FREELISTS	
settings for the index for this table, which have the same name as the autorefresh change log table with an additional "L" at the end of it. For example, the index for table bar.tt_05_1279699_L	
is bar.tt_05_1279699_LL	
These settings should be the same as what you set for the autorefresh change log table.	
The cache thread SQL refresh joins the log table and the base table, which identifies rows needed to be refreshed into TimesTen. The larger the cardinalities of the base table and the log table, the longer the time necessary to perform this join. Performance degradation may occur if either the log table or the base table is abnormally large.	
The following describe scenarios where the log table can become abnormally large:	
When a relatively short refresh interval, such as a few hundred milliseconds, is combined with a large number of entries in the log table or in the base table, a cache refresh operation does not complete before the next refresh operation is scheduled to begin. In this case, the entries in the log table can be un-marked when the current autorefresh cycle finishes.	
Thus, the same rows can be refreshed from the base table to the cache group in the next autorefresh cycle, by which time the rows will be marked. Make sure that the time it for the refresh is greater than the refresh interval. Set the refresh interval to a value where redundant refreshes will not occur.	
If the Oracle table on which you want to create the cache group declares NOVALIDATE	
on columns with primary key, UNIQUE	
or NOT NULL	
constraints, the creation of the cache group fails.	
Note: This does not apply to any foreign key constraints. However, TimesTen recommends that any matching foreign key is in the enabledVALIDATE state. Your workload performance may be affected when you alter a foreign key column to the enabled VALIDATE state.	
TimesTen perceives a NOVALIDATE	
on a primary key or NOT NULL	
table column definition as a NULL	
and, therefore, not qualified as a column on which to build the cache group. Thus, all columns with the primary key, UNIQUE	
and NOT NULL	
column constraints must be enabled with the VALIDATE	
state when creating a cache group from the Oracle table.	
When you create a cache group from an Oracle table with one or more of these constraints, the following errors are thrown:	
If you receive these errors, you can perform a SELECT	
statement to verify any existing NOVALIDATE	
constraints on the Oracle table. The following SELECT	
statement shows all constraints on the MyTable	
table:	
If the table column that is to be the primary key for the cache table is enabled as NOVALIDATE, perform the following steps to enable the column with the VALIDATE state:	
NOVALIDATE	
state for the primary key column. VALIDATE	
state for the primary key column. There may be some concern about lock contention when seeing DBMS_LOCK	
in the Automated Workload Repository (AWR) Report. However, this DBMS_LOCK	
wait event does not affect the application performance in an IMDB cache grid, even though the database time consumption in the AWR report seems high. This wait event is the garbage collector session trying to place a hold on a resource that another garbage collector session from another database has already locked. Thus, only the current garbage collector session waits. The wait for the garbage collector process does not block other processes, except other garbage collectors.	
For example, the following shows a contention event in the AWR report:	
In addition, only a small amount of CPU time is used for the garbage collector, as shown in the "SQL ordered by CPU Time" section in the PERF AWR report.	
This chapter includes the following topics:	
The default ODBC Data Source Administrator on 64-bit Windows does not show TimesTen 32-bit drivers and DSNs. If Windows is installed in the default location (C:\WINDOWS	
), use C:\WINDOWS\SysWOW64\odbcad32.exe	
for the ODBC Data Source Administrator when you are installing 32-bit TimesTen on a 64-bit Windows machine.	
In rare situations, after upgrading a database from TimesTen 6.0, you may find that you need to downgrade a TimesTen 7.0 or later database back to TimesTen 6.0 after the data types are already converted to Oracle types. However, the ttMigrate	
utility for TimesTen 6.0 does not understand Oracle data types, and this can lead to problems when downgrading databases from TimesTen 7.0 or later. To avoid any pitfalls in the downgrade process, you should convert the Oracle data types back to TimesTen types using TimesTen 7.0 or later first, and only then downgrade the database to TimesTen 6.0, using the following steps:	
ttMigrate	
. ttDestroy	
. ttMigrate	
. ttMigrate	
. ttDestroy	
. ttMigrate	
. Note: Before restoring the database with TimesTen 6.0ttMigrate , you must modify the DSN attributes appropriately for using with TimesTen 6.0.	
Creating an asynchronous writethrough (AWT) cache group automatically creates a replication scheme that allows the database to communicate with the Oracle database. You must start the replication agent after you create an AWT cache group and start the cache agent. See "Creating an AWT cache group" in the Oracle In-Memory Database Cache User's Guide.	
Material in Chapter 6, "Troubleshooting Replication " is useful for troubleshooting AWT cache group problems. Useful replication topics are summarized in the current chapter in these sections:	
This chapter also contains the following sections:	
This section describes what to check if you are unable to start or stop a replication agent.	
Possible cause	What to do
---	---
You do not have ADMIN privileges.	You must have ADMIN privileges to use the ttAdmin utility or the ttRepStart or ttRepStop procedures to start or stop a replication agent.
TimesTen daemon not started	Check the state of the TimesTen daemon, as described in "Check the TimesTen user error log". If necessary, start the TimesTen daemon as described in "Working with the Oracle TimesTen Data Manager Daemon" in the Oracle TimesTen In-Memory Database Operations Guide.
If you are unable to get replication working, the problem may be one or more of the following:	
Possible Cause	See...
---	---
TimesTen daemon or replication agents not running	"Check status of TimesTen daemon and replication agents"
Replication agents not communicating	"Check that replication agents are communicating"
Replication not in Start state	"Check replication state"
TimesTen can send SNMP traps for certain replication events to enable network management software to take immediate action. TimesTen can send the following SNMP traps:	
ttRepAgentExitingTrap	
ttRepAgentDiedTrap	
ttRepAgentStartingTrap	
These traps are described in "Diagnostics through SNMP Traps" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.	
You can monitor the performance of asynchronous writethrough (AWT) cache groups to determine how much time is spent performing tasks in the AWT workflow. Use the ttCacheAwtMonitorConfig	
built-in procedure to enable monitoring.	
For example, enable monitoring and set the sampling frequency to 16. A sampling factor of 16 is recommended for accuracy and performance.	
Use the ttRepAdmin	
utility with the -awtmoninfo	
and -showstatus	
commands to display the monitoring results. The AWT monitoring statistics include:	
The output also includes the percentage of time spent on TimesTen processing, Oracle bookmark management, Oracle execution and Oracle commits.	
For example:	
This section addresses issues that may degrade AWT performance.	
Possible cause	See...
---	---
Slow network	"Check network bandwidth"
Log buffer too small	"Check size of log buffer"
Frequent or inefficient disk writes	"Check durability settings"
Reading from transaction log files on disk instead of the log buffer	"Check for reads from transaction log files"
Insert, update, or delete errors that occur while applying changes to Oracle are saved in an error file located in the database directory with the following name:	
Errors reported to this file are permanent errors. TimesTen does not retry the transaction. The errors may be reported in the AWT error file long after the commit to TimesTen occurs.	
The format of the messages in the AWT error file is similar to those generated for conflict and transaction errors in replication, as shown in Example 5-1. Oracle error messages are also reported in the support log and the user log.	
Example 5-1 Cache violation occurs when update is propagated to Oracle	
If a constraint violation occurs when a cache group update is propagated to Oracle, the message in the AWT error file is similar to the following:	
Example 5-2 An object that TimesTen has placed on Oracle is dropped	
If an object that TimesTen has placed on Oracle is dropped, the message in the AWT error file is similar to the following:	
In this example, the TT_03_REPPEERS	
table does not exist. To recover from this error, perform the following tasks:	
The support log for databases with AWT cache groups may contain Oracle errors if the replication agent encounters a problem on the Oracle database. If the replication agent encounters one of these errors, AWT rolls back the transaction and retries it. If the support log becomes full, the oldest messages are deleted and replaced by new messages.	
The Oracle errors in the support log are considered transient because AWT retries the transaction.	
Some transient errors indicate an underlying problem on the Oracle database must be solved before AWT operations can continue. For example:	
After the underlying problem has been fixed, AWT retries the operation.	
For more information about the Oracle errors, see Oracle Database Error Messages for the Oracle release you are using.	
The following Oracle errors are transient:	
The following sections in this chapter describe how to troubleshoot some of the problems you may encounter when replicating databases:	
This section describes what to check if you are unable to use CREATE REPLICATION	
to create a replication scheme.	
Possible cause	What to do
---	---
You do not have ADMIN privilege	You must have ADMIN privilege to use the CREATE REPLICATION or DROP REPLICATION statements.
Incorrect database name, host name, or element name.	
The local host is not part of the replication scheme.	Create the replication scheme on a host that will be part of the replication scheme.
Replication tables defined in the CREATE REPLICATION statement do not exist.	The name, owner, and column definitions of the tables participating in the replication scheme must be identical on both the master and subscriber databases. Use CREATE TABLE to create tables on the database, or use the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C function to duplicate the entire database to be replicated.
Other problems	Review the procedures and requirements described in "Defining Replication Schemes" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.
This section describes what to check if you are unable to use ALTER REPLICATION to alter a replication scheme.	
Possible cause	What to do
---	---
You do not have ADMIN privilege	You must have ADMIN privilege to use the ALTER REPLICATION statement.
Replication agent in Start state	Most ALTER REPLICATION operations are supported only when the replication agent is stopped (ttAdmin -repStop). Stop the replication agents on both master and subscriber databases, alter the replication scheme on both master and subscriber databases, then restart both replication agents.
Incorrect database name, host name, or element name	
Replication table defined in the ALTER REPLICATION statement does not exist | Use CREATE TABLE to create a table on the database. |
Other problems | Review the procedures and requirements described in "Altering Replication" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide. |
This section describes what to check if you are unable to start or stop a replication agent.
Possible cause | What to do |
---|---|
You do not have ADMIN privileges | You must have ADMIN privileges to use the ttAdmin utility or the ttRepStart or ttRepStop procedures to start or stop a replication agent. |
TimesTen daemon not started | Check the state of the TimesTen daemon, as described in "Check the TimesTen user error log". If necessary, start the TimesTen daemon as described in "Working with the Oracle TimesTen Data Manager Daemon" in the Oracle TimesTen In-Memory Database Operations Guide. |
Database does not participate in a replication scheme. | If a database does not participate in a replication scheme, attempts to start a replication agent for that database will fail. Use CREATE REPLICATION to create a replication scheme for the database. |
TimesTen can send SNMP traps for certain replication events to enable network management software to take immediate action. TimesTen can send the following traps for replication events:
ttRepAgentExitingTrap
ttRepAgentDiedTrap
ttRepAgentStartingTrap
ttRepCatchupStartTrap
ttRepCatchupStopTrap
ttRepReturnTransitionTrap
ttRepSubscriberFailedTrap
ttRepUpdateFailedTrap
These traps are described in "Diagnostics through SNMP Traps" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.
If you are unable to get replication working between a master and subscriber database, the problem may be one or more of the following:
Possible cause | See... |
---|---|
TimesTen daemon and/or replication agents not running | "Check status of TimesTen daemon and replication agents" |
Master and subscriber agents not communicating | "Check that replication agents are communicating" |
Replication not in Start state | "Check replication state" |
Error in replication scheme | "Check replication scheme configuration" |
Inconsistent owner names for replication scheme and tables | "Check owner names" |
Inconsistent replication tables | "Check consistency between replicated tables" |
Use the ttStatus
utility to confirm the main TimesTen daemon is running and the replication agents are started for all of your master and subscriber databases. The output from a simple replication scheme using a single master and subscriber database should look like that shown in Example 6-1.
If the TimesTen daemon is running, but the replication agents are not, the output looks like that shown in Example 6-2. In this case, start the replication agents as described in "Starting and stopping the replication agents" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.
If neither the TimesTen daemon or replication agents are running, the output looks like that shown in Example 6-3. In this case, confirm you have correctly installed TimesTen and the Data Manager service is started, as described in "TimesTen Installation" in the Oracle TimesTen In-Memory Database Installation Guide.
Example 6-1 ttStatus output for one master and one subscriber
Example 6-2 Replication agent is not running
Use ttRepAdmin
-receiver -list
to see that the replication agents are communicating with each other. If the masterds
database is replicating to subscriberds
, the output should look similar to the following:
Example 6-4 Check that the replication agents are communicating
Use the ttReplicationStatus
procedure to check state of the subscriber database with respect to its master. If the subscriber is in the Stop
, Pause
, or Failed
state, use the ttReplicationStatus
procedure to reset the subscriber state to Start
, as described in "Setting the replication state of subscribers" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.
Example 6-5 Obtain status of the subscriber database from the master database
Use ttReplicationStatus
to obtain the status of the subscriberds
database from its master database, masterDSN
, enter:
To reset state to Start call the ttRepSubscriberStateSet
procedure:
This section describes some procedures you can use to confirm the correct configuration of the various components in your replicated system. The basic procedure categories are:
Use ttRepAdmin
-showconfig
to confirm the configuration of your replication scheme.
What to look for:
DataStore
attributes in the DSN definitions for the replicated databases? Replication does not work if you specified the names given for the Data Source Name
attributes. Example 6-6 Confirm the configuration of the replication scheme
Check the TTREP.TTSTORES
table to confirm that replication associates the replication scheme with the local database.
Example 6-7 Confirm that the replication scheme is associated with the local database
Connect to the database and enter:
There should be exactly one row returned. If more than one row is returned, contact Technical support. If no rows are returned, then none of the hosts returned by the following statement is perceived to be a local system by TimesTen replication:
host_name
FROM ttrep.ttstores;It may also be that none of the database names specified in your replication scheme match those specified in your DSN descriptions.
Some hosts or IP addresses specified in a replication scheme cannot be resolved by the replication agent because:
/etc/hosts
file /etc/hosts
file are incorrectly ordered in appearance. This error is most common when multiple NICs are used. You must have root privilege to make changes to the /etc/hosts
files. See "Configuring host IP addresses" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for details on how to configure DNS and /etc/hosts
files for host machines used for replication.
To check if a host name in the replication scheme matches the host name of the local machine, write an application to perform these tasks:
gethostname
OS function call to determine the host name of the running host. Call gethostbyname
with the output from Step 1.
gethostbyname
with the host name specified in the replication scheme. As described in "Table requirements and restrictions for replication schemes" and "Owner of the replication scheme and tables" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide, the owner names of your replication scheme and your replicated tables must be consistent across all participating databases.
Check the owner name assigned to your replication scheme by calling the ttIsql
repschemes
command or by listing the contents of the TTREP.REPLICATIONS
table.
Example 6-8 shows that the replication scheme name, REPSCHEME
, has a consistent owner name (REPL
) in the databases on both SYSTEM1
and SYSTEM2
. Example 6-9 shows the scheme name with inconsistent owner names. This can occur if you omit the owner name from the replication scheme definition and the system uses the Id of the replication scheme creator.
Example 6-8 Consistent owner names for replication scheme
On SYSTEM1
:
On SYSTEM2
:
Example 6-9 Inconsistent owner names for replication scheme
On SYSTEM1
:
On SYSTEM2
:
Check the owner names assigned to the tables in each database by using the ttIsql
tables
command.
Example 6-10 Consistent table owner names
This example shows that the TAB
table has a consistent owner name (REPL
) in the databases on both SYSTEM1
and SYSTEM2
.
Output for SYSTEM1 | Output for SYSTEM2 |
---|---|
SYS.CACHE_GROUP | SYS.CACHE_GROUP |
SYS.COLUMNS | SYS.COLUMNS |
SYS.COL_STATS | SYS.COL_STATS |
SYS.INDEXES | SYS.INDEXES |
SYS.MONITOR | SYS.MONITOR |
SYS.PLAN | SYS.PLAN |
SYS.TABLES | SYS.TABLES |
SYS.TBL_STATS | SYS.TBL_STATS |
SYS.TRANSACTION_LOG_API | SYS.TRANSACTION_LOG_API |
REPL.TAB | REPL.TAB |
TTREP.REPELEMENTS | TTREP.REPELEMENTS |
TTREP.REPLICATIONS | TTREP.REPLICATIONS |
TTREP.REPPEERS | TTREP.REPPEERS |
TTREP.REPSTORES | TTREP.REPSTORES |
TTREP.REPSUBSCRIPTIONS | TTREP.REPSUBSCRIPTIONS |
TTREP.REPTABLES | TTREP.REPTABLES |
TTREP.TTSTORES | TTREP.TTSTORES |
Example 6-11 Inconsistent table owner names
This example shows the TAB
table with inconsistent owner names, which were automatically assigned for each host.
Output for SYSTEM1 | Output for SYSTEM2 |
---|---|
SYS.CACHE_GROUP | SYS.CACHE_GROUP |
SYS.COLUMNS | SYS.COLUMNS |
SYS.COL_STATS | SYS.COL_STATS |
SYS.INDEXES | SYS.INDEXES |
SYS.MONITOR | SYS.MONITOR |
SYS.PLAN | SYS.PLAN |
SYS.TABLES | SYS.TABLES |
SYS.TBL_STATS | SYS.TBL_STATS |
SYS.TRANSACTION_LOG_API | SYS.TRANSACTION_LOG_API |
SYSTEM1.TAB | SYSTEM2.TAB |
TTREP.REPELEMENTS | TTREP.REPELEMENTS |
TTREP.REPLICATIONS | TTREP.REPLICATIONS |
TTREP.REPPEERS | TTREP.REPPEERS |
TTREP.REPSTORES | TTREP.REPSTORES |
TTREP.REPSUBSCRIPTIONS | TTREP.REPSUBSCRIPTIONS |
TTREP.REPTABLES | TTREP.REPTABLES |
TTREP.TTSTORES | TTREP.TTSTORES |
Replicated tables on both master and subscriber databases must be exactly the same.
Example 6-12 Check consistency between replicated tables
This output from the user error log shows a mismatch on the number of columns for the subscriber table TTUSER.MYDSN
.
Table summary is in the first heading cell.
Possible cause | See... |
---|---|
Failed subscriber | "Check replication state" |
Return-receipt timeout period too long | "Check return receipt timeout setting" |
Use the ttReplicationStatus
procedure to check state of the subscriber database with respect to its master. If the subscriber is in the Failed
state, see "Managing database failover and recovery" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for information on how to deal with failed databases.
Example 6-13 Check replication state
Use ttReplicationStatus
to obtain the status of the subscriberds
database from its master database, masterDSN
, enter:
Use the ttRepSyncGet
procedure to check the return receipt timeout setting. A value of -1 indicates the application is to wait until it receives an acknowledgement from the subscriber. Network latency or other issues might delay receipt of the subscriber acknowledgment. You either address these issues or use the ttRepSyncGet
procedure to reset the return receipt timeout period.
See "Checking the status of return service transactions" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for more information.
Most of this section addresses issues that may impact replication performance. Some issues, such as log buffer too small and reading from the transaction log files on disk, can impact the performance of both replication and XLA applications.
Possible cause | See... |
---|---|
Slow network | "Check network bandwidth" |
Using RETURN RECEIPT | "Check use of return receipt blocking" |
Inefficient replication scheme | "Check replication configuration" |
Log buffer too small | "Check size of log buffer" |
Frequent or inefficient disk writes | "Check durability settings" |
Reading from transaction log files on disk rather than the log buffer | "Check for reads from transaction log files" |
High rate of conflicts | "Conflict reporting slows down replication" |
Replication agents typically communicate over some type of network connection. If replicating over a network slower than 10 MB per second (such as common with a 100 Base-T Ethernet typical in a LAN), you must be careful to match the transaction load to the available bandwidth of the network. see "Network bandwidth requirements" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for details.
Unless you need receipt confirmation for all your transactions, disable RETURN RECEIPT BLOCKING. If you require receipt confirmation for some transactions, then set RETURN RECEIPT BY REQUEST and call the ttRepSyncSet
procedure to enable the return receipt service for specific transactions. See "RETURN RECEIPT BY REQUEST" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for details.
Note: The performance degradation caused by return-receipt becomes less of an issue when multiple applications (or threads) are updating the database. If you must use return-receipt in a transaction, you can improve the performance of your application by using multiple threads to update the database. Though each thread must block for receipt confirmation, the other threads are free to make updates. |
In addition to return-receipt setting described above, other factors related to the configuration of your replication scheme could impact replication performance. As described in "Making decisions about performance and recovery trade-offs" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide, you often have to weigh the ability to efficiently failover and recover a database against replication performance.
For more information about direct replication, see "Direct replication or propagation" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.
Setting your log buffer too small may impact replication performance. Instead, Set the LogBufMB
DSN attribute to a larger size. For more information on this DSN attribute, see "Setting connection attributes for logging" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide
You can improve replication performance by setting TRANSMIT NONDURABLE on the replication ELEMENT to eliminate the flush-log-to-disk operation from the replication cycle. See "Setting transmit durability on data store elements" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for details.
Enabling the DURABLE COMMIT option in your replication scheme also impacts performance. See "DURABLE COMMIT" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide for more information.
In some situations a "log reader," such as a master replication agent 'transmitter' thread or a ttXlaNextUpdate
call in an XLA application, may not be able to keep up with the update rate of the applications writing to the database. Normally, replication and XLA readers get update records from the log buffer in memory. When the readers fall behind the application update rate, transaction log files can accumulate on the disk until the backlog can be cleared. This forces the readers to read transactions from the transaction log files on disk, which is much slower. Should you detect reads from the transaction log files, you may want to respond by decreasing the rate of application updates to that sustainable by the log readers.
Applications can monitor whether log readers are obtaining update records from transaction log files on disk rather than from the log buffer in memory by tracking the SYS.MONITOR
table entry LOG_FS_READS. For example, you can check the value of LOG_FS_READS for the database, MASTERDSN
, with the following ttIsql
command:
If the LOG_FS_READS counter is increasing, the log readers are falling behind or clearing out a backlog in the transaction log files.
For more complete monitoring of replication progress, create a simple shell script like the following:
Example 6-14 Check the status of the transaction log
For example, you name the above script monitorLog
and your replication scheme replicates from the MASTERDSN
database to the SUBSCRIBER1DSN
database. You can then check the status of the transaction log by entering:
This generates output similar to the following:
The output from the script displays an updated status every 15 seconds until you enter Ctrl-C to exit.
Following the date in the output in Example 6-14 is the name of the subscriber, its host, and so on. Next is latency and rate information, as well as the number of transaction log files being retained on behalf of this subscriber. The specific meaning of each value is described in "Using ttRepAdmin to display subscriber list" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide. The main interest here is the 'Last Msg Sent' and 'Logs' values. The 'Last Msg Sent' value indicates the elapsed time since the last message was sent by the master to the subscriber and 'Logs' indicates how many transaction log files behind the replication log reader is from the current log insertion point used by the writers (Last written LSN).
Normally the 'Logs' value should be '1', as shown in Example 6-14. A steadily increasing 'Logs' value indicates latency is increasing and eventually log reads are satisfied from disk.
Note: If theLogBufMB is larger than the LogFileSize , an increase in the 'Logs' value does not necessarily mean the log readers are reading from the transaction log files. This is because the log manager does not allow more than one log file's worth of data to be outstanding before writing it to the file system. After the log manager writes the data, the data remains in the log buffer to be read directly by the log readers. So, when the LogBufMB is larger than the LogFileSize , the 'Logs" value alone may not be the best measure of whether log readers are reading from memory or from disk. |
The output from:
displays the number of the transaction log files and the location of the bookmarks set by the log manager, as described in "From the command line: ttRepAdmin -bookmark" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide. The difference between the Replication hold LSN and the last written LSN indicates the number of records in the transaction log that have not yet been transmitted to the subscribers. A steady increase in the difference between these values is another indication that replication latency is increasing and log file reads are likely to occur.
Example 6-15 Log reader must read from transaction log files
In this example, assume the LogBufMB
is 16MB and the LogFileSize
is 8MB. The following output indicates the log reader is approximately 1.8 MB behind the capacity of the log buffer and must read from the transaction log files, 14 and 15.
This section includes the following topics:
If you connected to your new subscriber DSN before running ttRepAdmin
-duplicate
, the database has already been created. In this situation, -duplicate
returns:
Confirm the existence of the database by running ttStatus
and checking to see if the database is in the returned list. If the new subscriber database exists, destroy it and try ttRepAdmin
-duplicate
again:
If you have made an error entering the subscriber database name or host name in the replication scheme, you may see something like the following:
If you have more than one scheme specified in your TTREP.REPLICATIONS
table, some ttRepAdmin
commands may return the error:
To check the names of the replication schemes used by your database, use the ttIsql
utility to connect, and enter:
Example 6-16 Two replication schemes assigned to the database
This example shows that two replication schemes, REPSCHEME1
and REPSCHEME2
, are assigned to the database associated with subDSN
. In this case, it is necessary to use the ttRepAdmin
-scheme
option.
This section includes the following topics:
When attempting to set CHECK CONFLICTS for an element in a CREATE REPLICATION
statement, you may encounter an error similar to the following:
In this situation, check:
BINARY
(8). In the above example, the TS column in the REPL.TAB
table should have a type of BINARY
(8). CREATE TABLE
statement, rather than added later using ALTER TABLE
. You may receive an error similar to the following:
In this situation, confirm that you have specified the correct name for the timestamp column in the CHECK CONFLICTS
clause and that it exists in the specified table.
Also, make sure the timestamp column is not part of a primary key or index.
If you have configured replication to check conflicts, TimesTen sends reports to the local host. You can also configure a report file. See "Diagnostics through SNMP Traps" in the Oracle TimesTen In-Memory Database Error Messages and SNMP Traps.
If there is a large number of conflicts in a short period of time, subscriber performance can slow down because of the reporting requirements. You can use store attributes in the CREATE REPLICATION
or ALTER REPLICATION
statements to suspend and resume conflict reporting at specified rates of conflict:
CONFLICT REPORTING SUSPEND AT
rate
CONFLICT REPORTING RESUME AT
rate
Information about conflicts that occur while reporting is suspended cannot be retrieved.
See "Reporting conflicts" in the Oracle TimesTen In-Memory Database TimesTen to TimesTen Replication Guide.
 Copyright © 2006, 2011, Oracle and/or its affiliates. All rights reserved. |