PL/SQL Developer's Guide
Release 11.2.1
E13076-06
January 2011
Oracle TimesTen In-Memory Database PL/SQL Developer's Guide, Release 11.2.1
E13076-06
Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle TimesTen In-Memory Database is a memory-optimized relational database. Deployed in the application tier, TimesTen operates on databases that fit entirely in physical memory using standard SQL interfaces. High availability for the in-memory database is provided through real-time transactional replication.
TimesTen supports a variety of programming interfaces, including ODBC (Open Database Connectivity), OCI (Oracle Call Interface), Oracle Pro*C/C++ (precompiler for embedded SQL and PL/SQL instructions in C or C++ code), JDBC (Java Database Connectivity), and PL/SQL (Oracle procedural language extension for SQL).
This preface covers the following topics:
This document is intended for anyone developing or supporting applications that use PL/SQL with TimesTen. Although it provides some overview, you should be familiar with PL/SQL or have access to more detailed documentation. This manual emphasizes TimesTen-specific functionality.
You should also be familiar with TimesTen, SQL (Structured Query Language), and database operations.
You would typically use PL/SQL through some programming interface such as those mentioned above, so should also consult any relevant additional TimesTen developer documentation.
Also see "Audiences for this document", which goes into more detail.
TimesTen documentation is available on the product distribution media and on the Oracle Technology Network:
Oracle documentation is also available on the Oracle Technology network. This may be especially useful for Oracle features that TimesTen supports but does not attempt to fully document:
In particular, these Oracle documents may be of interest:
In addition, numerous third-party documents are available that describe PL/SQL in detail.
TimesTen supports multiple platforms. Unless otherwise indicated, the information in this guide applies to all supported platforms. The term Windows refers to Windows 2000, Windows XP and Windows Server 2003. The term UNIX refers to Solaris, Linux, HP-UX, and AIX.
Note: In TimesTen documentation, the terms "data store" and "database" are equivalent. Both terms refer to the TimesTen database unless otherwise noted. |
This document uses the following text conventions:
Convention	Meaning
italic	Italic type indicates terms defined in text, book titles, or emphasis.
monospace	Monospace type indicates commands, URLs, procedure and function names, package names, attribute names, directory names, file names, text that appears on the screen, or text that you enter.
italic monospace	Italic monospace type indicates a placeholder or a variable in a code example for which you specify or use a particular value, such as in the following example:
This means replace	
[]	Square brackets indicate that an item in a command line is optional.
{ }	Curly braces indicated that you must choose one of the items separated by a vertical bar (
	A vertical bar (or pipe) separates alternative arguments.
. . .	An ellipsis (. . .) after an argument indicates that you may use more than one argument on a single command line. An ellipsis in a code example indicates that what is shown is only a partial example.
%	The percent sign indicates the UNIX shell prompt.
TimesTen documentation uses the following variables to identify path, file and user names.	
Convention	Meaning
---	---
install_dir	The path that represents the directory where TimesTen is installed.
TTinstance	The instance name for your specific installation of TimesTen. Each installation of TimesTen must be identified at installation time with a unique instance name. This name appears in the installation path.
bits or bb	Two digits, either 32 or 64, that represent either a 32-bit or 64-bit operating system.
release or rr	Numbers that represent a major TimesTen release, with or without dots. For example, 1121 or 11.2.1 represents TimesTen Release 11.2.1.
DSN	TimesTen data source name (for the TimesTen database).
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/	
.	
Accessibility of Code Examples in Documentation	
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.	
Accessibility of Links to External Web Sites in Documentation	
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.	
Access to Oracle Support	
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html	
or visit http://www.oracle.com/accessibility/support.html	
if you are hearing impaired.	
For information about obtaining technical support for TimesTen products, go to the following Web address:	
Oracle TimesTen In-Memory Database supports PL/SQL (Procedural Language Extension to SQL), a programming language that enables you to integrate procedural constructs with SQL in your database. PL/SQL is an integral part of Oracle Database. As such, many of the PL/SQL features present in Oracle 11g (11.1.0.7) are also present in TimesTen. In addition, PL/SQL operates in essentially the same way in TimesTen as in Oracle.	
This chapter provides a brief introduction to TimesTen PL/SQL, covering the following topics:	
PL/SQL support in TimesTen enables you to do the following:	
This section provides an overview of PL/SQL operations in TimesTen, including discussion of how an application interacts with PL/SQL and how PL/SQL components interact with other components of TimesTen. The following topics are covered:	
Figure 1-1 shows the PL/SQL components and their interactions with each other and with other TimesTen components during PL/SQL operations.	
An application uses the API of its choice—ODBC, JDBC, OCI, Pro*C, or TTClasses—to send requests to the database. ODBC is the TimesTen native API, so each of the other APIs ultimately calls the ODBC layer.	
The ODBC driver calls the TimesTen SQL parser to examine each incoming request and determine whether it is SQL or PL/SQL. The request is then passed to the appropriate subsystem within TimesTen. PL/SQL source and SQL statements are compiled, optimized and executed by the PL/SQL subsystem and SQL subsystem, respectively.	
The PL/SQL compiler is responsible for generating executable code from PL/SQL source, while the SQL compiler does the same for SQL statements. Each compiler generates intermediate code that can then be executed by the appropriate PL/SQL or SQL execution engine. This executable code, along with metadata about the PL/SQL blocks, is then stored in tables in the database.	
When PL/SQL blocks are executed, the PL/SQL execution engine is invoked. As PL/SQL blocks in turn invoke SQL, the PL/SQL execution engine will call the TimesTen SQL compiler and the TimesTen SQL execution engine to handle SQL execution.	
Note: The introduction of PL/SQL into TimesTen has little impact on applications that do not use it. If applications execute SQL directly, then requests are passed from the TimesTen ODBC driver to the TimesTen SQL compiler and execution engine in the same way they were in previous releases.	
PL/SQL processing in TimesTen is largely identical to its processing in Oracle Database. The PL/SQL compiler and execution engine that are included with TimesTen originated in Oracle Database, and the relationship between PL/SQL components and the SQL compiler and execution engine is comparable. The tables used to store PL/SQL units are the same in TimesTen and Oracle, as are the views that are available to query information about stored PL/SQL units.	
Beyond these basic similarities, however, are some potentially significant differences. These are detailed in the following subsections:	
In TimesTen, as in Oracle Database, PL/SQL blocks may include SQL statements. Consider the anonymous block in the following example:	
The PL/SQL compiler in TimesTen calls a copy of the Oracle SQL parser to analyze and validate the syntax of such SQL statements. This Oracle parser is included in TimesTen for this purpose. As part of this processing, PL/SQL may rewrite parts of the SQL statements (for example, by removing INTO	
clauses or replacing PL/SQL variables with binds). This processing is identical in TimesTen and in Oracle Database. The rewritten SQL statements are then included in the executable code for the PL/SQL block. When the PL/SQL block is executed, these SQL statements are compiled and executed by the TimesTen SQL subsystem.	
In Oracle Database, the same SQL parser is used by the PL/SQL compiler and the SQL compiler. In TimesTen, however, different SQL parsers are used. TimesTen PL/SQL uses the Oracle SQL parser, while TimesTen SQL uses the native TimesTen SQL parser. This difference is typically, but not always, transparent to the end user. In particular, be aware of the following:	
EXECUTE IMMEDIATE	
statements or the DBMS_SQL	
package. See "Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)". In Oracle Database, PL/SQL blocks can invoke SQL statements, and SQL statements can in turn invoke PL/SQL functions. For example, a stored procedure can invoke an UPDATE	
statement that employs a user-written PL/SQL function in its WHERE	
clause.	
In TimesTen, a SQL statement cannot invoke a PL/SQL function.	
In addition, TimesTen does not support triggers.	
There are two primary developer audiences for this document:	
The following subsections note areas of particular interest in this document for each audience.	
Developers experienced with Oracle PL/SQL can bypass much of this document, which covers many general concepts of PL/SQL. Likely areas of interest, particularly differences in PL/SQL functionality between Oracle and TimesTen, include the following. Note that TimesTen-specific considerations are discussed at the end of Chapter 2, Chapter 3, and Chapter 4 and throughout Chapter 9.	
Most of this document is geared toward readers without prior PL/SQL experience, especially prior TimesTen users who are not familiar with PL/SQL, and nearly the entire document should be useful. In particular, Chapter 2, "Programming Features in PL/SQL in TimesTen," will help these readers get started and Chapter 5, "Examples Using TimesTen SQL in PL/SQL," includes some additional examples.	
Chapter 9, "TimesTen PL/SQL Support: Reference Summary," is geared toward differences between TimesTen PL/SQL and Oracle PL/SQL and may be of less interest.	
After you have configured your environment, you can confirm that everything is set up correctly by compiling and running the TimesTen Quick Start demo applications. Refer to the Quick Start welcome page at install_dir	
/quickstart.html	
, especially the links under SAMPLE PROGRAMS, for information about the following:	
The build_sampledb	
script creates a sample database and demo schema. You must run this before you start using the demos.	
The ttquickstartenv	
script, a superset of the ttenv	
script generally used for TimesTen setup, sets up the demo environment. You must run this each time you enter a session where you want to compile and run any of the demos.	
TimesTen provides demos for PL/SQL in a subdirectory under the quickstart/sample_code	
directory. For instructions on running the demos, see the README file in the subdirectory.	
A synopsis of each demo is provided when you click PL/SQL under SAMPLE PROGRAMS.	
One of the advantages of PL/SQL in TimesTen is the ability to integrate PL/SQL procedural constructs with the flexible and powerful TimesTen SQL language.	
This chapter surveys the main PL/SQL programming features described in "Overview of PL/SQL" in Oracle Database PL/SQL Language Reference. Working from simple examples, you will learn how to use PL/SQL in TimesTen. Unless otherwise noted, the examples have the same results in TimesTen as in Oracle.	
See the end of the chapter for TimesTen-specific considerations. See "TimesTen PL/SQL components and operations" for an overview of how applications interact with TimesTen in general and PL/SQL in particular.	
The following are the main topics of this chapter:	
Note: Except where stated otherwise, the examples in this guide use the TimesTenttIsql utility. In order to display output in the examples, the setting SET SERVEROUTPUT ON is used. For more information on ttIsql , see "ttIsql" in Oracle TimesTen In-Memory Database Reference.	
The basic unit of a PL/SQL source program is the block, or anonymous block, which groups related declarations and statements. Oracle TimesTen In-Memory Database supports PL/SQL blocks.	
A PL/SQL block is defined by the keywords DECLARE	
, BEGIN	
, EXCEPTION	
, and END	
. Example 2-1 shows the basic structure of a PL/SQL block.	
Note: If you use Oracle In-Memory Database Cache: A PL/SQL block cannot be passed through to Oracle.	
Example 2-1 PL/SQL block structure	
You can define either anonymous or named blocks in your PL/SQL programs. This example creates an anonymous block that queries the employees	
table and returns the data in a PL/SQL variable:	
You can define variables and constants in PL/SQL and then use them in procedural statements and in SQL anywhere an expression can be used.	
For example:	
You can use the %TYPE	
attribute to declare a variable according to either a TimesTen column definition or another declared variable. For example, use %TYPE	
to create variables emp_lname	
and min_balance	
:	
You can assign a value to a variable in the following ways.	
:=	
) (Example 2-2). OUT	
or IN OUT	
parameter to a subprogram (procedure or function) and then assigning the value inside the subprogram (Example 2-4 following). Note: TheDBMS_OUTPUT package used in these examples is supplied with TimesTen. For information on this and other supplied packages, refer to Chapter 8, "TimesTen Supplied PL/SQL Packages".	
Example 2-2 Assigning values to variables with the assignment operator	
Note: This example uses records, which are composite data structures that have fields with different data types. You can use the%ROWTYPE attribute, as shown, to declare a record that represents a row in a table or a row from a query result set. Records are further discussed under "PL/SQL composite data types".	
Example 2-3 Using SELECT INTO to assign values to variables	
Select 10% of an employee's salary into the bonus	
variable:	
Example 2-4 Assigning values to variables as parameters of a subprogram	
Declare the variable new_sal	
and then pass the variable as a parameter (sal	
) to procedure adjust_salary	
. Procedure adjust_salary	
computes the average salary for employees with job_id='ST_CLERK'	
and then updates sal	
. After the procedure is executed, the value of the variable is displayed to verify that the variable was correctly updated.	
Note: This example illustrates the ability to nest PL/SQL blocks within blocks. The outer anonymous block contains an enclosed procedure. ThisPROCEDURE statement is distinct from the CREATE PROCEDURE statement documented in "PL/SQL procedures and functions", which creates a subprogram that will remain stored in the user's schema.	
Most SQL functions are supported for calls directly from PL/SQL. In the first example that follows, the function RTRIM	
is used as a PL/SQL function in a PL/SQL assignment statement. In the second example, it is used as a SQL function in a static SQL statement.	
Example 2-5 Using the RTRIM function from PL/SQL	
Use the TimesTen PL/SQL RTRIM	
built-in function to remove the right-most "x" and "y" characters from the string. Note that RTRIM	
is used in a PL/SQL assignment statement.	
Example 2-6 Using the RTRIM function from SQL	
Use the TimesTen SQL function RTRIM	
to remove the right-most "x" and "y" characters from the string. Note that RTRIM	
is used in a static SQL statement.	
You can refer to information about SQL functions in TimesTen under "Expressions" in Oracle TimesTen In-Memory Database SQL Reference. See "SQL Functions in PL/SQL Expressions" in Oracle Database PL/SQL Language Reference for information about support for SQL functions in PL/SQL.	
Control structures are among the PL/SQL extensions to SQL. Oracle TimesTen In-Memory Database supports the same control structures as Oracle Database.	
The following control structures are discussed here:	
The IF-THEN-ELSE	
and CASE	
constructs are examples of conditional control. In Example 2-7, the IF-THEN-ELSE	
construct is used to determine the salary raise of an employee based on the current salary. The CASE	
construct is also used to choose the course of action to take based on the job_id	
of the employee.	
Example 2-7 Using the IF-THEN-ELSE and CASE constructs	
An iterative control construct executes a sequence of statements repeatedly, as long as a specified condition is true. Loop constructs are used to perform iterative operations.	
There are three loop types:	
FOR	
loop WHILE	
loop The basic loop performs repetitive actions without overall conditions. The FOR	
loop performs iterative actions based on a count. The WHILE	
loops perform iterative actions based on a condition.	
Example 2-8 Using a WHILE loop	
The CONTINUE	
statement was added to Oracle Database in the Oracle 11g release and is also supported by TimesTen. It enables you to transfer control within a loop back to a new iteration.	
Example 2-9 Using the CONTINUE statement	
In this example, the first v_total	
assignment is executed for each of the 10 iterations of the loop. The second v_total	
assignment is executed for the first five iterations of the loop. The CONTINUE	
statement transfers control within a loop back to a new iteration, so for the last five iterations of the loop, the second v_total	
assignment is not executed. The end v_total	
value is 70.	
TimesTen supports execution of PL/SQL from client applications using ODBC, OCI, Pro*C/C++, JDBC, or TimesTen TTClasses (for C++).	
As noted earlier, a block is the basic unit of a PL/SQL source program. Anonymous blocks were also discussed earlier. By contrast, procedures and functions are PL/SQL blocks that have been defined with a specified name. See "PL/SQL procedures and functions" for how to define and create them.	
In TimesTen, a PL/SQL procedure or function that is standalone (created with CREATE PROCEDURE	
or CREATE FUNCTION	
) or part of a package can be executed using an anonymous block or a CALL	
statement. (See "CALL" in Oracle TimesTen In-Memory Database SQL Reference for details about CALL	
syntax.)	
Consider the following function:	
In TimesTen, you can execute mytest	
in either of the following ways.	
CALL	
statement. In Oracle Database, you could also execute mytest	
through a SQL statement, as follows. This execution mechanism is not supported in TimesTen.	
SELECT	
statement. Note: A user's own procedure takes precedence over a TimesTen built-in procedure with the same name.	
This section covers the following topics for passing data between an application and PL/SQL:	
Refer to "Bind Arguments" in Oracle Database PL/SQL Language Reference for additional information.	
You can use ":	
var	
" notation for bind variables to be passed between your application (such as a C or Java application) and PL/SQL. The term bind variable (or sometimes host variable) is used equivalently to how the term parameter has historically been used in TimesTen, and bind variables from an application would correspond to the parameters declared in a PL/SQL procedure or function specification.	
Here is a simple example using ttIsql	
in to call a PL/SQL procedure that retrieves the name and salary of the employee corresponding to a specified employee ID. In this example, ttIsql	
essentially acts as the calling application, and the name and salary are output from PL/SQL:	
See "Examples using input and output parameters and bind variables" for the complete example.	
See "PL/SQL procedures and functions" for how to create and define procedures and functions.	
See "Binding parameters and executing statements" in Oracle TimesTen In-Memory Database C Developer's Guide and "Preparing SQL statements and setting input parameters" in Oracle TimesTen In-Memory Database Java Developer's Guide for additional information and examples for those languages.	
Parameter modes define whether parameters declared in a PL/SQL subprogram (procedure or function) specification are used for input, output, or both. The three parameter modes are IN	
(the default), OUT	
, and IN OUT	
.	
An IN	
parameter lets you pass a value to the subprogram being invoked. Inside the subprogram, an IN	
parameter acts like a constant and cannot be assigned a value. You can pass a constant, literal, initialized variable, or expression as an IN	
parameter.	
An OUT	
parameter returns a value to the caller of a subprogram. Inside the subprogram, an OUT	
parameter acts like a variable. You can change its value and reference the value after assigning it.	
An IN OUT	
parameter passes an initial value to a subprogram and returns an updated value to the caller. It can be assigned a value and its value can be read. Typically, an IN OUT	
parameter is a string buffer or numeric accumulator that is read inside the subprogram and then updated. The actual parameter that corresponds to an IN OUT	
formal parameter must be a variable, not a constant or an expression.	
See "Examples using input and output parameters and bind variables".	
PL/SQL is tightly integrated with the TimesTen database through the SQL language. This section covers use of the following SQL features in PL/SQL:	
From within PL/SQL, you can execute the following as static SQL:	
INSERT	
, UPDATE	
, DELETE	
, and MERGE	
SELECT	
COMMIT	
and ROLLBACK	
Notes:	
For information on these SQL statements, refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.	
Example 2-10 shows how to execute a query. For additional examples using TimesTen SQL in PL/SQL, see Chapter 5, "Examples Using TimesTen SQL in PL/SQL".	
Example 2-10 Retrieving data with SELECT...INTO	
Use the SELECT... INTO	
statement to retrieve exactly one row of data. TimesTen returns an error for any query that returns no rows or multiple rows.	
This example retrieves hire_date	
and salary	
for the employee with employee_id=100	
from the employees	
table of the HR	
schema.	
You can use native dynamic SQL to accomplish any of the following:	
INSERT	
, UPDATE	
, or DELETE	
. CREATE	
or ALTER	
. For example, you can use ALTER SESSION	
to change a PL/SQL first connection attribute. In particular, one use case is if you do not know the full text of your SQL statement until execution time. For example, during compilation you may not know the name of the column to use in the WHERE	
clause of your SELECT	
statement. In such a situation, you can use the EXECUTE IMMEDIATE	
statement.	
Another use case for dynamic SQL is for DDL, which cannot be executed in static SQL from within PL/SQL.	
To call a TimesTen built-in procedure that returns a result set, create a record type and use EXECUTE IMMEDIATE	
with BULK COLLECT	
to fetch the results into an array.	
Example 2-11 below provides an example of EXECUTE IMMEDIATE	
. For additional examples, see "Examples using EXECUTE IMMEDIATE".	
Notes:	
Example 2-11 Using the EXECUTE IMMEDIATE statement to create a table	
Consider a situation where you do not know your table definition at compilation. By using the EXECUTE IMMEDIATE	
statement, you can create your table at execution time. This example creates a procedure that creates a table using the EXECUTE IMMEDIATE	
statement. The procedure is executed with the table name and column definitions passed as parameters, then creation of the table is verified.	
Execute the procedure and verify the table is created.	
Bulk binding is a powerful feature used in the execution of SQL statements from PL/SQL to move large amounts of data between SQL and PL/SQL. (Do not confuse this with binding parameters from an application program to PL/SQL.) With bulk binding, you bind arrays of values in a single operation rather than using a loop to perform FETCH	
, INSERT	
, UPDATE	
, and DELETE	
operations multiple times. Oracle TimesTen In-Memory Database supports bulk binding, which can result in significant performance improvement.	
Use the FORALL	
statement to bulk-bind input collections before sending them to the SQL engine. Use BULK COLLECT	
to bring back batches of results from SQL. You can bulk-collect into any type of PL/SQL collection, such as a varray, nested table, or associative array (index-by table). For additional information on collections, refer to "Using collections".	
You can use the %BULK_EXCEPTIONS	
cursor attribute and the SAVE EXCEPTIONS	
clause with FORALL	
statements. SAVE EXCEPTIONS	
allows an UPDATE	
, INSERT	
, or DELETE	
statement to continue executing after it issues an exception (for example, a constraint error). Exceptions are collected into an array that you can examine using %BULK_EXCEPTIONS	
after the statement has executed. When you use SAVE EXCEPTIONS	
, if exceptions are encountered during the execution of the FORALL	
statement, then all rows in the collection are processed. When the statement finishes, an error is issued to indicate that at least one exception occurred. If you do not use SAVE EXCEPTIONS	
, then when an exception is issued during a FORALL	
statement, the statement returns the exception immediately and no other rows are processed.	
Refer to "Using FORALL and BULK COLLECT Together" in Oracle Database PL/SQL Language Reference for more information on these features.	
Example 2-12 shows basic use of bulk binding and the FORALL	
statement. For more information and examples on bulk binding, see "Examples using FORALL and BULK COLLECT".	
Example 2-12 Using the FORALL statement	
In the following example, the PL/SQL program increases the salary for employees with IDs 100, 102, 104, or 110. The FORALL	
statement bulk-binds the collection.	
Find out salaries before executing the raise_salary	
procedure:	
Execute the procedure and verify results as follows.	
You can use a RETURNING INTO	
clause, sometimes referred to as DML returning, with an INSERT	
, UPDATE	
, or DELETE	
statement to return specified columns or expressions, optionally including rowids, from rows that were affected by the action. This eliminates the need for a subsequent SELECT	
statement and separate round trip, in case, for example, you want to confirm what was affected or want the rowid after an insert or update.	
A RETURNING INTO	
clause can be used with dynamic SQL (with EXECUTE IMMEDIATE	
) or static SQL.	
Through the PL/SQL BULK COLLECT	
feature, the clause can return items from a single row into either a set of parameters or a record, or can return columns from multiple rows into a PL/SQL collection such as a varray, nested table, or associative array (index-by table). Parameters in the INTO	
part of the clause must be output only, not input/output. For information on collections, refer to "Using collections". For BULK COLLECT	
, see "FORALL and BULK COLLECT operations" and "Examples using FORALL and BULK COLLECT".	
SQL syntax and restrictions for the RETURNING INTO	
clause in TimesTen are documented as part of the "INSERT", "UPDATE", and "DELETE" documentation in Oracle TimesTen In-Memory Database SQL Reference.	
Also see "Examples using RETURNING INTO".	
Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for additional information about DML returning.	
When PL/SQL programs execute SQL statements, the SQL statements are processed by TimesTen in the same manner as when SQL is executed from applications written in other programming languages. All standard behaviors of TimesTen SQL apply. In an IMDB Cache environment, this includes the ability to use all cache features from PL/SQL. When PL/SQL accesses tables in cache groups, the normal rules for those tables apply. For example, issuing a SELECT	
statement against a cache instance in a dynamic cache group may cause the instance to be automatically loaded into TimesTen from Oracle Database.	
In particular, the following points should be made about this functionality:	
ABC	
must exist in TimesTen: With passthrough=1	
, a statement can be passed through to Oracle Database if any accessed table does not exist in TimesTen. In PL/SQL, however, the statement would have to be executed using dynamic SQL.	
Updating the preceding example, the following TimesTen PL/SQL block could be used to access ABC	
in Oracle Database with passthrough=1	
:	
In this case, TimesTen PL/SQL can compile the block because the SQL statement is not examined at compile time.	
passthrough=3	
, statements executed on a TimesTen connection will be routed to Oracle Database in most circumstances. In this scenario, you may not execute PL/SQL blocks from your application program, because TimesTen would attempt to forward them to Oracle Database, which is not supported. (In the passthrough=1	
example, it is just the SQL statement being routed to Oracle, not the block as a whole.) Important: PL/SQL procedures and functions can use any of the following cache operations with either definer's rights or invoker's rights: loading or refreshing a cache group with commit everyn rows, DML on AWT cache groups, DML on non-propagated cache groups (user managed cache groups without PROPAGATE enabled), SELECT on cache group tables that do not invoke passthrough or dynamic load, or UNLOAD CACHE GROUP . PL/SQL procedures or functions that use any of the following cache operations must use invoker's rights (
A cursor, either explicit or implicit, is used to handle the result set of a SELECT	
statement. As a programmer, you can declare an explicit cursor to manage queries that return multiple rows of data. PL/SQL declares and opens an implicit cursor for any SELECT	
statement that is not associated with an explicit cursor.	
Important: Be aware that in TimesTen, any operation that ends your transaction closes all cursors associated with the connection. This includes anyCOMMIT or ROLLBACK statement. This also includes any DDL statement executed within PL/SQL, because the DDLCommitBehavior connection must be set to 0 if PL/SQL is enabled, resulting in autocommits of DDL statements.	
Example 2-13 shows basic use of a cursor. See "Examples using cursors" for additional information and examples. Also see "PL/SQL REF CURSORs".	
Example 2-13 Using a cursor to retrieve information about an employee	
Declare a cursor c1	
to retrieve the last name, salary, hire date, and job class for the employee whose employee ID is 120.	
Procedures and functions are PL/SQL blocks that have been defined with a specified name.	
Standalone subprograms (stored procedures or functions) are created at the database level with the CREATE PROCEDURE	
or CREATE FUNCTION	
statement.	
Optionally use CREATE OR REPLACE PROCEDURE	
or CREATE OR REPLACE FUNCTION	
if you want the subprogram to be replaced if it already exists.	
Use ALTER PROCEDURE	
or ALTER FUNCTION	
to explicitly compile a procedure or function or modify the compilation options. (To recompile a procedure or function that is part of a package, recompile the package using the ALTER PACKAGE	
statement.)	
In TimesTen, syntax for CREATE PROCEDURE	
and CREATE FUNCTION	
is a subset of what is supported in Oracle Database. For information on these statements and the ALTER PROCEDURE	
and ALTER FUNCTION	
statements in TimesTen, see "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.	
Also see "How to execute PL/SQL procedures and functions".	
Notes:	
Example 2-14 Create and execute a procedure with OUT parameters	
This example creates a procedure that uses OUT	
parameters, executes the procedure in an anonymous block, then displays the OUT	
values. The procedure takes an employee ID as input then outputs the salary and job ID for the employee.	
Note: Instead of using the anonymous block shown in the preceding example, you could use aCALL statement: Command> CALL GET_EMPLOYEE(120, :v_salary, :v_job);	
Example 2-15 Create and call a function	
This example creates a function that returns the salary of the employee whose employee ID is specified as input, then calls the function and displays the result that was returned.	
Note: Instead of using theCALL statement shown in the preceding example, you could use an anonymous block: Command> begin > :n := get_sal(100); > end; > /	
TimesTen supports private and public synonyms (aliases) for database objects, including PL/SQL procedures, functions, and packages. Synonyms are often used to mask object names and object owners or to simplify SQL statements.	
To create a private synonym for procedure foo	
in your schema:	
To create a public synonym for foo	
:	
A private synonym exists in the schema of a specific user and shares the same namespace as database objects such as tables, views, and sequences. A private synonym cannot have the same name as a table or other object in the same schema.	
A public synonym does not belong to any particular schema, is accessible to all users, and can have the same name as any private object.	
To use a synonym you must have appropriate privileges to access the underlying object. For required privileges to create or drop a synonym, see "Required privileges for PL/SQL statements and operations".	
For general information about synonyms, see "Understanding synonyms" in Oracle TimesTen In-Memory Database Operations Guide. For information about the CREATE SYNONYM	
and DROP SYNONYM	
statements, see "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.	
Example 2-16 Use a synonym for a procedure	
In the following example, USER1	
creates a procedure in his schema and creates a public synonym for it. Then USER2	
executes the procedure through the public synonym. Assume the following:	
USER1	
has been granted CREATE SESSION	
, CREATE PROCEDURE	
, and CREATE PUBLIC SYNONYM	
privileges. USER2	
has been granted CREATE SESSION	
and EXECUTE ANY PROCEDURE	
privileges. USER2	
employs the SET SERVEROUTPUT ON	
setting. USER1	
:	
USER2	
:	
This section discusses how to create and use PL/SQL packages.	
For information about PL/SQL packages provided with TimesTen, refer to Chapter 8, "TimesTen Supplied PL/SQL Packages."	
A package is a database object that groups logically related PL/SQL types, variables, and subprograms. You specify the package and then define its body in separate steps.	
The package specification is the interface to the package, declaring the public types, variables, constants, exceptions, cursors, and subprograms that are visible outside the immediate scope of the package. The body defines the objects declared in the specification, as well as queries for the cursors, code for the subprograms, and private objects that are not visible to applications outside the package.	
TimesTen stores the package specification separately from the package body in the database. Other schema objects that call or reference public program objects depend only on the package specification, not on the package body.	
Note: The syntax for creating packages and package bodies is the same as in Oracle Database; however, while Oracle documentation mentions that you must run a script namedDBMSSTDX.SQL , this does not apply to TimesTen.	
To create packages and store them permanently in the database, use the CREATE PACKAGE	
and CREATE PACKAGE BODY	
statements.	
To create a new package, do the following:	
CREATE PACKAGE	
statement. You can declare program objects in the package specification. Such objects are referred to as public objects and can be referenced outside the package, and by other objects in the package.	
Optionally use CREATE OR REPLACE PACKAGE	
if you want the package specification to be replaced if it already exists.	
CREATE PACKAGE BODY	
(or CREATE OR REPLACE PACKAGE BODY	
) statement. You can declare and define program objects in the package body.	
Use ALTER PACKAGE	
to explicitly compile the member procedures and functions of a package or modify the compilation options.	
For more information on the CREATE PACKAGE	
, CREATE PACKAGE BODY	
, and ALTER PACKAGE	
statements, see "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.	
Note: See "Showing errors in ttIsql" for how to get information when you encounter errors in compiling a package.	
Example 2-17 Create and use a package	
Consider the case where you want to add a row to the employees tables when you hire a new employee and delete a row from the employees table when an employee leaves your company. The following example creates two procedures to accomplish these tasks and bundles the procedures in a package. The package also contains a function to return the count of employees with a salary greater than that of a specific employee. The example then executes the function and procedures and verifies the results.	
Verify the count of 33.	
Now add an employee and verify results. Then, remove the employee and verify that the employee was deleted from the employees	
table.	
TimesTen supports private and public synonyms (aliases) for database objects, including PL/SQL procedures, functions, and packages. Synonyms are often used to mask object names and object owners or to simplify SQL statements.	
To create a private synonym for package foopkg	
in your schema:	
To create a public synonym for foopkg	
:	
Also see "Using synonyms for procedures and functions" and "Required privileges for PL/SQL statements and operations".	
Note: You cannot create synonyms for individual member subprograms of a package.This is valid: create or replace public synonym pubtestpkg for testpkg; This is not valid: create or replace public synonym pubtestproc for testpkg.testproc;	
Wrapping is the process of hiding PL/SQL source code. You can wrap PL/SQL source code with the wrap	
utility, processes an input SQL file and wraps only the PL/SQL units in the file, such as a package specification, package body, function, or procedure.	
Consider the following example that creates a file named wrap_test.sql	
, the purpose of which is to create a procedure named wraptest	
. It then uses the wrap	
utility to process wrap_test.sql	
. The procedure is created with the source code hidden and executes successfully. As a final step, the ALL_OBJECTS	
view is queried to see the wrapped source code.	
In TimesTen, any operation that ends your transaction closes all cursors associated with the connection. This includes the following:	
COMMIT	
or ROLLBACK	
statement This is because when PL/SQL is enabled (the PLSQL	
first connection attribute is set to 1), the TimesTen DDLCommitBehavior	
general connection attribute must be set to 0 for Oracle mode (autocommit DDL).	
For example, consider the following scenario, where you want to recompile a set of procedures. This would not work, because the first time ALTER PROCEDURE	
is executed, the cursor (pnamecurs	
) would be closed:	
Instead, you can do something like the following, which fetches all the procedure names into an internal table then executes ALTER PROCEDURE	
on them with no active cursor:	
This chapter focuses on the range of data types available to you for manipulating data in PL/SQL, TimesTen SQL, and your application programs.	
Oracle TimesTen In-Memory Database supports PL/SQL data types and the interactions between PL/SQL data types, TimesTen data types, and client application program data types. Data type conversions and data type mappings are supported.	
See the end of the chapter for TimesTen-specific considerations.	
Topics in this chapter include the following:	
There are three distinct environments to consider when discussing data types:	
These elements are expressed using TimesTen SQL data types.	
Application programs are written in programming languages such as C and Java and contain variables and constants that use data types from these programming languages.	
Table 3-1 summarizes the environments and gives examples of data types for each environment.	
This section describes the PL/SQL data types that are supported in PL/SQL programs. It does not describe the data types supported in TimesTen SQL statements. For information on data types supported in TimesTen SQL statements, see "Data Types" in Oracle TimesTen In-Memory Database SQL Reference.	
The following topics are covered in this section:	
For additional information see "PL/SQL Data Types" in Oracle Database PL/SQL Language Reference.	
In a PL/SQL block, every constant, variable, and parameter has a data type. PL/SQL provides predefined data types and subtypes and lets you define your own PL/SQL subtypes.	
Table 3-2 lists the categories of the predefined PL/SQL data types.	
Table 3-2 Predefined PL/SQL data type categories	
Data type category	Description
---	---
Scalar	Single values with no internal components.
Composite	Internal components that are either scalar or composite.
Reference	Pointers to other data items such as
Scalar data types store single values with no internal components. Table 3-3 lists predefined PL/SQL scalar data types of interest, grouped by data type families.	
Table 3-3 Predefined PL/SQL scalar data types	
Data type family	Data type name
---	---
Note: You cannot bind	
Example 3-1 Declaring PL/SQL variables	
The PLS_INTEGER	
and BINARY_INTEGER	
data types are identical and are used interchangeably in this document.	
The PLS_INTEGER	
data type stores signed integers in the range -2,147,483,648 through 2,147,483,647 represented in 32 bits. It has the following advantages over the NUMBER	
data type and subtypes:	
PLS_INTEGER	
values require less storage. PLS_INTEGER	
operations use hardware arithmetic, so they are faster than NUMBER	
operations, which use library arithmetic. For efficiency, use PLS_INTEGER	
values for all calculations that fall within its range. For calculations outside the PLS_INTEGER	
range, use INTEGER	
, a predefined subtype of the NUMBER	
data type.	
See "PLS_INTEGER and BINARY_INTEGER Data Types" in Oracle Database PL/SQL Language Reference for additional information.	
Note: When a calculation with twoPLS_INTEGER data types overflows the PLS_INTEGER range, an overflow exception is raised even if the result is assigned to a NUMBER data type.	
SIMPLE_INTEGER	
is a predefined subtype of the PLS_INTEGER	
data type that has the same range as PLS_INTEGER	
(-2,147,483,648 through 2,147,483,647) and has a NOT NULL	
constraint. It differs from PLS_INTEGER	
in that it does not overflow.	
You can use SIMPLE_INTEGER	
when the value will never be null and overflow checking is unnecessary. Without the overhead of checking for null values and overflow, SIMPLE_INTEGER	
provides better performance than PLS_INTEGER	
.	
See "SIMPLE_INTEGER Subtype of PLS_INTEGER" in Oracle Database PL/SQL Language Reference for additional information.	
Each row in a table has a unique identifier known as its rowid.	
An application can specify literal rowid values in SQL statements, such as in WHERE	
clauses, as CHAR	
constants enclosed in single quotes.	
Also refer to "ROWID data type" and "ROWID specification" in Oracle TimesTen In-Memory Database SQL Reference for additional information about rowids and the ROWID	
data type, including usage and life.	
Composite types have internal components that can be manipulated individually, such as the elements of an array, record, or table.	
Oracle TimesTen In-Memory supports the following composite data types:	
Associative arrays, nested tables, and varrays are also referred to as collections.	
Note: While TimesTen PL/SQL supports these types, it does not support passing them between PL/SQL and applications written in other languages.	
You can declare collection data types similar to arrays, sets, and hash tables found in other languages. A collection is an ordered group of elements, all of the same type. Each element has a unique subscript that determines its position in the collection.	
In PL/SQL, array types are known as varrays (variable size arrays), set types are known as nested tables, and hash table types are known as associative arrays or index-by tables. These are all collection types.	
Example 3-2 Using a PL/SQL collection type	
This example declares collection type staff_list	
as a table of employee_id	
, then uses the collection type in a loop and in the WHERE	
clause of the SELECT	
statement.	
Collections can be passed between PL/SQL subprograms as parameters, but cannot be returned to applications written in other languages.	
You can use collections to move data in and out of TimesTen tables using bulk SQL.	
Records are composite data structures that have fields with different data types. You can pass records to subprograms with a single parameter. You can also use the %ROWTYPE	
attribute to declare a record that represents a row in a table or a row from a query result set, without specifying the names and types for the fields, as shown in Example 2-2.	
Example 3-3 Declaring a record type	
Declare various record types.	
A REF CURSOR is a handle to a cursor over a SQL result set that can be passed as a parameter from PL/SQL to your application. Oracle TimesTen In-Memory Database supports OUT	
REF CURSORs. REF CURSORs can also be passed from PL/SQL to PL/SQL.	
You can pass REF CURSORs as follows:	
IN	
, OUT	
, or IN OUT	
). OUT	
parameters to pass REF CURSORs from PL/SQL to your application. In your applications, open the REF CURSOR within PL/SQL and pass it back to your application so that your application can fetch the result set.	
Oracle TimesTen In-Memory Database supports REF CURSORs in ODBC, JDBC, OCI, Pro*C/C++, and TTClasses in either a direct-mode or client/server scenario. REF CURSORs are also discussed in the documentation for those programming interfaces.	
Note: Oracle TimesTen In-Memory Database supports oneOUT REF CURSOR per statement.	
To define a REF CURSOR, perform the same steps as you would in Oracle Database. First define a REF CURSOR type and then declare a cursor variable of that type. For example:	
The following declares cursor variables as the formal parameters of functions and procedures:	
Example 3-4 Fetch rows from result set of a dynamic multirow query	
This example defines a REF CURSOR type, EmpCurType	
, then declares a cursor variable, emp_cv	
, of the type EmpCurType	
. In the executable section of the PL/SQL block, the OPEN...FOR	
statement associates the cursor variable emp_cv	
with the multirow query, sql_stmt	
. The FETCH	
statement returns a row from the result set of a multirow query and assigns the values of the select list items to emp_rec	
in the INTO	
clause. When the last row is processed, the cursor variable is closed.	
This section covers the following data type conversions:	
Also see type conversion information under "Differences in TimesTen: data type considerations".	
Oracle TimesTen In-Memory Database supports implicit and explicit conversions between PL/SQL data types.	
Consider this example: The variable v_sal_hike	
is of type VARCHAR2	
. When calculating the total salary, PL/SQL first converts v_sal_hike	
to NUMBER	
then performs the operation. The result is of type NUMBER	
. PL/SQL uses implicit conversion to obtain the correct result.	
Oracle TimesTen In-Memory Database supports data type conversions between application program data types and PL/SQL data types, and between application program data types and TimesTen SQL data types. For SQL, the conversions are the same whether SQL is invoked by your PL/SQL program or is invoked directly by your application.	
As an example, Table 3-4 shows a sampling of data type mappings from an application using the ODBC API to PL/SQL program data types. For more information about ODBC-to-PL/SQL type mappings, refer to "Determination of parameter type assignments and type conversions" in Oracle TimesTen In-Memory Database C Developer's Guide.	
Table 3-4 Sampling of ODBC SQL to PL/SQL type mapping	
ODBC type	PL/SQL type
---	---
REF	
Example 3-5 ODBC to PL/SQL data type conversions	
Consider a scenario where your C program uses the ODBC API and your goal is to bind your C variable of type VARCHAR2	
to a PL/SQL variable of type NUMBER	
. Oracle TimesTen In-Memory Database performs the implicit conversion for you.	
Example 3-6 ODBC to TimesTen SQL data type conversions	
This example creates a table with a column of type TT_BIGINT	
and uses PL/SQL to invoke the TimesTen SQL INSERT	
statement. A bind variable of type SQL_VARCHAR	
is used in the INSERT	
statement. The conversions are the same as the conversions that would occur if your application invoked the INSERT	
statement directly.	
This section covers the following TimesTen-specific considerations regarding data type support and type conversions:	
Oracle TimesTen In-Memory Database supports conversions between PL/SQL data types and TimesTen SQL data types.	
Table 3-5 shows supported data type conversions, with PL/SQL types along the top and SQL types down the left side. The data types are grouped by data type families, with columns referring to PL/SQL type families and rows referring to TimesTen type families. "Y" indicates that a conversion is possible between the two families. Supported conversions are bidirectional.	
Table 3-5 Supported conversions between PL/SQL and TimesTen SQL data types	
Type Family	NUMERIC
---	---
Y	Y
Y	Y
Y	Y
Y	
Y	Y
Y	Y
Table 3-6 that follows summarizes the TimesTen data types and suggestions for PL/SQL type mappings.	
Table 3-6 Data type usage and sizes	
TimesTen data type	Description
---	---
Unsigned integer ranging from 0 to 255. Numeric overflows can occur if you insert a value with type PL/SQL	
Signed 16-bit integer in the range -32,768 to 32,767. Numeric overflows can occur if you insert a value with type PL/SQL	
Signed integer in the range -2,147,483,648 to 2,147,483,647. Equivalent to	
Signed 8-byte integer in range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Use PL/SQL	
Use when floating point precision is required.	
Character types	All PL/SQL character types can hold up to 32,767 bytes of data. TimesTen TimesTen TimesTen TimesTen
Datetime, interval, and time types	Use the
Binary types	TimesTen TimesTen
Example 3-7 Conversions between TimesTen SQL data types and PL/SQL data types	
Consider the case where you have a table with two columns. Col1	
has a data type of TT_INTEGER	
and Col2	
has a data type of NUMBER	
. In your PL/SQL program, you declare two variables: v_var1	
of type PLS_INTEGER	
and v_var2	
of type VARCHAR2	
. The goal is to SELECT	
the row of data from your table into the two PL/SQL variables.	
Data type conversions occur when you execute the SELECT	
statement. Col1	
is converted from a TimesTen SQL TT_INTEGER	
type into a PLS_INTEGER	
type. Col2	
is converted from a TimesTen SQL NUMBER	
type into a PL/SQL VARCHAR2	
type. The query executes successfully.	
TimesTen does not support user-specified NLS_DATE_FORMAT	
and NLS_TIMESTAMP_FORMAT	
settings.	
NLS_DATE_FORMAT	
is always 'yyyy-mm-dd	
'. NLS_TIMESTAMP_FORMAT	
is always 'yyyy-mm-dd hh:mi:ss.ff6	
' (fractional seconds to six decimal places). You can use the SQL and PL/SQL TO_DATE	
and TO_CHAR	
functions to specify other desired formats. See "Expressions" in Oracle TimesTen In-Memory Database SQL Reference for details of these functions.	
Note the following non-support of data types:	
XMLType	
, URIType	
, HttpURIType	
), or "Any" data types (AnyType	
, AnyData	
, AnyDataSet	
). TIMESTAMP WITH [LOCAL] TIME ZONE	
and UROWID	
. TT_DECIMAL	
. This chapter explores the flexible error trapping and error handling you can use in your PL/SQL programs.	
For more information on error-handling and exceptions in PL/SQL, see "PL/SQL Error Handling" in Oracle Database PL/SQL Language Reference.	
See the end of this chapter for TimesTen-specific considerations.	
The following topics are covered:	
This section provides an overview of exceptions in PL/SQL programming, covering the following topics:	
An exception is a PL/SQL error that is raised during program execution, either implicitly by TimesTen or explicitly by your program. Handle an exception by trapping it with a handler or propagating it to the calling environment.	
For example, if your SELECT	
statement returns multiple rows, TimesTen returns an error (exception) at runtime. As the following example shows, you would see TimesTen error 8507, then the associated ORA	
error message. (ORA	
messages, originally defined for Oracle Database, are similarly implemented by TimesTen.)	
You can handle such exceptions in your PL/SQL block so that your program completes successfully. For example:	
There are three types of exceptions:	
In TimesTen, these three types of exceptions are used in the same way as in Oracle Database.	
Exception	Description
---	---
Predefined TimesTen error	One of approximately 20 errors that occur most often in PL/SQL code.
Non-predefined TimesTen error	Any other standard TimesTen error.
User-defined error	Error defined and raised by the application.
This section describes how to trap predefined TimesTen errors or user-defined errors.	
Trap a predefined TimesTen error by referencing its predefined name in your exception-handling routine. PL/SQL declares predefined exceptions in the STANDARD	
package.	
Table 4-1 lists predefined exceptions supported by TimesTen, the associated ORA	
error numbers and SQLCODE	
values, and descriptions of the exceptions.	
Also see "Unsupported predefined errors".	
Table 4-1 Predefined exceptions	
Exception name	Oracle error number
---	---
-6530	Program attempted to assign values to the attributes of an uninitialized object.
-6592	None of the choices in the
-6531	Program attempted to apply collection methods other than EXISTS to an uninitialized nested table or varray, or program attempted to assign values to the elements of an uninitialized nested table or varray.
-6511	A program attempted to open an already opened cursor.
-1	A program attempted to insert duplicate values in a column that is constrained by a unique index.
-1001	Illegal cursor operation.
-1722	Conversion of character string to number failed.
+100	Single row
-6501	PL/SQL has an internal problem.
-6504	Host cursor variable and PL/SQL cursor variable involved in an assignment statement have incompatible return types.
-6500	PL/SQL ran out of memory or memory was corrupted.
-6533	A program referenced a nested table or varray using an index number larger than the number of elements in the collection.
-6532	A program referenced a nested table or varray element using an index number that is outside the legal range (for example, -1).
-1410	The conversion of a character string into a universal rowid failed because the character string does not represent a value
-1422	Single row
-6502	An arithmetic, conversion, truncation, or size constraint error occurred.
-1476	A program attempted to divide a number by zero.
Example 4-1 Using the ZERO_DIVIDE predefined exception	
In this example, a PL/SQL program attempts to divide by 0. The ZERO_DIVIDE	
predefined exception is used to trap the error in an exception-handling routine.	
You can define your own exceptions in PL/SQL in TimesTen, and you can raise user-defined exceptions explicitly with either the PL/SQL RAISE	
statement or the RAISE_APPLICATION_ERROR	
procedure.	
The RAISE	
statement stops normal execution of a PL/SQL block or subprogram and transfers control to an exception handler. RAISE	
statements can raise predefined exceptions, or user-defined exceptions whose names you decide.	
Example 4-2 Using RAISE statement to trap user-defined exception	
In this example, the department number 500 does not exist, so no rows are updated in the departments	
table. The RAISE	
statement is used to explicitly raise an exception and display an error message, returned by the SQLERRM	
built-in function, and an error code, returned by the SQLCODE	
built-in function. Use the RAISE	
statement by itself within an exception handler to raise the same exception again and propagate it back to the calling environment.	
Note: Given the same error condition in TimesTen and Oracle Database,SQLCODE will return the same error code, but SQLERRM will not necessarily return the same error message. This is also noted in "TimesTen error messages and SQL codes".	
Use the RAISE_APPLICATION_ERROR	
procedure in the executable section or exception section (or both) of your PL/SQL program. TimesTen reports errors to your application so you can avoid returning unhandled exceptions.	
Use an error number between -20,000 and -20,999. Specify a character string up to 2,048 bytes for your message.	
Example 4-3 Using the RAISE_APPLICATION_ERROR procedure	
This example attempts to delete from the employees	
table where last_name=Patterson	
. The RAISE_APPLICATION_ERROR	
procedure raises the error, using error number -20201.	
You can use the show errors	
command in ttIsql	
to see details about errors you encounter in executing anonymous blocks or compiling packages, procedures, or functions. This is shown in Example 4-4.	
Example 4-4 ttIsql show errors command	
Again consider Example 2-17. Assume the same package specification shown there, which declares the procedures and functions hire_employee	
, remove_employee	
, and num_above_salary	
. But instead of the body definition shown there, consider the following, which defines hire_employee	
and num_above_salary	
but not remove_employee	
:	
Attempting this body definition after the original package specification results in the following:	
To get more information, run ttIsql	
and use the command show errors	
. In this example, show errors	
provides the following:	
You should be aware of some error-related behaviors that differ between TimesTen PL/SQL and Oracle PL/SQL:	
TimesTen PL/SQL differs from Oracle PL/SQL in a scenario where an application executes PL/SQL in the middle of a transaction, and an unhandled exception occurs during execution of the PL/SQL. Oracle will roll back to the beginning of the anonymous block. TimesTen will not roll back.	
An application should always handle any exception that results from execution of a PL/SQL block, as in the following example, run with autocommit disabled:	
The second INSERT	
will fail because values must be unique, so there will be an exception and the program will perform a rollback. Running this in TimesTen results in the following.	
The result is equivalent in Oracle Database, with the SELECT	
results showing no rows.	
Now consider a TimesTen example where the exception is not handled, again run with autocommit disabled:	
In TimesTen, the SELECT	
query will indicate execution of the first two inserts:	
If you execute this in Oracle, there will be a rollback to the beginning of the PL/SQL block, so the SELECT	
results will indicate execution of only the first insert:	
Notes:	
Given the same error condition, TimesTen does not guarantee that the error message returned by TimesTen will be the same as the message returned by Oracle Database, although the SQL code will be the same. Therefore, the information returned by the SQLERRM	
function may be different, but that returned by the SQLCODE	
function will be the same.	
For further information:	
SQLERRM	
and SQLCODE	
. Oracle Database does not have the concept of runtime warnings, so Oracle PL/SQL does not support warnings.	
TimesTen In-Memory Database does have the concept of warnings, but because the TimesTen PL/SQL implementation is based on the Oracle PL/SQL implementation, TimesTen PL/SQL does not support warnings.	
As a result, in TimesTen you could execute a SQL statement and see a resulting warning, but if you execute the same statement through PL/SQL you will not see the warning.	
"Trapping predefined TimesTen errors" lists predefined exceptions supported by TimesTen, the associated ORA	
error numbers and SQLCODE	
values, and descriptions of the exceptions.	
Table 4-2 notes predefined exceptions that are not supported by TimesTen.	
Table 4-2 Predefined exceptions not supported by TimesTen	
Exception name	Oracle error number
---	---
-1017	Invalid user name and password.
-1012	A program issued a database call without being connected to the database.
-30625	A program attempted to invoke a
-51	A timeout occurred while the database was waiting for a resource.
The TimesTen PL/SQL implementation uses the Oracle SQL parser in compiling PL/SQL programs. (This is discussed in "PL/SQL in TimesTen versus PL/SQL in Oracle Database".) As a result, if your program uses Oracle syntax or Oracle built-in procedures that are not supported by TimesTen, the issue will not be discovered during compilation. A runtime error would occur during program execution, however.	
TimesTen SQL includes several constructs that are not present in Oracle SQL. The PL/SQL language does not include these constructs. To use TimesTen-specific SQL from PL/SQL, execute the SQL statements using the EXECUTE IMMEDIATE	
statement. This will avoid compilation errors.	
For lists of TimesTen-specific SQL and expressions, see "Compatibility Between TimesTen and Oracle" in Oracle In-Memory Database Cache User's Guide.	
For more information about EXECUTE IMMEDIATE	
, refer to "Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)".	
This chapter provides additional examples to further explore the tight integration of TimesTen SQL in PL/SQL:	
Use the SELECT... INTO	
statement to retrieve exactly one row of data. TimesTen returns an error for any query that returns no rows or multiple rows.	
Example 5-1 Using SELECT... INTO to return sum of salaries	
This example uses the SELECT...INTO	
statement to calculate the sum of salaries for all employees in the department where department_id	
is 60.	
Example 5-2 Using SELECT...INTO to query another user's table	
This example provides two users, USER1	
and USER2	
, to show one user employing SELECT...INTO	
to query another user's table.	
The following privileges are assumed:	
USER1	
:	
USER2	
:	
Oracle TimesTen In-Memory Database supports the TimesTen DML statements INSERT	
, UPDATE	
, DELETE	
, and MERGE	
. This section has an example of the INSERT	
statement.	
Example 5-3 Using the INSERT statement in PL/SQL	
This example uses the AS SELECT	
query clause to create table emp_copy	
, sets AUTOCOMMIT	
off, creates a sequence to increment employee_id	
, and uses the INSERT	
statement in PL/SQL to insert a row of data in table emp_copy	
.	
Continuing, the example confirms the row was inserted, then rolls back the transaction.	
Now INSERT	
is executed again, then the transaction is rolled back in PL/SQL. Finally, the example verifies that TimesTen did not insert the row.	
The examples in this section use IN	
, OUT	
, and IN OUT	
parameters, including bind variables (host variables) from outside PL/SQL.	
Example 5-4 Using IN and OUT parameters	
This example creates a procedure query_emp	
to retrieve information about an employee, passes the employee_id	
value 171 to the procedure, and retrieves the name and salary into two OUT	
parameters.	
Example 5-5 Using bind variables to execute a procedure	
This example uses bind variables to execute procedure query_emp	
from Example 5-4 above. Remember to check that data types are compatible.	
You can use bind variables to pass data between a user application and PL/SQL.	
Example 5-6 Using IN OUT parameters and bind variables	
Consider a situation where you want to format a phone number. You decide to use an IN OUT	
parameter to pass the unformatted phone number to a procedure. After the procedure is executed, the IN OUT	
parameter contains the formatted phone number value. Procedure FORMAT_PHONE	
in this example accomplishes that, accepting a 10-character string containing digits for a phone number. Bind variable b_phone_no	
first provides the input value passed to FORMAT_PHONE	
, then after execution is used as an output value returning the updated string.	
Create the bind variable, execute the procedure, and verify the results.	
Oracle TimesTen In-Memory Database supports cursors, as discussed in "Use of cursors in PL/SQL programs". Use a cursor to handle the result set of a SELECT	
statement.	
Examples in this section cover the following:	
See "Explicit Cursor Attributes" in Oracle Database PL/SQL Language Reference for information about the cursor attributes used in these examples.	
This section provides examples of how to fetch values from a cursor, including how to fetch the values into a record.	
Example 5-7 Fetching values from a cursor	
The following example uses a cursor to select employee_id	
and last_name	
from the employees	
table where department_id	
is 30 Two variables are declared to hold the fetched values from the cursor, and the FETCH	
statement retrieves rows one at a time in a loop to retrieve all rows. Execution stops when there are no remaining rows in the cursor, illustrating use of the %NOTFOUND	
cursor attribute.	
%NOTFOUND	
yields TRUE	
if an INSERT	
, UPDATE	
, or DELETE	
statement affected no rows, or a SELECT INTO	
statement returned no rows.	
Example 5-8 Fetching values into a record	
This is similar to Example 5-7 above, with the same results, but fetches the values into a PL/SQL record instead of PL/SQL variables.	
Example 5-9 shows how to use the %ROWCOUNT	
cursor attribute as well as the %NOTFOUND	
cursor attribute previously shown in Example 5-7 and Example 5-8 above.	
Example 5-9 Using %ROWCOUNT and %NOTFOUND attributes	
This example has the same results as Example 5-8, but illustrating the %ROWCOUNT	
cursor attribute as well as the %NOTFOUND	
attribute for exit conditions in the loop.	
%ROWCOUNT	
yields the number of rows affected by an INSERT	
, UPDATE	
, or DELETE	
statement or returned by a SELECT...INTO	
or FETCH...INTO	
statement.	
PL/SQL in TimesTen supports cursor FOR	
loops, as shown in the following examples.	
Example 5-10 Using a cursor FOR loop	
In this example, PL/SQL implicitly declares emp_record	
. No OPEN	
and CLOSE	
statements are necessary. The results are the same as in Example 5-9 above.	
Example 5-11 Using a cursor FOR loop with subqueries	
This example illustrates a FOR	
loop using subqueries. The results are the same as in Example 5-9 and Example 5-10 above.	
Oracle TimesTen In-Memory Database supports bulk binding and the FORALL	
statement and BULK COLLECT	
feature, as noted in "FORALL and BULK COLLECT operations".	
Examples in this section cover the following:	
The %BULK_ROWCOUNT	
cursor attribute is a composite structure designed for use with the FORALL	
statement.	
The attribute acts like an associative array (index-by table). Its ith element stores the number of rows processed by the ith execution of the INSERT	
statement. If the ith execution affects no rows, then %BULK_ROWCOUNT(
i	
)	
returns zero.	
This is demonstrated in Example 5-12.	
Example 5-12 Using the FORALL statement with SQL%BULKROWCOUNT	
Use BULK COLLECT	
with the SELECT	
statement in PL/SQL to retrieve rows without using a cursor.	
Example 5-13 Using BULK COLLECT INTO with queries	
This example selects all rows from the departments	
table for a specified location into a nested table, then uses a FOR LOOP	
to output data.	
The following executes the procedure and verifies the results:	
Example 5-14 uses a cursor to bulk-collect rows from a table.	
Example 5-14 Using BULK COLLECT INTO with cursors	
This example uses a cursor to bulk-collect rows from the departments	
table with a specified location_id	
. value. Results are the same as in Example 5-13 above.	
SAVE EXCEPTIONS	
allows an UPDATE	
, INSERT	
, or DELETE	
statement to continue executing after it issues an exception. When the statement finishes, an error is issued to signal that at least one exception occurred. Exceptions are collected into an array that you can examine using %BULK_EXCEPTIONS	
after the statement has executed.	
Example 5-15 Using SAVE EXCEPTIONS with BULK COLLECT	
In this example, PL/SQL raises predefined exceptions because some new values are too large for the job_id	
column. After the FORALL	
statement, SQL%BULK_EXCEPTIONS.COUNT	
returns 2, and the contents of SQL%BULK_EXCEPTIONS	
are (7, 01401) and (13, 01401), indicating the error number and the line numbers where the error was detected. To get the error message, the negative of SQL%BULK_EXCEPTIONS(i).ERROR_CODE	
is passed to the error-reporting function SQLERRM	
(which expects a negative number).	
The following script is used:	
Results are as follows:	
TimesTen supports the EXECUTE IMMEDIATE	
statement, as noted in "Dynamic SQL in PL/SQL (EXECUTE IMMEDIATE statement)". This section provides additional examples to consider as you develop your PL/SQL applications in TimesTen, including how to use EXECUTE IMMEDIATE	
to alter a PL/SQL connection attribute or call a TimesTen built-in procedure.	
Example 5-16 Using EXECUTE IMMEDIATE to alter PLSCOPE_SETTINGS	
This example uses the EXECUTE IMMEDIATE	
statement with ALTER SESSION	
to alter the PLSQL_OPTIMIZE_LEVEL	
setting, calling the ttConfiguration	
built-in procedure before and after to verify the results. Refer to "ttConfiguration" in Oracle TimesTen In-Memory Database Reference for information about this procedure.	
Example 5-17 Using the EXECUTE IMMEDIATE statement with a single row query	
In this example, the function get_emp	
retrieves the employee record into variable v_emprec	
. Execute the function and return the results in v_emprec	
.	
Example 5-18 Using EXECUTE IMMEDIATE with TimesTen specific syntax	
Use the EXECUTE IMMEDIATE	
statement to execute a TimesTen SELECT FIRST	
n	
statement. This syntax is specific to TimesTen.	
Example 5-19 Using EXECUTE IMMEDIATE to call ttConfiguration	
In PL/SQL, you can use the EXECUTE IMMEDIATE	
statement with CALL	
syntax to call TimesTen built-in procedures, such as ttConfiguration	
.	
For example, to call the built-in procedure ttConfiguration	
and return its output result set, create a PL/SQL record type then use EXECUTE IMMEDIATE	
with BULK COLLECT	
to fetch the result set into an array.	
For more information on TimesTen built-in procedures, see "Built-In Procedures" in Oracle TimesTen In-Memory Database Reference.	
This section includes the following two examples using the RETURNING INTO	
clause:	
See "RETURNING INTO clause" for an overview.	
The following example uses ttIsql	
to run a SQL script that uses a RETURNING INTO	
clause to return data into a record. The example gives a raise to a specified employee, returns his name and new salary into a record, then outputs the data from the record. For reference, the original salary is shown before running the script.	
The following example uses ttIsql	
to run a SQL script that uses a RETURNING INTO	
clause with BULK COLLECT	
to return data into nested tables, a type of PL/SQL collection. The example deletes all the employees from a specified department, then, using one nested table for employee IDs and one for last names, outputs the employee ID and last name of each deleted employee. For reference, the IDs and last names of employees in the department are also displayed before execution of the script.	
This section runs a script twice with just one change, first defining a PL/SQL procedure with AUTHID CURRENT_USER	
for invoker's rights, then with AUTHID DEFINER	
for definer's rights. See "Definer's rights and invoker's rights" for related information.	
The script assumes three users have been created: a tool vendor and two tool users (brandX	
and brandY	
). Each has been granted CREATE SESSION	
, CREATE PROCEDURE	
, and CREATE TABLE	
privileges as necessary. The following setup is also assumed, to allow "use	
username	
;	
" syntax to connect to the database as username	
:	
The script does the following:	
printInventoryStatistics	
, as the tool vendor. myInventory	
, in each of the three user schemas, populating it with unique data in each case. The different results between the two executions of the script show the difference between invoker's rights and definer's rights.	
Here is the script for the invoker's rights execution:	
The only difference for the definer's rights execution is the change in the AUTHID	
clause for the procedure definition.	
Example 5-20 Using AUTHID CURRENT_USER	
Following are the results when the procedure is defined with invoker's rights. Note that when the tool users brandX	
and brandY	
run the printInventoryStatistics	
procedure, each sees the data in his own (the invoker's) myInventory	
table.	
Use the following to terminate all the connections:	
Example 5-21 Using AUTHID DEFINER	
Following are the results when the procedure is defined with definer's rights. Note that when the tool users brandX	
and brandY	
run printInventoryStatistics	
, each sees the data in myInventory	
belonging to the tool vendor (the definer).	
In this case, it is also instructive to see that although brandX	
and brandY	
can each access the toolVendor.myInventory	
table through the procedure, they cannot access it directly. That is a key use of definer's rights, to allow specific and restricted access to a table or other SQL object through the actions of a procedure.	
Use the following to terminate all the connections:	
This section provides an example that queries a system view.	
Example 5-22 Querying system view USER_SOURCE	
This example queries the USER_SOURCE	
system view to examine the source code of procedure query_emp	
from Example 5-4. (You must create that procedure before completing this example.)	
This produces the following output:	
Note: As with otherUSER_* system views, all users have SELECT privilege for the USER_SOURCE system view.	
The chapter shows you how to manage PL/SQL in your TimesTen database, set connection attributes, and display system-provided packages. It also describes the ttSrcScan	
utility, which you can use to check for PL/SQL features unsupported in TimesTen. The chapter concludes with examples to assist you in your setup procedures.	
Topics in this chapter include:	
This section covers the following topics:	
Oracle TimesTen In-Memory Database installs PL/SQL by default. If you chose not to install PL/SQL during installation, you can use the TimesTen ttmodinstall	
utility to install it later. For more information, see "ttmodinstall" in Oracle TimesTen In-Memory Database Reference.	
Note: Only the instance administrator can run this utility.	
PL/SQL is enabled in TimesTen through the first connection attribute PLSQL	
. You can set this attribute when you initially create your database or at any first connection afterward. Note that once PL/SQL is enabled (PLSQL=1	
), it cannot be disabled (PLSQL=0	
would have no effect).	
If PL/SQL is supported on your platform and enabled at installation time, TimesTen sets PLSQL=1	
by default. You can also set the PLSQL	
connection attribute in the odbc.ini	
file or in your application.	
For more information on the PLSQL	
connection attribute, see "PLSQL" in Oracle TimesTen In-Memory Database Reference.	
There are several ways to check the status of PL/SQL in your database:	
ttVersion	
utility to confirm that PL/SQL is enabled in your installation, as indicated in the following example: ttStatus	
utility to determine if PL/SQL is enabled in your database. In the following example, PL/SQL is enabled in database plsql1	
and is not enabled in database plsql0	
. ttIsql	
utility, call the ttConfiguration	
built-in procedure to determine the PLSQL	
connection attribute setting for your database. Refer to "ttConfiguration" in Oracle TimesTen In-Memory Database Reference for information about this procedure. For example:	
There are several TimesTen connection attributes specific to PL/SQL, as summarized in Table 6-1 that follows. For additional information on these connection attributes, see "PL/SQL first connection attributes" and "PL/SQL general connection attributes" in Oracle TimesTen In-Memory Database Reference.	
The table also notes any required access control privileges and whether each connection attribute is a first connection attribute or general connection attribute. First connection attributes are set when the database is first loaded, and persist for all connections. Only the instance administrator can load a database with changes to first connection attribute settings. A general connection attribute setting applies to one connection only, and requires no special privilege.	
Table 6-1 PL/SQL Connection Attributes	
Attribute	Summary
---	---
First connection attribute. Required privilege: Instance administrator. Enables PL/SQL in the database. If If You can enable PL/SQL when your database is initially created or at any first connection. Once PL/SQL is enabled, it cannot be disabled. Default: 1 (for platforms where PL/SQL is supported).	
First connection attribute. Required privilege: Instance administrator. Specifies the virtual address, as a hexadecimal value, at which the PL/SQL shared memory segment is loaded into each process that uses the TimesTen direct drivers. This memory address must be identical in all connections to a given database and in all processes that connect to that database. If a single application simultaneously connects to multiple databases in direct mode, then you must set different values for each of the databases. Default: Platform-specific value. Refer to "PLSQL_MEMORY_ADDRESS" in Oracle TimesTen In-Memory Database Reference for platform-specific information.	
First connection attribute. Required privilege: Instance administrator. Determines the size, in megabytes, of memory allocated for the PL/SQL shared memory segment, which is shared by all connections. This is memory used to hold recently executed PL/SQL code and metadata about PL/SQL objects, as opposed to storing runtime data such as database output. Default: Platform-specific value. Refer to "PLSQL_MEMORY_SIZE" in Oracle TimesTen In-Memory Database Reference for platform-specific values and tuning information.	
General connection attribute. Required privilege: None. Controls whether the PL/SQL compiler generates cross-reference information. Possible values are You can use the Default:	
General connection attribute. Required privilege: None. Use this to set inquiry directives to control conditional compilation of PL/SQL units, which enables you to customize the functionality of a PL/SQL program depending on conditions that are checked. This is especially useful when applications may be deployed to multiple database environments. Possible uses include activating debugging or tracing features, or basing functionality on the version of the database. The following is an example: PLSQL_CCFLAGS='DEBUG:TRUE, PRODUCTION:YES' PL/SQL conditional compilation flags are similar in concept to flags on a C compiler command line, such as the following: % cc -DEBUG=TRUE -DPRODUCTION=YES ... You can use the See "Conditional Compilation" in Oracle Database PL/SQL Language Reference for information about this feature. There is also an example of conditional compilation (though not involving Default:	
General connection attribute. Required privilege: None. Specifies the maximum amount of PL/SQL shared memory (process heap memory) that PL/SQL can allocate for the current connection. (Note that this memory is not actually allocated until needed.) This is memory used for runtime data, such as large PL/SQL collections, as opposed to cached executable code. This limit setting protects other parts of your application, such as C or Java components, when PL/SQL might otherwise take all available runtime memory. The amount of space consumed by PL/SQL variables is roughly what you might expect comparable variables to consume in other programming languages. As an example, consider a large array of strings: type chararr is table of varchar2(32767) index by binary_integer; big_array chararr; If 100,000 strings of 100 bytes each are placed into such an array, approximately 12 megabytes of memory is consumed. Memory consumed by variables in PL/SQL blocks is used while the block executes, then is released. Memory consumed by variables in PL/SQL package specifications or bodies (not within a procedure or function) is used for the lifetime of the package. Memory consumed by variables in a PL/SQL procedure or function, including one defined within a package, is used for the lifetime of the procedure or function. However, in all cases, memory freed by PL/SQL is not returned to the operating system. Instead, it is kept by PL/SQL and reused by future PL/SQL invocations. The memory is freed when the application disconnects from TimesTen. The You can use the Default: 100 megabytes Note: In	
General connection attribute. Required privilege: None. Specifies the optimization level used to compile PL/SQL library units. The higher the setting, the more effort the compiler makes to optimize PL/SQL library units. Possible values are 0, 1, 2, or 3. You can use the Default: 2	
General connection attribute Required privilege: None Controls how long PL/SQL program units are allowed to run, in seconds, before being terminated. A new value impacts PL/SQL programs currently running. Possible values are 0 (meaning no time limit) or any positive integer. You can use the Default: 30 seconds Note: The frequency with which PL/SQL programs check execution time against this timeout value is variable. It is possible for programs to run significantly longer than the timeout value before being terminated.	
Notes: There are additional TimesTen connection attributes you should consider for PL/SQL. For more information about them, refer to the indicated sections in Oracle TimesTen In-Memory Database Reference.	
The rest of this section provides some examples for setting and altering PL/SQL connection attributes.	
Example 6-1 Create a database with PL/SQL default connection attributes	
This example creates a database without specifying PL/SQL connection attributes. (Be aware that only an instance administrator can create a database.)	
Sample odbc.ini	
:	
Connect to database pldef	
:	
Call the ttConfiguration	
built-in procedure to display settings, which shows you the default PL/SQL settings:	
Example 6-2 Enable PL/SQL at first connection	
This example establishes a first connection to a database that does not yet have PL/SQL enabled, specifying PLSQL=1	
. Because the connection is a first connection, TimesTen enables PL/SQL in the database. The sample odbc.ini	
file also provides settings for PLSQL_MEMORY_SIZE	
and PLSQL_MEMORY_ADDRESS	
.	
Sample odbc.ini	
:	
Connect to the plsql0	
database with PLSQL=1	
:	
path	
/Call ttConfiguration	
to verify PLSQL=1	
and PL/SQL settings from odbc.ini	
.	
Example 6-3 Use ALTER SESSION to change attribute settings	
This example uses ALTER SESSION	
statements to alter PL/SQL connection attributes, changing the settings of PLSCOPE_SETTINGS	
, PLSQL_OPTIMIZE_LEVEL	
, and PLSQL_CONN_MEM_LIMIT	
. It then calls the ttConfiguration	
built-in procedure to display the new values.	
Next, the example sets the PLSQL_TIMEOUT	
connection attribute to 20 seconds. When there is an attempt to execute a program that loops indefinitely, sometime after 20 seconds has passed the execution is terminated and TimesTen returns an error.	
Example 6-4 View PL/SQL performance statistics	
The ttPLSQLMemoryStats	
built-in procedure returns statistics about PL/SQL library cache performance and activity. This example shows sample output. Refer to "ttPLSQLMemoryStats" in Oracle TimesTen In-Memory Database Reference for information about this procedure.	
Note: CurrentConnectionMemory is related to the PLSQL_CONN_MEM_LIMIT connection attribute documented in "PL/SQL connection attributes", indicating the amount of heap memory that has actually been acquired by PL/SQL.	
If you have an existing PL/SQL program and want to see whether it uses PL/SQL features that TimesTen does not support, you can use the ttSrcScan	
command line utility to scan your program for unsupported functions, packages, types, type codes, attributes, modes, and constants. This is a standalone utility that can be run without TimesTen or Oracle being installed and runs on any platform supported by TimesTen. It reads source code files as input and creates HTML and text files as output. If the utility finds unsupported items, they are logged and alternatives are suggested. You can find the ttSrcScan	
executable in the quickstart/sample_util	
directory in your TimesTen installation.	
Specify an input file or directory for the program to be scanned and an output directory for the ttSrcScan	
reports. Other options are available as well. See the README file in the sample_util	
directory for information.	
TimesTen has features to control database access with object-level resolution for database objects such as tables, views, materialized views, indexes, sequences, functions, procedures, and packages, for example. You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide for introductory information about TimesTen access control features.	
This chapter introduces access control as it relates to PL/SQL users.	
Note: Access control is automatically enabled when you install TimesTen. You cannot disable it.	
Topics in this chapter include the following:	
This section covers the following topics:	
For PL/SQL users, access control affects the ability to create, alter, drop, or execute PL/SQL procedures and functions, including packages and their member procedures and functions.	
You need the CREATE PROCEDURE	
privilege to create a procedure, function, package definition, or package body if it is being created in your own schema, or CREATE ANY PROCEDURE	
if it is being created in any schema other than your own. To alter or drop a procedure, function, package definition, or package body, you must be the owner or have the ALTER ANY PROCEDURE	
privilege or DROP ANY PROCEDURE	
privilege, respectively.	
To execute a procedure or function, you must be the owner, have the EXECUTE	
privilege for the procedure or function (or for the package to which it belongs, if applicable), or have the EXECUTE ANY PROCEDURE	
privilege. This is all summarized in Table 7-1.	
Table 7-1 Privileges for using PL/SQL procedures and functions	
Action	SQL statement or operation
---	---
Create a procedure, function, package definition, or package body.	
Or:	
Alter a procedure, function, or package.	
Ownership of the procedure, function, or package Or:	
Drop a procedure, function, package definition, or package body.	
Ownership of the procedure, function, or package Or:	
Execute a procedure or function.	Invoke the procedure or function.
Or:	
Create a private synonym for a procedure, function, or package.	
Or:	
Create a public synonym for a procedure, function, or package	
Use a synonym to execute a procedure or function.	Invoke the procedure or function through its synonym.
Drop a private synonym for a procedure, function, or package.	
Ownership of the synonym Or:	
Drop a public synonym for a procedure, function, or package.	
See "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for the syntax and required privileges of SQL statements discussed in this section.	
Use the SQL statement GRANT	
to grant a privilege. Use REVOKE	
to revoke one.	
The following example grants EXECUTE	
privilege to user2	
for a procedure and a package that user1	
owns:	
This example revokes the privileges:	
Example 7-1 Granting of required privileges	
This example shows a series of attempted operations by a user, user1	
, as follows:	
The ttIsql	
utility is used by user1	
to perform (or attempt) the operations and by the instance administrator to grant privileges.	
USER1	
:	
Initially the user does not have permission to create a procedure. That must be granted even in one's own schema.	
Instance administrator:	
USER1	
:	
Once user1	
can create a procedure in his own schema, he can execute it because he owns it.	
The user cannot yet create a procedure in another schema, though.	
Instance administrator:	
USER1	
:	
Now user1	
can create a procedure in another schema, but he cannot execute it yet because he does not own it or have privilege.	
Instance administrator:	
USER1	
:	
Now user1	
can execute a procedure in another schema.	
When a privilege on an object is revoked from a user, all of that user's PL/SQL objects that refer to that object are temporarily invalidated. Once the privilege has been restored, a user can explicitly recompile and revalidate an object by executing ALTER PROCEDURE	
, ALTER FUNCTION	
, or ALTER PACKAGE	
, as applicable, on the object. Alternatively, each object will be recompiled and revalidated automatically the next time it is executed.	
For example, if user1	
has a procedure user1.proc0	
that calls user2.proc1	
, proc0	
becomes invalid if EXECUTE	
privilege for proc1	
is revoked from user1	
.	
Use the following to see if any of your objects are invalid:	
See "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for information about the ALTER	
statements.	
Example 7-2 Invalidated object	
This example shows a sequence that results in an invalidated object, in this case a PL/SQL procedure, as follows:	
CREATE ANY PROCEDURE	
privilege, creates a procedure in another user's schema, then creates a procedure in his own schema that calls the procedure in the other user's schema. EXECUTE	
privilege to execute the procedure in the other user's schema. EXECUTE	
privilege for the procedure in the other user's schema is revoked from the user, invalidating the user's own procedure. EXECUTE	
privilege for the procedure in the other user's schema is granted to the user again. When he executes his own procedure, it is implicitly recompiled and revalidated. Instance administrator:	
USER1	
:	
Instance administrator:	
USER1	
:	
And to confirm user1	
has no invalid objects:	
Instance administrator:	
Now revoke the EXECUTE	
privilege from user1	
.	
USER1	
:	
Immediately, user1.proc0	
becomes invalid because user1	
no longer has privilege to execute user2.proc1	
.	
So user1	
can no longer execute the procedure.	
Instance administrator:	
Again grant EXECUTE	
privilege on user2.proc1	
to user1	
.	
USER1	
:	
The procedure user1.proc0	
is still invalid until it is either explicitly or implicitly recompiled. It is implicitly recompiled when it is executed, as shown here. Or ALTER PROCEDURE	
could be used to explicitly recompile it.	
For any query or SQL DML statement executed in an anonymous block, or any SQL DDL statement executed in an EXECUTE IMMEDIATE	
statement, including all such operations discussed in this document or used in any example, it is assumed that the user has appropriate privilege to execute the statement and access the desired objects. SQL executed in a PL/SQL anonymous block requires the same privilege as when executed directly. For example, to insert rows of data into a table you own, no privilege is required. If you want to insert rows of data into a table you do not own, you must be granted INSERT	
privilege on that table or granted INSERT ANY TABLE	
.	
Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for details SQL statements and their required privileges.	
When a PL/SQL procedure or function is defined, the optional AUTHID	
clause of the CREATE FUNCTION	
or CREATE PROCEDURE	
statement specifies whether the function or procedure executes with definer's rights (AUTHID DEFINER	
, the default) or invoker's rights (AUTHID CURRENT_USER	
). Similarly, for procedures or functions in a package, the AUTHID	
clause of the CREATE PACKAGE	
statement specifies whether each member function or procedure of the package executes with definer's rights or invoker's rights. The AUTHID	
clause is shown in the syntax documentation for these statements, under "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference.	
The AUTHID	
setting affects the name resolution and privilege checking of SQL statements that a procedure or function issues at runtime. With definer's rights, SQL name resolution and privilege checking operate as though the owner of the procedure or function (the definer, in whose schema it resides) is running it. With invoker's rights, SQL name resolution and privilege checking simply operate as though the current user (the invoker) is running it.	
Invoker's rights would be useful in a scenario where you might want to grant broad privileges for a body of code, but would want that code to affect only each user's own objects in his or her own schema.	
Definer's rights would be useful in a situation where you want all users to have access to the same centralized tables or other SQL objects, but only for the specific and limited actions that are executed by the procedure. The users would not have access to the SQL objects otherwise.	
See "Examples using the AUTHID clause" for examples using definer's and invoker's rights.	
Refer to "Invoker's Rights and Definer's Rights (AUTHID Property)" in Oracle Database PL/SQL Language Reference for additional information.	
This section covers the following:	
Note the following when connecting to the database:	
CREATE SESSION	
privilege. This is a system privilege so must be granted to the user either by the instance administrator or by a user with ADMIN	
privilege. This can be accomplished either directly or through the PUBLIC	
role. Refer to "Managing Access Control" in Oracle TimesTen In-Memory Database Operations Guide for additional information and examples. Note the following regarding access to system views and PL/SQL supplied packages.	
SELECT	
and EXECUTE	
privileges on various system tables, system views, PL/SQL functions, PL/SQL procedures, and PL/SQL packages are granted by default to all users through the PUBLIC	
role, of which all users are a member. This role is documented in "Privileges" in Oracle TimesTen In-Memory Database SQL Reference. Use the following command to see the list of these public database objects and the associated privileges: All users have SELECT	
privilege for the ALL_*	
and USER_*	
system views.	
EXECUTE ANY PROCEDURE	
does not apply to supplied packages; however, most are accessible through the PUBLIC	
role. Access control for PL/SQL packages provided with TimesTen is noted at the beginning of Chapter 8, "TimesTen Supplied PL/SQL Packages." The ttPLSQLMemoryStats	
built-in procedure, which returns statistics about library cache performance and activity, can be called by any user. This procedure is documented under "ttPLSQLMemoryStats" in Oracle TimesTen In-Memory Database Reference. Also see Example 6-4.	
Oracle TimesTen In-Memory Database supplies PL/SQL packages, listed immediately below, to extend database functionality and provide PL/SQL access to SQL features. TimesTen installs these packages automatically for your use.	
This chapter lists and briefly describes the subprograms that comprise each package. For details on these PL/SQL packages, refer to Oracle TimesTen In-Memory Database PL/SQL Packages Reference.	
DBMS_LOCK	
DBMS_OUTPUT	
DBMS_PREPROCESSOR	
DBMS_RANDOM	
DBMS_SQL	
DBMS_UTILITY	
TT_DB_VERSION	
UTL_FILE	
UTL_IDENT	
UTL_RAW	
UTL_RECOMP	
The DBMS_LOCK	
package provides an interface to lock-management services. In the current release, TimesTen supports only the sleep feature.	
Table 8-1 describes the supported DBMS_LOCK	
subprogram.	
Table 8-1 DBMS_OUTPUT Subprograms	
Subprogram	Description
---	---
This procedure suspends the session for a given duration. Specify the amount of time in seconds. The smallest supported increment is a hundredth of a second. For example: DBMS_LOCK.SLEEP(1.95); Notes:	
The DBMS_OUTPUT	
package enables you to send messages from stored procedures and packages. The package is useful for displaying PL/SQL debugging information.	
Table 8-2 describes the DBMS_OUTPUT	
subprograms.	
Table 8-2 DBMS_OUTPUT Subprograms	
Subprogram	Description
---	---
Disables message output.	
Enables message output.	
Retrieves one line from the buffer.	
Retrieves an array of lines from the buffer.	
Terminates a line created with	
Places a line in the buffer.	
Places a partial line in the buffer.	
The DBMS_PREPROCESSOR	
package provides an interface to print or retrieve the source text of a PL/SQL unit after processing of conditional compilation directives.	
Table 8-3 describes the DBMS_PREPROCESSOR	
subprograms.	
The DBMS_RANDOM	
package provides a built-in random number generator.	
Table 8-4 describes the DBMS_RANDOM	
subprograms.	
Table 8-4 DBMS_RANDOM Subprograms	
Subprogram	Description
---	---
Initializes the package with a seed value (deprecated).	
Returns random numbers in a normal distribution.	
Generates a random number (deprecated).	
Resets the seed.	
Gets a random string.	
Terminates the package (deprecated).	
The	
The DBMS_SQL	
package provides an interface for using dynamic SQL to parse data manipulation language (DML) or data definition language (DDL) statements using PL/SQL.	
This package does not support pre-defined data types and overloads with data types that are not supported in TimesTen, such as LOBs, UROWID	
, time zone features, ADT, database-level collections, and edition overloads. For more information on the supported data types in TimesTen PL/SQL, see "Understanding the data type environments".	
Table 8-5 describes the DBMS_SQL	
subprograms.	
Table 8-5 DBMS_SQL Subprograms	
Subprogram	Description
---	---
Binds a given value to a given collection.	
Binds a given value to a given variable.	
Closes a given cursor and frees memory.	
Returns the value of the cursor element for a given position in a cursor.	
Returns a selected part of a Important: Because TimesTen does not support the	
Defines a collection to be selected from the given cursor. Use with	
Defines a column to be selected from the given cursor. Use with	
Defines a Important: Because TimesTen does not support the	
Describes the columns for a cursor opened and parsed through the	
Describes the specified column. Use as an alternative to	
Describes the specified column. Use as an alternative to	
Executes a given cursor.	
Executes a given cursor and fetches rows.	
Fetches a row from a given cursor.	
Returns	
Returns the byte offset in the SQL statement text where the error occurred.	
Returns cumulative count of the number of rows fetched.	
TimesTen does not support	
Returns the SQL function code for the statement.	
Returns the cursor ID number of a new cursor.	
Parses a given statement.	
Takes an opened (by	
Takes an opened, parsed, and executed cursor (by	
Returns value of a named variable for a given cursor.	
The DBMS_UTILITY	
package provides a variety of utility subprograms.	
Subprograms are not supported (and not listed here) for features that TimesTen does not support.	
Table 8-6 describes DBMS_UTILITY	
subprograms.	
Table 8-6 DBMS_UTILITY Subprograms	
Subprogram	Description
---	---
Canonicalizes a given string.	
Converts a comma-delimited list of names into an associative array (index-by table) of names.	
Compiles all procedures, functions, packages, and views in the specified database schema.	
Returns version information for the database. The procedure returns	
Formats the current call stack.	
Formats the backtrace from the point of the current error to the exception handler where the error is caught.	
Formats the current error stack.	
Returns the current CPU time in hundredths of a second.	
Shows the dependencies on the objects passed in.	
Returns the endianness of your database platform.	
Computes a hash value for a given string.	
Computes the hash value for a given string using the MD5 algorithm.	
Returns the current time in hundredths of a second.	
Invalidates a database object and optionally modifies the PL/SQL compiler parameter settings for the object.	
Returns bit setting.	
Resolves the given name of the form: [[a.]b.]c[@dblink] Where Do not use	
Calls the parser to parse the given name: "a [.b [.c]][@dblink]" Strips double quotes or converts to uppercase if there are no quotes. Ignores comments and does not perform semantic analysis. Missing values are Do not use	
Converts an associative array (index-by table) of names into a comma-delimited list of names.	
Validates the object described by either owner, name and namespace or object ID.	
The TT_DB_VERSION	
package is a TimesTen-specific package that indicates the version number and release number for the Oracle TimesTen In-Memory Database.	
Table 8-7 describes the TT_DB_VERSION	
constants.	
The primary use case for the TT_DB_VERSION	
and UTL_IDENT	
packages is for conditional compilation. See "UTL_IDENT" for an example.	
Table 8-7 TT_DB_VERSION Constants	
Name	Description
---	---
Equals the major release number of the Oracle TimesTen In-Memory Database. For example, for the Oracle TimesTen In-Memory Database, Release 11.2.1.0,	
Equals the minor release number of the Oracle TimesTen In-Memory Database product. For example, for the Oracle TimesTen In-Memory Database, Release 11.2.1.0,	
The UTL_FILE	
package enables PL/SQL programs the ability to read and write operating system text files.	
In the current release, this package is restricted to access of a pre-defined temporary directory only. Refer to the Oracle TimesTen In-Memory Database Release Notes for details.	
Note: Users do not have execute permission onUTL_FILE by default. To use UTL_FILE in TimesTen, an ADMIN user or instance administrator must explicitly grant EXECUTE permission on it, such as in the following example: GRANT EXECUTE ON SYS.UTL_FILE TO scott;	
Table 8-8 describes the UTL_FILE	
subprograms.	
Table 8-8 UTL_FILE Subprograms	
Subprogram	Description
---	---
Closes a file.	
Closes all file handles.	
Copies a contiguous portion of a file to a newly created file.	
Physically writes all pending output to a file.	
Reads and returns the attributes of a disk file.	
Returns the current relative offset position (in bytes) within a file.	
Opens a file for input or output.	
Opens a file in Unicode for input or output.	
With sufficient privilege, deletes a disk file.	
Renames an existing file to a new name (similar to the UNIX	
Adjusts the file pointer forward or backward within the file by the number of bytes specified.	
Reads text from an open file.	
Reads text in Unicode from an open file.	
Reads a	
Determines if a file handle refers to an open file.	
Writes one or more operating system-specific line terminators to a file.	
Writes a string to a file.	
Writes a line to a file and appends an operating system-specific line terminator.	
Writes a Unicode line to a file.	
Writes a Unicode string to a file.	
Accepts as input a	
This is similar to the	
This is similar to the	
The UTL_IDENT	
package indicates whether PL/SQL is running on TimesTen, an Oracle client, an Oracle server, or Oracle Forms. Each of these has its own version of UTL_IDENT	
with appropriate settings for the constants.	
Table 8-9 shows the UTL_IDENT	
settings for TimesTen.	
The primary use case for the UTL_IDENT	
package is for conditional compilation, resembling the following:	
See Example 8-1 below.	
Table 8-9 UTL_IDENT Constants	
Name	Description
---	---
Example 8-1 Using UTL_IDENT and TT_DB_VERSION	
This example uses the UTL_IDENT	
and TT_DB_VERSION	
packages to show information about the database being used. For the current release, it displays either "Oracle Database 11.2" or "TimesTen 11.2.1". The conditional compilation trigger character, $	
, identifies code that is processed before the application is compiled.	
The UTL_RAW	
package provides SQL functions for manipulating RAW	
data types.	
Table 8-10 describes the UTL_RAW	
subprograms.	
Table 8-10 UTL_RAW Subprograms	
Subprogram	Description
---	---
Performs bitwise logical "and" of two	
Performs bitwise logical "complement" of a	
Performs bitwise logical "or" of two	
Performs bitwise logical "exclusive or" of two	
Returns the	
Returns the	
Returns the	
Returns the	
Casts the	
Casts the	
Casts the	
Casts the	
Converts a	
Converts a	
Converts a	
Compares two	
Concatenates up to 12	
Converts a	
Copies a	
Returns the length in bytes of a	
Overlays the specified portion of a target	
Reverses a byte-sequence in a	
Returns a substring of a	
Translates the specified bytes from an input	
Converts the specified bytes from an input	
Returns a	
The UTL_RECOMP	
package recompiles invalid PL/SQL modules. This is particularly useful after a major-version upgrade that typically invalidates all PL/SQL objects.	
Table 8-11 describes the UTL_RECOMP	
subprograms.	
Important: To use this package, you must be the instance administrator and specifySYS.UTL_RECOMP .	
Table 8-11 UTL_RECOMP Subprograms	
Name	Description
---	---
Recompiles invalid objects in a given schema, or all invalid objects in the database, in parallel. Note: Because TimesTen does not support	
Recompiles invalid objects in a given schema, or all invalid objects in the database, serially.	
The purpose of this chapter is to summarize PL/SQL language elements and features and compare their support in TimesTen to their support in Oracle. In the Oracle Database documentation, many of these features are covered in "PL/SQL Language Elements" in Oracle Database PL/SQL Language Reference.	
Table 9-1 PL/SQL Language Element and Feature Support in TimesTen	
Feature Name	Description
---	---
Recompiles a PL/SQL procedure, function, or package.	Y
Changes session parameters dynamically.	Y
Assignment statement	Sets current value of a variable, parameter, or element.
Marks a routine as autonomous.	N
Block declaration	Basic unit of a PL/SQL source program.
Can be used to select multiple rows.	Y
Executes a routine from within SQL.	Y
Evaluates an expression, compares it against several values, and takes action according to the comparison that is	Y
Closes cursor or cursor variable.	Y
Collection definition	Specifies a collection, which is an ordered group of elements, all of the same type.
Collection methods	Built-in subprograms that operate on collections and are called using "dot" notation.
Comments	Text included within your code for explanatory purposes.
Ends the current transaction and makes permanent all changes performed in the transaction.	Y
Connection attributes	Equivalent to initialization parameters in Oracle Database.
Constant and variable declarations	Specify constants and variables to be used in PL/SQL code, in the declarative part of any PL/SQL block, subprogram, or package.
Exits the current iteration of a loop and transfers control to the next iteration.	Y
Creates a PL/SQL function.	Y
See "PL/SQL procedures and functions". Also see "CREATE FUNCTION" in Oracle TimesTen In-Memory Database SQL Reference. You are not required to run	
Creates a schema object associated with an operating system shared library.	N
These statements are used together to create a PL/SQL package definition and package body.	Y
Creates a PL/SQL procedure.	Y
See "PL/SQL procedures and functions". Also see "CREATE PROCEDURE" in Oracle TimesTen In-Memory Database SQL Reference. You are not required to run	
Creates a user-defined object type or collection type.	N
Cursor attributes	Appended to the cursor or cursor variable to return useful information about the execution of a data manipulation statement.
Cursor declaration	Declares a cursor. To execute a multi-row query, TimesTen opens an unnamed work area that stores processing information. A cursor lets you name the work area, access the information, and process the rows individually.
Cursor variables (REF CURSORs)	Act as handles to cursors over SQL result sets.
Database links (dblinks)	A pointer that defines a one-way communication path from an Oracle Database server to another database server.
Deletes rows from a table.	Y
Removes a PL/SQL procedure, function, or package, as specified.	Y
Error reporting	Y
Associates a user-defined exception with a TimesTen error number.	Y
Exception definition	Specifies an exception, which is a runtime error or warning condition. Can be predefined or user-defined.
Builds and executes a dynamic SQL statement.	Y
Executing PL/SQL from client applications	Y
Executing PL/SQL from SQL	N
Exits a loop and transfers control to the end of the loop.	Y
Expression definition	Specifies an expression, which is a combination of operands (variables, constants, literals, operators, and so on) and operators. The simplest expression is a single variable.
Retrieves rows of data from the result set of a multi-row query.	Y
Bulk-binds input collections before sending them to the SQL engine.	Y
Function declaration and definition	Specifies a subprogram or stored program that can be declared and defined in a PL/SQL block or package and returns a single value.
Branches unconditionally to a statement label or block label.	Y
Executes or skips a sequence of statements depending on the value of the associated boolean expression.	Y
Initialization parameters	Initial parameter settings for an Oracle Database.
Specifies whether a subprogram call is to be inline.	Y
Inserts one or more rows of data into a table.	Y
Literal declaration	Specifies a numeric, character string, or boolean value.
Locks database tables in a specified lock mode.	N
Executes a sequence of statements multiple times. Can be used, for example, in implementing a	Y
Allows you to select rows from one or more sources for update or insertion into a target table.	Y
Native dynamic SQL execution	Processes most dynamic SQL statements through the
Use of non-ASCII character sets in names of tables, columns, procedures, functions, and other database objects.	N
Use of quoted non-uppercase names of tables, columns, procedures, functions, and other database objects.	N
A no-operation statement. Passes control to the next statement without performing any action.	Y
Object type declaration	Specifies a custom object type, which is created in SQL and stored in the database.
Executes the query associated with a cursor. Allocates database resources to process the query, and identifies the result set.	Y
Executes the	Y
Package declaration	Specifies a package, which is a database object that groups logically related PL/SQL types, items, and subprograms.
Procedure declaration and definition	Specifies a subprogram or stored program that can be declared and defined in a PL/SQL block or package and performs a specific action.
Stops normal execution of a PL/SQL block or subprogram and transfers control to an exception handler.	Y
Record definition	Defines a record, which is a composite variable that stores data values of different types (similar to a database row).
Asserts that a subprogram (usually a function) in a package specification or object type specification does not read or write database tables or package variables.	N
Result cache	This is a mechanism for caching the results of PL/SQL functions in a shared global area (SGA) that is available to every session that runs your application.
Immediately completes the execution of a subprogram and returns control to the invoker. Execution resumes with the statement following the subprogram call.	Y
Specifies the variables in which to store the values returned by the statement to which the clause belongs.	Y
Undoes database changes made during the current transaction.	Y
Provides a record type that represents a row in a database table.	Y
Names and marks the current point in the processing of a transaction.	N
Retrieves values from one row of a table (Y
Indicates that package state is required only for the duration of one call to the server.	N
Begins a read-only or read and write transaction.	N
Returns a character string containing the phonetic representation of a	N
SQL cursor	Either explicit or implicit, is used to handle the result set of a
Returns number code of the most recent exception.	Y
Returns the error message associated with the error-number argument.	Y
Supplied packages	PL/SQL packages supplied with the database.
System tables and views	Tables and views provided with the database for administrative purposes.
Triggers	Procedures that are stored in the database and activated when specific conditions occur, such as adding a row to a table.
Returns statistics about library cache performance and activity.	Y
Lets you use the data type of a field, record, nested table, database column, or variable in your own declarations, rather than hardcoding the data type. Particularly useful when declaring variables, fields, and parameters that refer to database columns.	Y
Updates the values of one or more columns in all rows of a table or in rows that satisfy a search condition.	Y
In Oracle Database, use this system view to return statistics about library cache performance and activity.	In TimesTen, use the
 Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved. |