11 Introduction to Oracle Java Message Service

This chapter describes the Oracle Java Message Service (JMS) interface to Oracle Database Advanced Queuing (AQ).

This chapter contains these topics:

General Features of JMS and Oracle JMS

This section contains these topics:

JMS Connection and Session

This section contains these topics:

ConnectionFactory Objects

A ConnectionFactory encapsulates a set of connection configuration parameters that has been defined by an administrator. A client uses it to create a connection with a JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS provider.

The three types of ConnectionFactory objects are:

  • ConnectionFactory

  • QueueConnectionFactory

  • TopicConnectionFactory

Using AQjmsFactory to Obtain ConnectionFactory Objects

You can use the AQjmsFactory class to obtain a handle to a ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory object.

To obtain a ConnectionFactory, which supports both point-to-point and publish/subscribe operations, use AQjmsFactory.getConnectionFactory(). To obtain a QueueConnectionFactory, use AQjmsFactory.getQueueConnectionFactory(). To obtain a TopicConnectionFactory, use AQjmsFactory.getTopicConnectionFactory().

The ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory can be created using hostname, port number, and SID driver or by using JDBC URL and properties.

Using JNDI to Look Up ConnectionFactory Objects

A JMS administrator can register ConnectionFactory objects in a Lightweight Directory Access Protocol (LDAP) server. The following setup is required to enable Java Naming and Directory Interface (JNDI) lookup in JMS:

  1. Register Database

    When the Oracle Database server is installed, the database must be registered with the LDAP server. This can be accomplished using the Database Configuration Assistant (DBCA). Figure 11-1 shows the structure of Oracle Database Advanced Queuing entries in the LDAP server. ConnectionFactory information is stored under <cn=OracleDBConnections>, while topics and queues are stored under <cn=OracleDBQueues>.

    Figure 11-1 Structure of Oracle Database Advanced Queuing Entries in LDAP Server

    Description of Figure 11-1 follows
    Description of "Figure 11-1 Structure of Oracle Database Advanced Queuing Entries in LDAP Server"

  2. Set Parameter GLOBAL_TOPIC_ENABLED.

    The GLOBAL_TOPIC_ENABLED system parameter for the database must be set to TRUE. This ensures that all queues and topics created in Oracle Database Advanced Queuing are automatically registered with the LDAP server. This parameter can be set by using ALTER SYSTEM SET GLOBAL_TOPIC_ENABLED = TRUE.

  3. Register ConnectionFactory Objects

    After the database has been set up to use an LDAP server, the JMS administrator can register ConnectionFactory, QueueConnectionFactory, and TopicConnectionFactory objects in LDAP by using AQjmsFactory.registerConnectionFactory().

    The registration can be accomplished in one of the following ways:

    • Connect directly to the LDAP server

      The user must have the GLOBAL_AQ_USER_ROLE to register connection factories in LDAP.

      To connect directly to LDAP, the parameters for the registerConnectionFactory method include the LDAP context, the name of the ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory, hostname, database SID, port number, JDBC driver (thin or oci8) and factory type (queue or topic).

    • Connect to LDAP through the database server

      The user can log on to Oracle Database first and then have the database update the LDAP entry. The user that logs on to the database must have the AQ_ADMINISTRATOR_ROLE to perform this operation.

      To connect to LDAP through the database server, the parameters for the registerConnectionFactory method include a JDBC connection (to a user having AQ_ADMINISTRATOR_ROLE), the name of the ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory, hostname, database SID, port number, JDBC driver (thin or oci8) and factory type (queue or topic).

JMS Connection

A JMS Connection is an active connection between a client and its JMS provider. A JMS Connection performs several critical services:

  • Encapsulates either an open connection or a pool of connections with a JMS provider

  • Typically represents an open TCP/IP socket (or a set of open sockets) between a client and a provider's service daemon

  • Provides a structure for authenticating clients at the time of its creation

  • Creates Sessions

  • Provides connection metadata

  • Supports an optional ExceptionListener

A JMS Connection to the database can be created by invoking createConnection(), createQueueConnection(), or createTopicConnection() and passing the parameters username and password on the ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory object respectively.

Some of the methods that are supported on the Connection object are

  • start()

    This method starts or restart delivery of incoming messages.

  • stop()

    This method temporarily stops delivery of incoming messages. When a Connection object is stopped, delivery to all of its message consumers is inhibited. Also, synchronous receive's block and messages are not delivered to message listener.

  • close()

    This method closes the JMS session and releases all associated resources.

  • createSession(true, 0)

    This method creates a JMS Session using a JMS Connection instance.

  • createQueueSession(true, 0)

    This method creates a QueueSession.

  • createTopicSession(true, 0)

    This method creates a TopicSession.

  • setExceptionListener(ExceptionListener)

    This method sets an exception listener for the Connection. This allows a client to be notified of a problem asynchronously. If a Connection only consumes messages, then it has no other way to learn it has failed.

  • getExceptionListener()

    This method gets the ExceptionListener for this Connection.

A JMS client typically creates a Connection, a Session and several MessageProducer and MessageConsumer objects. In the current version only one open Session for each Connection is allowed, except in the following cases:

  • If the JDBC oci8 driver is used to create the JMS connection

  • If the user provides an OracleOCIConnectionPool instance during JMS connection creation

When a Connection is created it is in stopped mode. In this state no messages can be delivered to it. It is typical to leave the Connection in stopped mode until setup is complete. At that point the Connection start() method is called and messages begin arriving at the Connection consumers. This setup convention minimizes any client confusion that can result from asynchronous message delivery while the client is still in the process of setup.

It is possible to start a Connection and to perform setup subsequently. Clients that do this must be prepared to handle asynchronous message delivery while they are still in the process of setting up. A MessageProducer can send messages while a Connection is stopped.

JMS Session

A JMS Session is a single threaded context for producing and consuming messages. Although it can allocate provider resources outside the Java Virtual Machine (JVM), it is considered a lightweight JMS object.

A Session serves several purposes:

  • Constitutes a factory for MessageProducer and MessageConsumer objects

  • Provides a way to get a handle to destination objects (queues/topics)

  • Supplies provider-optimized message factories

  • Supports a single series of transactions that combines work spanning session MessageProducer and MessageConsumer objects, organizing these into units

  • Defines a serial order for the messages it consumes and the messages it produces

  • Serializes execution of MessageListener objects registered with it

In Oracle Database 10g, you can create as many JMS Sessions as resources allow using a single JMS Connection, when using either JDBC thin or JDBC thick (OCI) drivers.

Because a provider can allocate some resources on behalf of a Session outside the JVM, clients should close them when they are not needed. Relying on garbage collection to eventually reclaim these resources may not be timely enough. The same is true for MessageProducer and MessageConsumer objects created by a Session.

Methods on the Session object include:

  • commit()

    This method commits all messages performed in the transaction and releases locks currently held.

  • rollback()

    This method rolls back any messages accomplished in the transaction and release locks currently held.

  • close()

    This method closes the Session.

  • getDBConnection()

    This method gets a handle to the underlying JDBC connection. This handle can be used to perform other SQL DML operations as part of the same Session. The method is specific to Oracle JMS.

  • acknowledge()

    This method acknowledges message receipt in a nontransactional session.

  • recover()

    This method restarts message delivery in a nontransactional session. In effect, the series of delivered messages in the session is reset to the point after the last acknowledged message.

The following are some Oracle JMS extensions:

  • createQueueTable()

    This method creates a queue table.

  • getQueueTable()

    This method gets a handle to an existing queue table.

  • createQueue()

    This method creates a queue.

  • getQueue()

    This method gets a handle to an existing queue.

  • createTopic()

    This method creates a topic.

  • getTopic()

    This method gets a handle to an existing topic.

The Session object must be cast to AQjmsSession to use any of the extensions.

Note:

The JMS specification expects providers to return null messages when receives are accomplished on a JMS Connection instance that has not been started.

After you create a javax.jms.Connection instance, you must call the start() method on it before you can receive messages. If you add a line like t_conn.start(); any time after the connection has been created, but before the actual receive, then you can receive your messages.

JMS Destination

A Destination is an object a client uses to specify the destination where it sends messages, and the source from which it receives messages. A Destination object can be a Queue or a Topic. In Oracle Database Advanced Queuing, these map to a schema.queue at a specific database. Queue maps to a single-consumer queue, and Topic maps to a multiconsumer queue.

Using a JMS Session to Obtain Destination Objects

Destination objects are created from a Session object using the following domain-specific Session methods:

  • AQjmsSession.getQueue(queue_owner, queue_name)

    This method gets a handle to a JMS queue.

  • AQjmsSession.getTopic(topic_owner, topic_name)

    This method gets a handle to a JMS topic.

Using JNDI to Look Up Destination Objects

The database can be configured to register schema objects with an LDAP server. If a database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED parameter has been set to TRUE, then all JMS queues and topics are automatically registered with the LDAP server when they are created. The administrator can also create aliases to the queues and topics registered in LDAP. Queues and topics that are registered in LDAP can be looked up through JNDI using the name or alias of the queue or topic.

JMS Destination Methods

Methods on the Destination object include:

  • alter()

    This method alters a Queue or a Topic.

  • schedulePropagation()

    This method schedules propagation from a source to a destination.

  • unschedulePropagation()

    This method unschedules a previously scheduled propagation.

  • enablePropagationSchedule()

    This method enables a propagation schedule.

  • disablePropagationSchedule()

    This method disables a propagation schedule.

  • start()

    This method starts a Queue or a Topic. The queue can be started for enqueue or dequeue. The topic can be started for publish or subscribe.

  • stop()

    This method stops a Queue or a Topic. The queue is stopped for enqueue or dequeue. The topic is stopped for publish or subscribe.

  • drop()

    This method drops a Queue or a Topic.

System-Level Access Control in JMS

Oracle8i or higher supports system-level access control for all queuing operations. This feature allows an application designer or DBA to create users as queue administrators. A queue administrator can invoke administrative and operational JMS interfaces on any queue in the database. This simplifies administrative work, because all administrative scripts for the queues in a database can be managed under one schema.

When messages arrive at the destination queues, sessions based on the source queue schema name are used for enqueuing the newly arrived messages into the destination queues. This means that you must grant enqueue privileges for the destination queues to schemas of the source queues.

To propagate to a remote destination queue, the login user (specified in the database link in the address field of the agent structure) should either be granted the ENQUEUE_ANY privilege, or be granted the rights to enqueue to the destination queue. However, you are not required to grant any explicit privileges if the login user in the database link also owns the queue tables at the destination.

Destination-Level Access Control in JMS

Oracle8i or higher supports access control for enqueue and dequeue operations at the queue or topic level. This feature allows the application designer to protect queues and topics created in one schema from applications running in other schemas. You can grant only minimal access privileges to the applications that run outside the schema of the queue or topic. The supported access privileges on a queue or topic are ENQUEUE, DEQUEUE and ALL.

Retention and Message History in JMS

Messages are often related to each other. For example, if a message is produced as a result of the consumption of another message, then the two are related. As the application designer, you may want to keep track of such relationships. Oracle Database Advanced Queuing allows users to retain messages in the queue table, which can then be queried in SQL for analysis.

Along with retention and message identifiers, Oracle Database Advanced Queuing lets you automatically create message journals, also called tracking journals or event journals. Taken together, retention, message identifiers and SQL queries make it possible to build powerful message warehouses.

Supporting Oracle Real Application Clusters in JMS

In Oracle Database 12c Release 1 (12.1), Advanced Queuing introduces high performing and scalable JMS Sharded Queues. A sharded queue is a single logical queue that is divided into multiple, independent, physical queues through system-maintained partitioning. Sharded queues are the preferred JMS queues for queues used across Oracle RAC instances, for queues with high enqueue or dequeue rates, or for queues with many subscribers. See "JMS Sharded Queues and Oracle Real Application Clusters (Oracle RAC)" for more information.

For non-sharded queues, Oracle Real Application Clusters (Oracle RAC) can be used to improve Oracle Database Advanced Queuing performance by allowing different queues to be managed by different instances. You do this by specifying different instance affinities (preferences) for the queue tables that store the queues. This allows queue operations (enqueue/dequeue) or topic operations (publish/subscribe) on different queues or topics to occur in parallel.

The Oracle Database Advanced Queuing queue monitor process continuously monitors the instance affinities of the queue tables. The queue monitor assigns ownership of a queue table to the specified primary instance if it is available, failing which it assigns it to the specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes ownership to a suitable instance such as the secondary instance.

Oracle Database Advanced Queuing propagation can make use of Oracle Real Application Clusters, although it is transparent to the user. The affinities for jobs submitted on behalf of the propagation schedules are set to the same values as that of the affinities of the respective queue tables. Thus, a job_queue_process associated with the owner instance of a queue table is handling the propagation from queues stored in that queue table, thereby minimizing pinging.

Supporting Statistics Views in JMS

Each instance keeps its own Oracle Database Advanced Queuing statistics information in its own System Global Area (SGA), and does not have knowledge of the statistics gathered by other instances. Then, when a GV$AQ view is queried by an instance, all other instances funnel their statistics information to the instance issuing the query.

The GV$AQ view can be queried at any time to see the number of messages in waiting, ready or expired state. The view also displays the average number of seconds messages have been waiting to be processed.

Structured Payload/Message Types in JMS

JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and providers to identify and route messages. All messages support the same set of header fields.

Properties are optional header fields. In addition to standard properties defined by JMS, there can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads, and a type that can store JMS messages of any or all JMS-specified message types.

This section contains these topics:

JMS Message Headers

A JMS message header contains the following fields:

  • JMSDestination

    This field contains the destination to which the message is sent. In Oracle Database Advanced Queuing this corresponds to the destination queue/topic. It is a Destination type set by JMS after the Send method has completed.

  • JMSDeliveryMode

    This field determines whether the message is logged or not. JMS supports PERSISTENT delivery (where messages are logged to stable storage) and NONPERSISTENT delivery (messages not logged). It is a INTEGER set by JMS after the Send method has completed. JMS permits an administrator to configure JMS to override the client-specified value for JMSDeliveryMode.

  • JMSMessageID

    This field uniquely identifies a message in a provider. All message IDs must begin with the string ID:. It is a String type set by JMS after the Send method has completed.

  • JMSTimeStamp

    This field contains the time the message was handed over to the provider to be sent. This maps to Oracle Database Advanced Queuing message enqueue time. It is a Long type set by JMS after the Send method has completed.

  • JMSCorrelationID

    This field can be used by a client to link one message with another. It is a String type set by the JMS client.

  • JMSReplyTo

    This field contains a Destination type supplied by a client when a message is sent. Clients can use oracle.jms.AQjmsAgent; javax.jms.Queue; or javax.jms.Topic.

  • JMSType

    This field contains a message type identifier supplied by a client at send time. It is a String type. For portability Oracle recommends that the JMSType be symbolic values.

  • JMSExpiration

    This field is the sum of the enqueue time and the TimeToLive in non-Java EE compliance mode. In compliant mode, the JMSExpiration header value in a dequeued message is the sum of JMSTimeStamp when the message was enqueued (Greenwich Mean Time, in milliseconds) and the TimeToLive (in milliseconds). It is a Long type set by JMS after the Send method has completed. JMS permits an administrator to configure JMS to override the client-specified value for JMSExpiration.

  • JMSPriority

    This field contains the priority of the message. It is a INTEGER set by JMS after the Send method has completed. In Java EE-compliance mode, the permitted values for priority are 09, with 9 the highest priority and 4 the default, in conformance with the Sun Microsystem JMS 1.1 standard. Noncompliant mode is the default. JMS permits an administrator to configure JMS to override the client-specified value for JMSPriority.

  • JMSRedelivered

    This field is a Boolean set by the JMS provider.

JMS Message Properties

JMS properties are set either explicitly by the client or automatically by the JMS provider (these are generally read-only). Some JMS properties are set using the parameters specified in Send and Receive operations.

Properties add optional header fields to a message. Properties allow a client, using a messageSelector, to have a JMS provider select messages on its behalf using application-specific criteria. Property names are strings and values can be: Boolean, byte, short, int, long, float, double, and string.

JMS-defined properties, which all begin with "JMSX", include the following:

  • JMSXUserID

    This field is the identity of the user sending the message. It is a String type set by JMS after the Send method has completed.

  • JMSXAppID

    This field is the identity of the application sending the message. It is a String type set by JMS after the Send method has completed.

  • JMSXDeliveryCount

    This field is the number of message delivery attempts. It is an Integer set by JMS after the Send method has completed.

  • JMSXGroupid

    This field is the identity of the message group that this message belongs to. It is a String type set by the JMS client.

  • JMSXGroupSeq

    This field is the sequence number of a message within a group. It is an Integer set by the JMS client.

  • JMSXRcvTimeStamp

    This field is the time the message was delivered to the consumer (dequeue time). It is a String type set by JMS after the Receive method has completed.

  • JMSXState

    This field is the message state, set by the provider. The message state can be WAITING, READY, EXPIRED, or RETAINED.

Oracle-specific JMS properties, which all begin with JMS_Oracle, include the following:

  • JMS_OracleExcpQ

    This field is the queue name to send the message to if it cannot be delivered to the original destination. It is a String type set by the JMS client. Only destinations of type EXCEPTION can be specified in the JMS_OracleExcpQ property.

  • JMS_OracleDelay

    This field is the time in seconds to delay the delivery of the message. It is an Integer set by the JMS client. This can affect the order of message delivery.

  • JMS_OracleOriginalMessageId

    This field is set to the message identifier of the message in the source if the message is propagated from one destination to another. It is a String type set by the JMS provider. If the message is not propagated, then this property has the same value as JMSMessageId.

A client can add additional header fields to a message by defining properties. These properties can then be used in a messageSelector to select specific messages.

JMS Message Bodies

JMS provides five forms of message body:

StreamMessage

A StreamMessage object is used to send a stream of Java primitives. It is filled and read sequentially. It inherits from Message and adds a StreamMessage body. Its methods are based largely on those found in java.io.DataInputStream and java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type. They can also be read or written generically as objects. To use StreamMessage objects, create the queue table with the SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_MESSAGE payload types.

StreamMessage objects support the conversions shown in Table 11-1. A value written as the row type can be read as the column type.

Table 11-1 StreamMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean

X

-

-

-

-

-

-

-

X

-

byte

-

X

X

-

X

X

-

-

X

-

short

-

-

X

-

X

X

-

-

X

-

char

-

-

-

X

-

-

-

-

X

-

int

-

-

-

-

X

X

-

-

X

-

long

-

-

-

-

-

X

-

-

X

-

float

-

-

-

-

-

-

X

X

X

-

double

-

-

-

-

-

-

-

X

X

-

string

X

X

X

X

X

X

X

X

X

-

byte[]

-

-

-

-

-

-

-

-

-

X


BytesMessage

A BytesMessage object is used to send a message containing a stream of uninterpreted bytes. It inherits Message and adds a BytesMessage body. The receiver of the message interprets the bytes. Its methods are based largely on those found in java.io.DataInputStream and java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible, one of the other self-defining message types should be used instead.

The primitive types can be written explicitly using methods for each type. They can also be written generically as objects. To use BytesMessage objects, create the queue table with SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

MapMessage

A MapMessage object is used to send a set of name-value pairs where the names are String types, and the values are Java primitive types. The entries can be accessed sequentially or randomly by name. The order of the entries is undefined. It inherits from Message and adds a MapMessage body. The primitive types can be read or written explicitly using methods for each type. They can also be read or written generically as objects.

To use MapMessage objects, create the queue table with the SYS.AQ$_JMS_MAP_MESSAGE or AQ$_JMS_MESSAGE payload types. MapMessage objects support the conversions shown in Table 11-2. An "X" in the table means that a value written as the row type can be read as the column type.

Table 11-2 MapMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean

X

-

-

-

-

-

-

-

X

-

byte

-

X

X

-

X

X

-

-

X

-

short

-

-

X

-

X

X

-

-

X

-

char

-

-

-

X

-

-

-

-

X

-

int

-

-

-

-

X

X

-

-

X

-

long

-

-

-

-

-

X

-

-

X

-

float

-

-

-

-

-

-

X

X

X

-

double

-

-

-

-

-

-

-

X

X

-

string

X

X

X

X

X

X

X

X

X

-

byte[]

-

-

-

-

-

-

-

-

-

X


TextMessage

A TextMessage object is used to send a message containing a java.lang.StringBuffer. It inherits from Message and adds a TextMessage body. The text information can be read or written using methods getText() and setText(...). To use TextMessage objects, create the queue table with the SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

ObjectMessage

An ObjectMessage object is used to send a message that contains a serializable Java object. It inherits from Message and adds a body containing a single Java reference. Only serializable Java objects can be used. If a collection of Java objects must be sent, then one of the collection classes provided in JDK 1.4 can be used. The objects can be read or written using the methods getObject() and setObject(...).To use ObjectMessage objects, create the queue table with the SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_MESSAGE payload types.

AdtMessage

An AdtMessage object is used to send a message that contains a Java object that maps to an Oracle object type. These objects inherit from Message and add a body containing a Java object that implements the CustomDatum or ORAData interface.

See Also:

Oracle Database Java Developer's Guide for information about the CustomDatum and ORAData interfaces

To use AdtMessage objects, create the queue table with payload type as the Oracle object type. The AdtMessage payload can be read and written using the getAdtPayload and setAdtPayload methods.

You can also use an AdtMessage object to send messages to queues of type SYS.XMLType. You must use the oracle.xdb.XMLType class to create the message.

For AdtMessage objects, the client can get:

  • JMSXDeliveryCount

  • JMSXRecvTimeStamp

  • JMSXState

  • JMS_OracleExcpQ

  • JMS_OracleDelay

Using Message Properties with Different Message Types

The following message properties can be set by the client using the setProperty call. For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and MapMessage objects, the client can set:

  • JMSXAppID

  • JMSXGroupID

  • JMSXGroupSeq

  • JMS_OracleExcpQ

  • JMS_OracleDelay

For AdtMessage objects, the client can set:

  • JMS_OracleExcpQ

  • JMS_OracleDelay

The following message properties can be obtained by the client using the getProperty call. For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and MapMessage objects, the client can get:

  • JMSXuserID

  • JMSXAppID

  • JMSXDeliveryCount

  • JMSXGroupID

  • JMSXGroupSeq

  • JMSXRecvTimeStamp

  • JMSXState

  • JMS_OracleExcpQ

  • JMS_OracleDelay

  • JMS_OracleOriginalMessageID

Buffered Messaging with Oracle JMS

Users can send a nonpersistent JMS message by specifying the deliveryMode to be NON_PERSISTENT when sending a message. JMS nonpersistent messages are not required to be logged to stable storage, so they can be lost after a JMS system failure. JMS nonpersistent messages are similar to the buffered messages now available in Oracle Database Advanced Queuing, but there are also important differences between the two.

Note:

Do not confuse Oracle JMS nonpersistent messages with Oracle Database Advanced Queuing nonpersistent queues, which are deprecated in Oracle Database 10g Release 2 (10.2).

Transaction Commits and Client Acknowledgments

The JMS deliveryMode is orthogonal to the transaction attribute of a message. JMS nonpersistent messages can be sent and received by either a transacted session or a nontransacted session. If a JMS nonpersistent message is sent and received by a transacted session, then the effect of the JMS operation is only visible after the transacted session commits. If it is received by a nontransacted session with CLIENT_ACKNOWLEDGE acknowledgment mode, then the effect of receiving this message is only visible after the client acknowledges the message. Without the acknowledgment, the message is not removed and will be redelivered if the client calls Session.recover.

Oracle Database Advanced Queuing buffered messages, however, do not support these transaction or acknowledgment concepts. Both sending and receiving a buffered message must be in the IMMEDIATE visibility mode. The effects of the sending and receiving operations are therefore visible to the user immediately, no matter whether the session is committed or the messages are acknowledged.

Different APIs

Messages sent with the regular JMS send and publish methods are treated by Oracle Database Advanced Queuing as persistent messages. The regular JMS receive methods receive only AQ persistent messages. To send and receive buffered messages, you must use the Oracle extension APIs bufferSend, bufferPublish, and bufferReceive.

See Also:

Oracle Database Advanced Queuing Java API Reference for more information on bufferSend, bufferPublish, and bufferReceive

Payload Limits

The Oracle Database Advanced Queuing implementation of buffered messages does not support LOB attributes. This places limits on the payloads for the five types of standard JMS messages:

  • JMS TextMessage payloads cannot exceed 4000 bytes.

    This limit might be even lower with some database character sets, because during the Oracle JMS character set conversion, Oracle JMS sometimes must make a conservative choice of using CLOB instead of VARCHAR to store the text payload in the database.

  • JMS BytesMessage payloads cannot exceed 2000 bytes.

  • JMS ObjectMessage, StreamMessage, and MapMessage data serialized by JAVA cannot exceed 2000 bytes.

  • For all other Oracle JMS ADT messages, the corresponding Oracle database ADT cannot contain LOB attributes.

Different Constants

The Oracle Database Advanced Queuing and Oracle JMS APIs use different numerical values to designate buffered and persistent messages, as shown in Table 11-3.

Table 11-3 Oracle Database AQ and Oracle JMS Buffered Messaging Constants

API Persistent Message Buffered Message

Oracle Database Advanced Queuing

PERSISTENT := 1

BUFFERED :=2

Oracle JMS

PERSISTENT := 2

NON_PERSISTENT := 1


JMS Point-to-Point Model Features

In the point-to-point model, clients exchange messages from one point to another. Message producers and consumers send and receive messages using single-consumer queues. An administrator creates the single-consumer queues with the createQueue method in AQjmsSession. Before they can be used, the queues must be enabled for enqueue/dequeue using the start call in AQjmsDestination. Clients obtain a handle to a previously created queue using the getQueue method on AQjmsSession.

In a single-consumer queue, a message can be consumed exactly once by a single consumer. If there are multiple processes or operating system threads concurrently dequeuing from the same queue, then each process dequeues the first unlocked message at the head of the queue. A locked message cannot be dequeued by a process other than the one that has created the lock.

After processing, the message is removed if the retention time of the queue is 0, or it is retained for a specified retention time. As long as the message is retained, it can be either queried using SQL on the queue table view or dequeued by specifying the message identifier of the processed message in a QueueBrowser.

QueueSender

A client uses a QueueSender to send messages to a queue. It is created by passing a queue to the createSender method in a client Session. A client also has the option of creating a QueueSender without supplying a queue. In that case a queue must be specified on every send operation.

A client can specify a default delivery mode, priority and TimeToLive for all messages sent by the QueueSender. Alternatively, the client can define these options for each message.

QueueReceiver

A client uses a QueueReceiver to receive messages from a queue. It is created using the createQueueReceiver method in a client Session. It can be created with or without a messageSelector.

QueueBrowser

A client uses a QueueBrowser to view messages on a queue without removing them. The browser method returns a java.util.Enumeration that is used to scan messages in the queue. The first call to nextElement gets a snapshot of the queue. A QueueBrowser can be created with or without a messageSelector.

A QueueBrowser can also optionally lock messages as it is scanning them. This is similar to a "SELECT... for UPDATE" command on the message. This prevents other consumers from removing the message while they are being scanned.

MessageSelector

A messageSelector allows the client to restrict messages delivered to the consumer to those that match the messageSelector expression. A messageSelector for queues containing payloads of type TextMessage, StreamMessage, BytesMessage, ObjectMessage, or MapMessage can contain any expression that has one or more of the following:

  • JMS message identifier prefixed with "ID:"

    JMSMessageID ='ID:23452345'
    
  • JMS message header fields or properties

    JMSPriority < 3 AND JMSCorrelationID = 'Fiction'
    
    JMSCorrelationID LIKE 'RE%'
    
  • User-defined message properties

    color IN ('RED', BLUE', 'GREEN') AND price < 30000 
    

The messageSelector for queues containing payloads of type AdtMessage can contain any expression that has one or more of the following:

  • Message identifier without the "ID:" prefix

    msgid = '23434556566767676'
    
  • Priority, correlation identifier, or both

    priority < 3 AND corrid = 'Fiction'
    
  • Message payload

    tab.user_data.color = 'GREEN' AND tab.user_data.price < 30000
    

JMS Publish/Subscribe Model Features

This section contains these topics:

JMS Publish/Subscribe Overview

JMS enables flexible and dynamic communication between applications functioning as publishers and applications playing the role of subscribers. The applications are not coupled together; they interact based on messages and message content.

In distributing messages, publisher applications are not required to handle or manage message recipients explicitly. This allows new subscriber applications to be added dynamically without changing any publisher application logic.

Similarly, subscriber applications receive messages based on message content without regard to which publisher applications are sending messages. This allows new publisher applications to be added dynamically without changing any subscriber application logic.

Subscriber applications specify interest by defining a rule-based subscription on message properties or the message content of a topic. The system automatically routes messages by computing recipients for published messages using the rule-based subscriptions.

In the publish/subscribe model, messages are published to and received from topics. A topic is created using the CreateTopic() method in an AQjmsSession. A client can obtain a handle to a previously-created topic using the getTopic() method in AQjmsSession.

DurableSubscriber

A client creates a DurableSubscriber with the createDurableSubscriber() method in a client Session. It can be created with or without a messageSelector.

A messageSelector allows the client to restrict messages delivered to the subscriber to those that match the selector. The syntax for the selector is described in detail in createDurableSubscriber in Oracle Database Advanced Queuing Java API Reference.

When subscribers use the same name, durable subscriber action depends on the Java EE compliance mode set for an Oracle Java Message Service (Oracle JMS) client at runtime.

In noncompliant mode, two durable TopicSubscriber objects with the same name can be active against two different topics. In compliant mode, durable subscribers with the same name are not allowed. If two subscribers use the same name and are created against the same topic, but the selector used for each subscriber is different, then the underlying Oracle Database Advanced Queuing subscription is altered using the internal DBMS_AQJMS.ALTER_SUBSCRIBER() call.

If two subscribers use the same name and are created against two different topics, and if the client that uses the same subscription name also originally created the subscription name, then the existing subscription is dropped and the new subscription is created.

If two subscribers use the same name and are created against two different topics, and if a different client (a client that did not originate the subscription name) uses an existing subscription name, then the subscription is not dropped and an error is thrown. Because it is not known if the subscription was created by JMS or PL/SQL, the subscription on the other topic should not be dropped.

RemoteSubscriber

Remote subscribers are defined using the createRemoteSubscriber call. The remote subscriber can be a specific consumer at the remote topic or all subscribers at the remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent consists of a name and address. The name refers to the consumer_name at the remote topic. The address refers to the remote topic:

schema.topic_name[@dblink]

To publish messages to a particular consumer at the remote topic, the subscription_name of the recipient at the remote topic must be specified in the name field of AQjmsAgent. The remote topic must be specified in the address field of AQjmsAgent.

To publish messages to all subscribers of the remote topic, the name field of AQjmsAgent must be set to null. The remote topic must be specified in the address field of AQjmsAgent.

TopicPublisher

Messages are published using TopicPublisher, which is created by passing a Topic to a createPublisher method. A client also has the option of creating a TopicPublisher without supplying a Topic. In this case, a Topic must be specified on every publish operation. A client can specify a default delivery mode, priority and TimeToLive for all messages sent by the TopicPublisher. It can also specify these options for each message.

Recipient Lists

In the JMS publish/subscribe model, clients can specify explicit recipient lists instead of having messages sent to all the subscribers of the topic. These recipients may or may not be existing subscribers of the topic. The recipient list overrides the subscription list on the topic for this message. Recipient lists functionality is an Oracle extension to JMS.

TopicReceiver

If the recipient name is explicitly specified in the recipient list, but that recipient is not a subscriber to the queue, then messages sent to it can be received by creating a TopicReceiver. If the subscriber name is not specified, then clients must use durable subscribers at the remote site to receive messages. TopicReceiver is an Oracle extension to JMS.

A TopicReceiver can be created with a messageSelector. This allows the client to restrict messages delivered to the recipient to those that match the selector.

TopicBrowser

A client uses a TopicBrowser to view messages on a topic without removing them. The browser method returns a java.util.Enumeration that is used to scan topic messages. Only durable subscribers are allowed to create a TopicBrowser. The first call to nextElement gets a snapshot of the topic.

A TopicBrowser can optionally lock messages as it is scanning them. This is similar to a SELECT... for UPDATE command on the message. This prevents other consumers from removing the message while it is being scanned.

A TopicBrowser can be created with a messageSelector. This allows the client to restrict messages delivered to the browser to those that match the selector.

TopicBrowser supports a purge feature. This allows a client using a TopicBrowser to discard all messages that have been seen during the current browse operation on the topic. A purge is equivalent to a destructive receive of all of the seen messages (as if performed using a TopicSubscriber).

For a purge, a message is considered seen if it has been returned to the client using a call to the nextElement() operation on the java.lang.Enumeration for the TopicBrowser. Messages that have not yet been seen by the client are not discarded during a purge. A purge operation can be performed multiple times on the same TopicBrowser.

The effect of a purge becomes stable when the JMS Session used to create the TopicBrowser is committed. If the operations on the session are rolled back, then the effects of the purge operation are also undone.

Setting Up JMS Publish/Subscribe Operations

Follow these steps to use the publish/subscribe model of communication in JMS:

  1. Set up one or more topics to hold messages. These topics represent an area or subject of interest. For example, a topic can represent billed orders.

  2. Enable enqueue/dequeue on the topic using the start call in AQjmsDestination.

  3. Create a set of durable subscribers. Each subscriber can specify a messageSelector that selects the messages that the subscriber wishes to receive. A null messageSelector indicates that the subscriber wishes to receive all messages published on the topic.

    Subscribers can be local or remote. Local subscribers are durable subscribers defined on the same topic on which the message is published. Remote subscribers are other topics, or recipients on other topics that are defined as subscribers to a particular queue. In order to use remote subscribers, you must set up propagation between the source and destination topics. Remote subscribers and propagation are Oracle extensions to JMS.

  4. Create TopicPublisher objects using the createPublisher() method in the publisher Session. Messages are published using the publish call. Messages can be published to all subscribers to the topic or to a specified subset of recipients on the topic.

  5. Subscribers receive messages on the topic by using the receive method.

  6. Subscribers can also receive messages asynchronously by using message listeners.

JMS Message Producer Features

Priority and Ordering of Messages

Message ordering dictates the order in which messages are received from a queue or topic. The ordering method is specified when the queue table for the queue or topic is created. Currently, Oracle Database Advanced Queuing supports ordering on message priority and enqueue time, producing four possible ways of ordering:

  • First-In, First-Out (FIFO)

    If enqueue time was chosen as the ordering criteria, then messages are received in the order of the enqueue time. The enqueue time is assigned to the message by Oracle Database Advanced Queuing at message publish/send time. This is also the default ordering.

  • Priority Ordering

    If priority ordering was chosen, then each message is assigned a priority. Priority can be specified as a message property at publish/send time by the MessageProducer. The messages are received in the order of the priorities assigned.

  • FIFO Priority

    If FIFO priority ordering was chosen, then the topic/queue acts like a priority queue. If two messages are assigned the same priority, then they are received in the order of their enqueue time.

  • Enqueue Time Followed by Priority

    Messages with the same enqueue time are received according to their priorities. If the ordering criteria of two message is the same, then the order they are received is indeterminate. However, Oracle Database Advanced Queuing does ensure that messages produced in one session with a particular ordering criteria are received in the order they were sent.

Specifying a Message Delay

Messages can be sent/published to a queue/topic with delay. The delay represents a time interval after which the message becomes available to the message consumer. A message specified with a delay is in a waiting state until the delay expires. Receiving by message identifier overrides the delay specification.

Delay is an Oracle Database Advanced Queuing extension to JMS message properties. It requires the Oracle Database Advanced Queuing background process queue monitor to be started.

Specifying a Message Expiration

Producers of messages can specify expiration limits, or TimeToLive for messages. This defines the period of time the message is available for a Message Consumer.

TimeToLive can be specified at send/publish time or using the set TimeToLive method of a MessageProducer, with the former overriding the latter. The Oracle Database Advanced Queuing background process queue monitor must be running to implement TimeToLive.

Message Grouping

Messages belonging to a queue/topic can be grouped to form a set that can be consumed by only one consumer at a time. This requires the queue/topic be created in a queue table that is enabled for transactional message grouping. All messages belonging to a group must be created in the same transaction, and all messages created in one transaction belong to the same group.

Message grouping is an Oracle Database Advanced Queuing extension to the JMS specification.

You can use this feature to divide a complex message into a linked series of simple messages. For example, an invoice directed to an invoices queue could be divided into a header message, followed by several messages representing details, followed by the trailer message.

Message grouping is also very useful if the message payload contains complex large objects such as images and video that can be segmented into smaller objects.

The priority, delay, and expiration properties for the messages in a group are determined solely by the message properties specified for the first message (head) of the group. Properties specified for subsequent messages in the group are ignored.

Message grouping is preserved during propagation. The destination topic must be enabled for transactional grouping.

See Also:

"Dequeue Features" for a discussion of restrictions you must keep in mind if message grouping is to be preserved while dequeuing messages from a queue enabled for transactional grouping

JMS Message Consumer Features

This section contains these topics:

Receiving Messages

A JMS application can receive messages by creating a message consumer. Messages can be received synchronously using the receive call or asynchronously using a message listener.

There are three modes of receive:

  • Block until a message arrives for a consumer

  • Block for a maximum of the specified time

  • Nonblocking

Message Navigation in Receive

If a consumer does not specify a navigation mode, then its first receive in a session retrieves the first message in the queue or topic, its second receive gets the next message, and so on. If a high priority message arrives for the consumer, then the consumer does not receive the message until it has cleared the messages that were already there before it.

To provide the consumer better control in navigating the queue for its messages, Oracle Database Advanced Queuing offers several navigation modes as JMS extensions. These modes can be set at the TopicSubscriber, QueueReceiver or the TopicReceiver.

Two modes are available for ungrouped messages:

  • FIRST_MESSAGE

    This mode resets the position to the beginning of the queue. It is useful for priority ordered queues, because it allows the consumer to remove the message on the top of the queue.

  • NEXT_MESSAGE

    This mode gets whatever message follows the established position of the consumer. For example, a NEXT_MESSAGE applied when the position is at the fourth message will get the fifth message in the queue. This is the default action.

Three modes are available for grouped messages:

  • FIRST_MESSAGE

    This mode resets the position to the beginning of the queue.

  • NEXT_MESSAGE

    This mode sets the position to the next message in the same transaction.

  • NEXT_TRANSACTION

    This mode sets the position to the first message in the next transaction.

Note:

JMS Sharded Queues does not support the three preceding modes.

The transaction grouping property can be negated if messages are received in the following ways:

  • Receive by specifying a correlation identifier in the selector

  • Receive by specifying a message identifier in the selector

  • Committing before all the messages of a transaction group have been received

If the consumer reaches the end of the queue while using the NEXT_MESSAGE or NEXT_TRANSACTION option, and you have specified a blocking receive(), then the navigating position is automatically changed to the beginning of the queue.

By default, a QueueReceiver, TopicReceiver, or TopicSubscriber uses FIRST_MESSAGE for the first receive call, and NEXT_MESSAGE for subsequent receive() calls.

Browsing Messages

Aside from the usual receive, which allows the dequeuing client to delete the message from the queue, JMS provides an interface that allows the JMS client to browse its messages in the queue. A QueueBrowser can be created using the createBrowser method from QueueSession.

If a message is browsed, then it remains available for further processing. That does not necessarily mean that the message will remain available to the JMS session after it is browsed, because a receive call from a concurrent session might remove it.

To prevent a viewed message from being removed by a concurrent JMS client, you can view the message in the locked mode. To do this, you must create a QueueBrowser with the locked mode using the Oracle Database Advanced Queuing extension to the JMS interface. The lock on the message is released when the session performs a commit or a rollback.

To remove a message viewed by a QueueBrowser, the session must create a QueueReceiver and use the JMSmesssageID as the selector.

Remove No Data

The consumer can remove a message from a queue or topic without retrieving it using the receiveNoData call. This is useful when the application has already examined the message, perhaps using a QueueBrowser. This mode allows the JMS client to avoid the overhead of retrieving a payload from the database, which can be substantial for a large message.

Retry with Delay Interval

If a transaction receiving a message from a queue/topic fails, then it is regarded as an unsuccessful attempt to remove the message. Oracle Database Advanced Queuing records the number of failed attempts to remove the message in the message history.

An application can specify the maximum number of retries supported on messages at the queue/topic level. If the number of failed attempts to remove a message exceeds this maximum, then the message is moved to an exception queue.

Oracle Database Advanced Queuing allows users to specify a retry_delay along with max_retries. This means that a message that has undergone a failed attempt at retrieving remains visible in the queue for dequeue after retry_delay interval. Until then it is in the WAITING state. The Oracle Database Advanced Queuing background process time manager enforces the retry delay property.

The maximum retries and retry delay are properties of the queue/topic. They can be set when the queue/topic is created or by using the alter method on the queue/topic. The default value for MAX_RETRIES is 5.

Note:

JMS Sharded Queues does not support retry delay.

Asynchronously Receiving Messages Using MessageListener

The JMS client can receive messages asynchronously by setting the MessageListener using the setMessageListener method.

When a message arrives for the consumer, the onMessage method of the message listener is invoked with the message. The message listener can commit or terminate the receipt of the message. The message listener does not receive messages if the JMS Connection has been stopped. The receive call must not be used to receive messages once the message listener has been set for the consumer.

The JMS client can receive messages asynchronously for all consumers in the session by setting the MessageListener at the session. No other mode for receiving messages must be used in the session once the message listener has been set.

Exception Queues

An exception queue is a repository for all expired or unserviceable messages. Applications cannot directly enqueue into exception queues. However, an application that intends to handle these expired or unserviceable messages can receive/remove them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the point-to-point interface. The exception queue for messages intended for a topic must be created in a queue table with multiple consumers enabled. Like any other queue, the exception queue must be enabled for receiving messages using the start method in the AQOracleQueue class. You get an exception if you try to enable it for enqueue.

Note:

JMS Sharded Queues does not support Exception Queues.

The exception queue is an Oracle-specific message property called "JMS_OracleExcpQ" that can be set with the message before sending/publishing it. If an exception queue is not specified, then the default exception queue is used. The default exception queue is automatically created when the queue table is created and is named AQ$_queue_table_name_E.

Messages are moved to the exception queue under the following conditions:

  • The message was not dequeued within the specified timeToLive.

    For messages intended for more than one subscriber, the message is moved to the exception queue if one or more of the intended recipients is not able to dequeue the message within the specified timeToLive.

  • The message was received successfully, but the application terminated the transaction that performed the receive because of an error while processing the message. The message is returned to the queue/topic and is available for any applications that are waiting to receive messages.

    A receive is considered rolled back or undone if the application terminates the entire transaction, or if it rolls back to a savepoint that was taken before the receive.

    Because this was a failed attempt to receive the message, its retry count is updated. If the retry count of the message exceeds the maximum value specified for the queue/topic where it resides, then it is moved to the exception queue.

    If a message has multiple subscribers, then the message is moved to the exception queue only when all the recipients of the message have exceeded the retry limit.

Note:

If a dequeue transaction failed because the server process died (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

JMS Propagation

This section contains these topics:

Note:

JMS Sharded Queues does not support RemoteSubscriber, Scheduling Propagation, Enhanced Propagation Scheduling Capabilities, and Exception Handling During Propagation.

RemoteSubscriber

Oracle Database Advanced Queuing allows a subscriber at another database to subscribe to a topic. If a message published to the topic meets the criterion of the remote subscriber, then it is automatically propagated to the queue/topic at the remote database specified for the remote subscriber. Propagation is performed using database links and Oracle Net Services. This enables applications to communicate with each other without having to be connected to the same database.

There are two ways to implement remote subscribers:

  • The createRemoteSubscriber method can be used to create a remote subscriber to/on the topic. The remote subscriber is specified as an instance of the class AQjmsAgent.

  • The AQjmsAgent has a name and an address. The address consists of a queue/topic and the database link to the database of the subscriber.

There are two kinds of remote subscribers:

  • The remote subscriber is a topic.

    This occurs when no name is specified for the remote subscriber in the AQjmsAgent object and the address is a topic. The message satisfying the subscriber's subscription is propagated to the remote topic. The propagated message is now available to all the subscriptions of the remote topic that it satisfies.

  • A specific remote recipient is specified for the message.

    The remote subscription can be for a particular consumer at the remote database. If the name of the remote recipient is specified (in the AQjmsAgent object), then the message satisfying the subscription is propagated to the remote database for that recipient only. The recipient at the remote database uses the TopicReceiver interface to retrieve its messages. The remote subscription can also be for a point-to-point queue.

Scheduling Propagation

Propagation must be scheduled using the schedule_propagation method for every topic from which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated from the source topic. This time frame can depend on several factors such as network traffic, the load at the source database, the load at the destination database, and so on. The schedule therefore must be tailored for the specific source and destination. When a schedule is created, a job is automatically submitted to the job_queue facility to handle propagation.

The administrative calls for propagation scheduling provide great flexibility for managing the schedules. The duration or propagation window parameter of a schedule specifies the time frame during which propagation must take place. If the duration is unspecified, then the time frame is an infinite single window. If a window must be repeated periodically, then a finite duration is specified along with a next_time function that defines the periodic interval between successive windows.

The propagation schedules defined for a queue can be changed or dropped at any time during the life of the queue. In addition there are calls for temporarily disabling a schedule (instead of dropping the schedule) and enabling a disabled schedule. A schedule is active when messages are being propagated in that schedule. All the administrative calls can be made irrespective of whether the schedule is active or not. If a schedule is active, then it takes a few seconds for the calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job queue processes must be started. The database links to the destination database must also be valid. The source and destination topics of the propagation must be of the same message type. The remote topic must be enabled for enqueue. The user of the database link must also have enqueue privileges to the remote topic.

Enhanced Propagation Scheduling Capabilities

Catalog views defined for propagation provide the following information about active schedules:

  • Name of the background process handling the schedule

  • SID (session and serial number) for the session handling the propagation

  • Instance handling a schedule (if using Oracle RAC)

  • Previous successful execution of a schedule

  • Next planned execution of a schedule

The following propagation statistics are maintained for each schedule, providing useful information to queue administrators for tuning:

  • The total number of messages propagated in a schedule

  • Total number of bytes propagated in a schedule

  • Maximum number of messages propagated in a window

  • Maximum number of bytes propagated in a window

  • Average number of messages propagated in a window

  • Average size of propagated messages

  • Average time to propagated a message

Propagation has built-in support for handling failures and reporting errors. For example, if the database link specified is invalid, or if the remote database is unavailable, or if the remote topic/queue is not enabled for enqueuing, then the appropriate error message is reported. Propagation uses an exponential backoff scheme for retrying propagation from a schedule that encountered a failure. If a schedule continuously encounters failures, then the first retry happens after 30 seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the retry time is beyond the expiration time of the current window, then the next retry is attempted at the start time of the next window. A maximum of 16 retry attempts are made after which the schedule is automatically disabled.

Note:

Once a retry attempt slips to the next propagation window, it will always do so; the exponential backoff scheme no longer governs retry scheduling. If the date function specified in the next_time parameter of DBMS_AQADM.SCHEDULE_PROPAGATION() results in a short interval between windows, then the number of unsuccessful retry attempts can quickly reach 16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is written into the alert log. It is possible to check at any time if there were failures encountered by a schedule and if so how many successive failures were encountered, the error message indicating the cause for the failure and the time at which the last failure was encountered. By examining this information, an administrator can fix the failure and enable the schedule.

If propagation is successful during a retry, then the number of failures is reset to 0.

Propagation has built-in support for Oracle Real Application Clusters and is transparent to the user and the administrator. The job that handles propagation is submitted to the same instance as the owner of the queue table where the source topic resides. If at any time there is a failure at an instance and the queue table that stores the topic is migrated to a different instance, then the propagation job is also automatically migrated to the new instance. This minimizes the pinging between instances and thus offers better performance. Propagation has been designed to handle any number of concurrent schedules.

The number of job_queue_processes is limited to a maximum of 1000 and some of these can be used to handle jobs unrelated to propagation. Hence, propagation has built in support for multitasking and load balancing. The propagation algorithms are designed such that multiple schedules can be handled by a single snapshot (job_queue) process. The propagation load on a job_queue processes can be skewed based on the arrival rate of messages in the different source topics. If one process is overburdened with several active schedules while another is less loaded with many passive schedules, then propagation automatically redistributes the schedules among the processes such that they are loaded uniformly.

Exception Handling During Propagation

When a system error such as a network failure occurs, Oracle Database Advanced Queuing continues to attempt to propagate messages using an exponential back-off algorithm. In some situations that indicate application errors in queue-to-dblink propagations, Oracle Database Advanced Queuing marks messages as UNDELIVERABLE and logs a message in alert.log. Examples of such errors are when the remote queue does not exist or when there is a type mismatch between the source queue and the remote queue. The trace files in the background_dump_dest directory can provide additional information about the error.

When a new job queue process starts, it clears the mismatched type errors so the types can be reverified. If you have capped the number of job queue processes and propagation remains busy, then you might not want to wait for the job queue process to terminate and restart. Queue types can be reverified at any time using DBMS_AQADM.VERIFY_QUEUE_TYPES.

Note:

When a type mismatch is detected in queue-to-queue propagation, propagation stops and throws an error. In such situations you must query the DBA_SCHEDULES view to determine the last error that occurred during propagation to a particular destination. The message is not marked as UNDELIVERABLE.

Message Transformation with JMS AQ

A transformation can be defined to map messages of one format to another. Transformations are useful when applications that use different formats to represent the same information must be integrated. Transformations can be SQL expressions and PL/SQL functions. Message transformation is an Oracle Database Advanced Queuing extension to the standard JMS interface.

The transformations can be created using the DBMS_TRANSFORM.create_transformation procedure. Transformation can be specified for the following operations:

  • Sending a message to a queue or topic

  • Receiving a message from a queue or topic

  • Creating a TopicSubscriber

  • Creating a RemoteSubscriber. This enables propagation of messages between topics of different formats.

Note:

JMS Sharded Queues does not support message transformation.

JMS Sharded Queues

JMS Sharded Queues has been introduced in Oracle Database 12c Release 1 (12.1) that provides JMS functionality with an optimized database queuing implementation. JMS Sharded Queues are the preferred JMS configuration for Oracle Advanced Queuing with:

  • JMS queues that have enqueuers or dequeuers on multiple Oracle RAC instances

  • high throughput JMS queues

  • non-sharded JMS queues that consume too many system resources

  • JMS queues with a large number of subscribers.

A sharded queue is a single logical queue that is transparently divided into multiple, independent, physical queues through system-maintained partitioning. A sharded queue increases enqueue-dequeue throughput, especially across Oracle RAC instances, because ordering between two messages on different queue shards is best effort. Each shard is ordered based on enqueue time within a session. Sharded queues automatically manage table partitions so that enqueuers and dequeuers do not contend among themselves. In addition, sharded queues use an in-memory message cache to optimize performance and reduce the disk and CPU overhead of AQ-JMS enqueues and dequeues.

This section contains the following topics:

JMS Sharded Queues and the Message Cache

Sharded queues introduce a special purpose message cache which lets you trade off SGA usage for increased throughput, reduced latency, and increased concurrency. When combined with partitioning, the message cache reduces the need for some queries, DML operations, and indexes. The message cache is most effective when all dequeuers keep up with enqueuers and when the message cache is big enough to store messages (including payloads) for each sharded queue's enqueuers and dequeuers. The message cache uses the Streams pool. If JMS sharded queues share the Streams pool on the same instance as Streams replication functionality, you can use DBMS_AQADM procedures such as SET_MIN_STREAMS_POOL and SET_MAX_STREAMS_POOL to fine tune the allocation of Streams Pool memory.

JMS Sharded Queues and Enqueuing / Dequeuing Messages

To improve throughput and reduce overhead and latency, enqueues and dequeues are optimized to use the message cache, the rules engine, and background processing when possible. For example,

  • sharded queues take advantage of new rules engine improvements

  • a message that has its payload in the message cache does not have to be re-read from disk during a dequeue

  • dequeue by correlation id or other JMS properties can often be evaluated without accessing the disk

  • partition operations on sharded queues implements efficient bulk processing.

JMS Sharded Queues and Native JMS Support

JMS Sharded Queues have native support for:

  • Non-Durable Subscribers

  • JMS payloads

  • Priorities

JMS Sharded Queues support both persistent and nonpersistent messages. Nonpersistent messages are stored in memory inside the message cache and are not stored on disk. As a result, nonpersistent messages are lost upon instance crash or shutdown.

JMS Sharded Queues natively support two kinds of subscribers to meet the JMS requirements:

  • Non-durable subscribers: These subscribers receive messages on their chosen topic, only if the messages are published while the subscriber is active. This subscription is not sharable among different sessions.

  • Durable subscribers: These subscribers receive all the messages published on a topic, including those that are published while the subscriber is inactive. Multiple database sessions can share the same subscription.

JMS Sharded Queues do not use ADTs to store the JMS payload. The JMS message is stored in scalar columns of the database. JMS message types such as TEXT, BYTES, MAP, STREAM and OBJECT store the JMS payload in scalar TEXT/RAW or CLOB/BLOB columns in the queue table depending on payload size and type. The JMS message properties are stored in a CLOB (SecureFile) column in the queue table with attribute access functions defined for the user defined properties. The payload and user properties are pickled into RAW, VARCHAR2 or Secure File columns instead of being stored as an ADT. JMS Header properties and JMS provider information are stored in their own scalar columns.

JMS Sharded Queues support integer priority values ranging between 0 (lowest priority) and 9 (highest priority), with the default being priority 4, as defined by the JMS standard.

JMS Sharded Queues and Partitioning

JMS Sharded Queues automatically manage the underlying partitioned tables used for the queue table. Such partition management may occur in the foreground or the background. Each shard provides session-level ordering of enqueued messages. Each enqueuing session is assigned a shard. Each shard is composed of a series of subshards. Each subshard maps to a single partition. JMS messages are automatically assigned to a table partition upon enqueue.

New partitions are automatically created as needed, as when the queue table needs to grow when dequeuers do not keep up with enqueuers. Partitions are truncated and reused when all messages in the partition are dequeued and no longer needed. The message cache automatically loads messages from partitions into memory as required by dequeuers. Global indexes should not be created on the partitioned table underlying a JMS Sharded Queue. Local indexes are not typically recommended on the partitioned table either. If such indexes are desired and result in performance degradation, then non-sharded queues should be considered.

JMS Sharded Queues and Oracle Real Application Clusters (Oracle RAC)

JMS Sharded Queues automatically provides enqueue session ordering while avoiding cross-instance communication when possible. Sometimes cross instance communication is required. For example, if a JMS Sharded Queue has a single enqueuing session on one Oracle RAC instance and a single dequeuing session on another instance, then JMS Sharded Queues will forward messages between the Oracle RAC instances. The forwarding of messages is non-atomic to the enqueuing transaction to improve performance. Dequeuers may get an ORA-25228 if they are connected to an instance that has no messages in its shards.

In most cases, consider having multiple dequeuers for each subscriber or single consumer queue on each Oracle RAC instance to improve throughput and reduce cross-instance overhead. An exception to this guideline is when you are using dequeue selectors that specify a single message. If you want to dequeue a message from a sharded queue by its message identifier in an Oracle RAC database, then you have to connect to the instance that is assigned dequeue ownership for the shard containing the message. Otherwise, the message will not be available for dequeue to the dequeue session. If all dequeues are performed at a single instance, then messages will be automatically forwarded to this instance. Hence, for a sharded single-consumer queue that extensively dequeues by message ID, consider having all dequeue sessions for the sharded queue connect to a single instance. Similarly, for a sharded multiconsumer queue that extensively dequeues by message ID, consider having all dequeue sessions for each subscriber connect to a single instance. Services can be used to simplify connecting dequeue sessions to a particular instance.

JMS Sharded Queue Restrictions

The following Oracle Database features are not currently supported for JMS Sharded Queues:

  • Message retention

  • Message delay

  • Transaction grouping

  • Array enqueue

  • Array dequeue

  • Message export and import

  • Posting for subscriber notification

  • Messaging Gateway

  • Exception queues

  • Non-JMS enqueues or dequeues. For example, PL/SQL and OCI enqueue and dequeue are not supported for JMS Sharded Queues

  • Oracle extensions for JMS such as JMS propagation and remote subscribers

  • Multiple queues per queue table. Sharded queues are created via the CREATE_SHARDED_QUEUE interface.

  • Ordering other than message priority followed by enqueue time as specified in the JMS standard

  • The JDBC thick (OCI) driver.

JMS Sharded Queues Tuning

JMS Sharded Queues perform best when:

  • dequeuers for each subscriber are located on each instance

  • subscribers keep up with the enqueuers. Consider having multiple dequeuers for each subscriber on each Oracle RAC instance

The message cache is most effective when dequeuers keep up with enqueuers and where the cache is big enough to store messages (including payloads) for each JMS Sharded Queue's enqueuers and dequeuers. When using JMS Sharded Queues, Oracle requires that you do one of the following:

  • set parameter STREAMS_POOL_SIZE

    This parameter controls the size of shared memory available to the Oracle Database for the JMS Sharded Queue message cache. If unspecified, up to 10% of the shared pool size may be allocated for the Streams pool.

    Oracle's Automatic Shared Memory Management feature manages the size of the Streams pool when the SGA_TARGET initialization parameter is set to a nonzero value. If the STREAMS_POOL_SIZE initialization parameter also is set to a nonzero value, then Automatic Shared Memory Management uses this value as a minimum for the Streams pool.

    If the STREAMS_POOL_SIZE initialization parameter is set to a nonzero value, and the SGA_TARGET parameter is set to 0 (zero), then the Streams pool size is the value specified by the STREAMS_POOL_SIZE parameter, in bytes.

    If both the STREAMS_POOL_SIZE and the SGA_TARGET initialization parameters are set to 0 (zero), then, by default, the first use of the Streams pool in a database transfers an amount of memory equal to 10% of the shared pool from the buffer cache to the Streams pool.

    See Also:

  • turn on SGA autotuning

    Oracle will automatically allocate the appropriate amount of memory from the SGA for the Streams pool, based on Streams pool usage as well as usage of other components that use the SGA. Examples of such other components are buffer cache and library cache. If STREAMS_POOL_SIZE is specified, it is used as the lower bound.

JMS Streaming

AQ JMS now supports streaming with enqueue and dequeue for sharded queues through AQjmsBytesMessage and AQjmsStreamMessage for applications to send and receive large message data or payload.

JMS streaming reduces the memory requirement when dealing with large messages, by dividing the message payload into small chunks rather than sending or receiving a large contiguous array of bytes. As JMS standard does not have any streaming mechanism, AQ JMS will provide proprietary interfaces to expose AQ streaming enqueue and dequeue features. This allows users to easily use an existing java input output stream to send and receive message data or payload.

In order to allow the existing applications to work without any changes on upgrading database to RDBMS 12.1.0.2, the streaming APIs will be disabled by default.

The client application can enable JMS Streaming by using the system property oracle.jms.useJmsStreaming set to true.

Note:

JMS Streaming is supported only for thin drivers.

JMS Streaming with Enqueue

AQ JMS provides the new API setInputStream(java.io.InputStream) in AQjmsBytesMessage and AQjmsStreamMessage, to set an input stream for message data.

    /**
     * @param inputStream - InputStream to read the message payload
     * @throws JMSException - if the JMS provided fails to read the payload due to
     *                        some internal error
     */
    public void setInputStream(InputStream inputStream) throws JMSException

The following code snippet creates a message of type AQjmsBytesMessage and sets a FileInputStream for the message data.

    Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);
    Destination destination = session.createQueue("queueName");
    MessageProducer producer = session.createProducer(destination);
 
     AQjmsBytesMessage bytesMessage = (AQjmsBytesMessage)session.createBytesMessage();
     InputStream input = new FileInputStream("somefile.data");
     bytesMessage.setInputStream(input);
     producer.send(bytesMessage);

Note:

  • The methods in BytesMessage and StreamMessage are based on the methods found in java.io.DataInputStream and java.io.DataOutputStream, and hence, meaningful conversion of various read*() and write*() methods is not possible with streaming. The following scenarios will result in an exception:

    • bytesMessage.setInputStream(input);

      bytesMessage.writeInt(99);

    • bytesMessage.writeInt(99);

      bytesMessage.setInputStream(input);

  • As with normal enqueue operation, the enqueue with streaming is going to be a synchronous one and we will return the control to the client only after the enqueue is complete.

  • Streaming will be used with enqueue only when these APIs are explicitly used by the client. AQ JMS will not use streaming with enqueue with the normal enqueue, irrespective of the size of the message data.

JMS Streaming with Dequeue

The dequeue operation with streaming is achieved in two steps. The server decides whether to stream the message body or not based on the size of the message body. The default threshold limit is 10 MB. So when the message body is greater than 10MB and streaming is enabled by the client using the system property oracle.jms.useJmsStreaming, server will use streaming with dequeue.

  1. This is the normal dequeue process where a client calls the receive() method.

    Destination destination = session.createQueue ("queueName");             
    AQjmsConsumer consumer = (AQjmsConsumer) session.createConsumer(destination);             
    Message message = consumer.receive(10000);
    
  2. When the client receives the message without the payload, client can figure out whether the streaming is used for dequeue by calling isLargeBody() on the received message.

      /**
       * This method can be used by the client applications to check whether the message
       * contains large messaege body and hence requires streaming with dequeue.
       * 
       * @return true when the message body is large and server decides to stream
       *         the payload with dequeue
       */
      public boolean isLargeBody() 
    

    A value of true returned by isLargeBody() indicates streaming with dequeue. When the dequeue uses streaming, AQ JMS will populate the length of the message body properly for AQjmsStreamMessage along with AQjmsBytesMessage. So the client application can call the getBodyLength() on the message to determine the size of the payload.

     public long getBodyLength()
    

Once client has the understanding about the streaming with dequeue, the message data can be fetched by using one of the following APIs on the received message.

The client application can use on the following APIs available in AQjmsBytesMessage and AQjmsStreamMessage to receive the message data.

 /**
     * Writes the message body to the OutputStream specified.
     * 
     * @param outputStream - the OutputStream to which message body can be written
     * @return the OutputStream containing the message body.
     * @throws JMSException - if the JMS provided fails to receive the message body 
     *                        due to some internal error
     */
    public OutputStream getBody(OutputStream outputStream) throws JMSException
 
    /**
     * Writes the message body to the OutputStream specified, with chunkSize bytes 
     * written at a time.
     * 
     * @param outputStream - the OutputStream to which message body can be written
     * @param chunkSize - the number of bytes to be written at a time, default value 
     *                    8192 (ie. 8KB)
     * @return the OutputStream containing the message body.
     * @throws JMSException - if the JMS provided fails to receive the message body 
     *                        due to some internal error
     */
    public OutputStream getBody(OutputStream outputStream, int chunkSize)throws JMSException
    
 
    /**
     * Writes the message body to the OutputStream specified. This method waits until 
     * the message body is written completely to the OutputStream or the timeout expires.
     * 
     * A timeout of zero never expires, and a timeout of negative value is ignored.
     * 
     * @param outputStream - the OutputStream to which message body can be written
     * @param timeout - the timeout value (in milliseconds)
     * @return the OutputStream containing the message body.
     * @throws JMSException - if the JMS provided fails to receive the message body 
     *                        due to some internal error
     */   
    public OutputStream getBody(OutputStream outputStream, long timeout) throws JMSException 
 
 
    /**
     * Writes the message body to the OutputStream specified, chunkSize bytes at a time. 
     * This method waits until the message body is written completely to the OutputStream
     * or the timeout expires.
     * 
     * A timeout of zero never expires, and a timeout of negative value is ignored.
     * 
     * @param outputStream - the OutputStream to which message body can be written
     * @param chunkSize - the number of bytes to be written at a time, 
     *                    default value 8192 (ie. 8KB)
     * @param timeout - the timeout value (in milliseconds)
     * @return the OutputStream containing the message body.
     * @throws JMSException - if the JMS provided fails to receive the message body 
     *                        due to some internal error
     */   
    public OutputStream getBody(OutputStream outputStream, int chunkSize, long timeout) throws JMSException

The following code snippet checks whether streaming is used with dequeue and the payload received will be written to a FileOutputStream.

     if (message instanceof BytesMessage && (AQjmsBytesMessage)message.isLargeBody()){
         // optional : check the size of the payload and take appropriate action before 
         // receiving the payload.
          (AQjmsBytesMessage) message.getBody(new FileOutputStream(new File("…")));
     } else {
          // normal dequeue
     }

In general, when both the steps are complete, the message is considered as consumed completely. The AQ server keeps a lock on the message after Step 1 which will be released only after Step 2.

Considering the possible issues with partially consumed messages by the message consumers, we have restricted the Streaming APIs for the session with acknowledgement modes CLIENT_ACKNOWLEDGE and SESSION_TRANSACTED.

So all the messages including partially consumed messages are considered fully consumed when:

  • message.acknowledge() is called with CLIENT_ACKNOWLEDGE session.

  • Session's commit() is called in a transacted session.

As in normal case, session rollback(), rolls back the messages received in that session.

The JMS Streaming is available with the following restrictions:

  • Streaming is disabled by default, and can be enabled by the client application using the system property oracle.jms.useJmsStreaming

  • Dequeue uses streaming when the size of the message data is more than the threshold value. The default threshold value is 10 MB.

  • Streaming support is available with AQjmsBytesMessage and AQjmsStreamMessage

  • Streaming support is available only for sharded queues

  • Streaming support is available only with thin drivers

  • Streaming support is not available when the message producer uses the message delivery mode as NON_PERSISTENT

  • Streaming is not supported with message listener. So when a MessageConsumer has a message listener set and if the message data crosses threshold limit, internally we will use the normal dequeue.

  • Streaming support is available with Sessions using acknowledgement modes CLIENT_ACKNOWLEDGE and SESSION_TRANSACTED.

Java EE Compliance

In Oracle Database 12c Release 1 (12.1), Oracle JMS conforms to the Oracle Sun Microsystems JMS 1.1 standard. You can define the Java EE compliance mode for an Oracle Java Message Service (Oracle JMS) client at runtime. For compliance, set the Java property oracle.jms.j2eeCompliant to TRUE as a command line option. For noncompliance, do nothing. FALSE is the default value.

Features in Oracle Database Advanced Queuing that support Java EE compliance (and are also available in the noncompliant mode) include:

  • Nontransactional sessions

  • Durable subscribers

  • Temporary queues and topics

  • Nonpersistent delivery mode

  • Multiple JMS messages types on a single JMS queue or topic (using Oracle Database Advanced Queuing queues of the AQ$_JMS_MESSAGE type)

  • The noLocal option for durable subscribers

  • JMS Sharded Queues have native JMS support and conform to Java EE compliance

See Also:

  • Java Message Service Specification, version 1.1, March 18, 2002, Sun Microsystems, Inc.

  • "JMS Message Headers" for information on how the Java property oracle.jms.j2eeCompliant affects JMSPriority and JMSExpiration

  • "DurableSubscriber" for information on how the Java property oracle.jms.j2eeCompliant affects durable subscribers