32/32
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
R
S
T
U
V
W
A
accuracy,
5.3.1.1
,
5.3.2
active learning,
20.1.4
active sampling,
18.1.2
ADP
See
Automatic Data Preparation
algorithms
Apriori,
3.2.2
,
8.3
,
10
association,
10.1
Decision Tree,
3.2.1
,
11
defined,
3.2
Expectation Maximization,
3.2.2
,
12
Generalized Linear Models,
3.2.1
,
13
k
-Means,
3.2.2
,
7.3
,
14
Minimum Description Length,
3.2.1
,
15
Naive Bayes,
3.2.1
,
16
Non-Negative Matrix Factorization,
3.2.2
,
17
O-Cluster,
3.2.2
,
7.3
,
18
One-Class Support Vector Machine,
3.2.2
,
20.5
Principal Component Analysis,
3.2.2
,
19.1
Singular Value Decomposition,
3.2.2
,
19
supervised,
3.2.1
,
3.2.1
Support Vector Machines,
3.2.1
unsupervised,
3.2.2
anomaly detection,
3.1.2.1
,
3.1.2.1
,
3.1.2.1
,
3.2.2
,
5.3.2
,
6
,
7.1
apply
See
scoring
Apriori,
3.2.2
,
8.3
,
10
artificial intelligence,
3.1
association rules,
3.1.2.1
,
3.1.2.1
,
3.2.2
,
8
,
10
attribute importance,
3.1.1.2
,
3.2.1
,
9
,
15.1
Minimum Description Length,
9.4
See Also
feature selection
attributes,
1.3.1
,
3.1.2.1
Automatic Data Preparation,
1.2.2
,
1.3.2
,
1.3.3
,
3.3.1
B
Bayes Theorem,
16.1
binning,
2.5
,
17.3
equi-width,
14.2
,
15.2
,
18.3
supervised,
15.2
,
16.3
C
case table,
1.3.2
categorical target,
5
centroid,
7.1.1
,
14.1.2
class weights,
5.3.2
classification,
3.1.1.2
,
3.2.1
,
5
biasing,
5.3
binary,
5.1
,
13.7
Decision Tree,
5.4
,
11
default algorithm,
5.4
Generalized Linear Models,
5.4
,
13
logistic regression,
13.7
multiclass,
5.1
Naive Bayes,
5.4
,
16
one class,
6.1.1
Support Vector Machines,
5.4
,
20.4
clustering,
3.1.2.1
,
3.1.2.1
,
3.2.2
,
7
Expectation Maximization,
12
hierarchical,
3.2.2
,
7.1.3
,
7.2
K
-Means,
14.1
O-Cluster,
18
scoring,
3.1.2.1
,
3.1.2.1
coefficients
GLM,
13.2.1
Non-Negative Matrix Factorization,
3.2.2
,
17.1
regression,
4.1.1
,
4.1.1.3
computational learning,
1.1.6
confidence
Apriori,
3.2.2
,
10.2.2
association rules,
8.1.1
,
10.5.2
clustering,
7.1.3.2
defined,
1.1.2
confidence bounds,
3.2.1
,
4.1.1.6
,
13.2.3
confusion matrix,
1.3.3
,
5.2.1
,
5.3.1.1
cost matrix,
5.3.1
,
11.2.2
costs,
1.3.3
,
5.3.1
D
data mining
defined,
1.1
Oracle,
2
,
3
process,
1.3
data preparation,
1.2.2
,
1.3.2
for Apriori,
10.3
for Expectation Maximization,
12.4
for Generalized Linear Models,
13.5
for
k
-Means,
14.3
for Minimum Description Length,
15.2
for Naive Bayes,
16.3
for O-Cluster,
18.3
for SVD,
19.3
data warehouse,
1.1.7
DBMS_DATA_MINING,
2.4.1
DBMS_DATA_MINING_TRANSFORM,
2.5
,
3.3.1
DBMS_PREDICTIVE_ANALYTICS,
2.4.4
DBMS_STAT_FUNCS,
2.5
Decision Tree,
3.2.1
,
11
deployment,
1.3.4
descriptive models,
3.1.2
directed learning,
3.1.1
E
embedded data preparation,
1.2.2
entropy,
11.2.1
,
15.1.1
,
15.1.1.3
Exadata,
2.3
Expectation Maximization,
3.2.2
F
feature creation,
Preface
feature extraction,
3.1.2.1
,
3.1.2.1
,
3.2.2
,
9
,
17
,
19
,
19
default algorithm,
9.4
Non-Negative Matrix Factorization,
9.4
Principal Component Analysis,
9.4
Singular Value Decomposition,
9.4
feature generation,
13.3
,
13.3.2
feature selection,
Preface
,
9
,
13.3
,
13.3.1
See Also
attribute importance
frequent itemsets,
10.1
,
10.4.2
G
Generalized Linear Models,
3.2.1
,
13
classification,
13.7.1
feature selection and creation,
Preface
,
13.3
regression,
13.6
GLM
See
Generalized Linear Models
graphical user interface,
2.4.3
H
hierarchies,
3.2.2
,
7.1.3
,
7.2
histogram,
14.2
I
inductive inference,
1.1.6
itemsets,
10.4
K
kernel,
2.2
k
-Means,
3.2.2
,
7.3
,
14
L
lift,
1.3.3
association rules,
10.5.3
classification,
5.2.2
linear regression,
3.2.1
,
4.1.1.1
,
13.6
logistic regression,
3.2.1
,
13.7
M
machine learning,
3.1
market basket data,
1.3.3
MDL,
3.2.1
See
Minimum Description Length
Minimum Description Length,
15
mining functions,
3.1
,
3.1.1.2
anomaly detection,
3.1.2.1
,
3.2.2
,
6
association rules,
3.1.2.1
,
3.2.2
,
8
attribute importance,
3.2.1
,
9
,
15.1
classification,
3.1.1.2
,
3.2.1
,
5
clustering,
3.1.2.1
,
3.2.2
,
7
feature extraction,
3.1.2.1
,
3.2.2
,
9
,
9.3
regression,
3.1.1.2
,
3.2.1
,
4
missing value treatment,
3.3.1
model details,
1.3.4
,
11.1.1
multicollinearity,
13.2.4
multidimensional analysis,
1.1.6
,
2.5
,
2.5
multivariate linear regression,
4.1.1.2
N
Naive Bayes,
3.2.1
,
16
nested data,
10.3.1
neural networks,
20.1.1
NMF
See
Non-Negative Matrix Factorization
nonlinear regression,
4.1.1.4
Non-Negative Matrix Factorization,
3.2.2
,
17
nontransactional data,
8.2
numerical target,
5.1
O
O-Cluster,
3.2.2
,
7.3
,
18
OLAP,
1.1.6
,
2.5
One-Class Support Vector Machine,
3.2.2
,
20.5
Oracle Business Intelligence Suite Enterprise Edition,
2.5
Oracle Data Miner,
2.4.3
Oracle Database
kernel,
2.1
statistical functions,
2.5
Oracle OLAP,
2.5
Oracle Spatial,
2.5
Oracle Text,
2.5
,
2.5
outliers,
1.2.2
,
6.1.3
,
18.3.1
overfitting,
3.1.1.1
,
11.2.3
P
parallel execution,
3.4.1
,
10.1
,
11.1.2
,
12.2.1
,
15.1
,
16.1.1
PCA
See
Principal Component Analysis
PL/SQL API,
2.4
,
2.4.1
PREDICTION Function,
2.4.2
PREDICTION_PROBABILITY function,
2.5
predictive analytics,
2.4.4
predictive models,
3.1.1
Principal Component Analysis,
3.2.2
,
19.1
See Also
Singular Value Decomposition
prior probabilities,
5.3.2
,
16.1
R
radial basis functions,
20.1.1
Receiver Operating Characteristic,
5.2.3
regression,
3.1.1.2
,
3.2.1
,
4
coefficients,
4.1.1
,
4.1.1.3
default algorithm,
4.3
defined,
4.1.1
Generalized Linear Models,
4.3
,
13
linear,
4.1.1.1
,
13.6
nonlinear,
4.1.1.4
ridge,
13.2.4
statistics,
4.2.1
Support Vector Machine,
4.3
,
20.6
ridge regression,
13.2.4
ROC
See
Receiver Operating Characteristic
rules,
1.3.4
Apriori,
10.1
association rules,
8.1.1
clustering,
7.1.3.1
Decision Tree,
11.1.1
defined,
1.1.2
S
scoring,
3.1.2.1
,
3.1.2.1
,
3.1.2.1
anomaly detection,
3.1.2.1
classification,
3.1.1.2
clustering,
3.1.2.1
defined,
1.1.1
dynamic,
3.4.2
Exadata,
2.3
knowledge deployment,
1.3.4
model details,
1.3.4
Non-Negative Matrix Factorization,
17.1.2
O-Cluster,
18.1.4
parallel execution,
3.4.1
real time,
1.3.4
regression,
3.1.1.1
supervised models,
3.1.1.2
unsupervised models,
3.1.2.1
Singular Value Decomposition,
19
See Also
Principal Component Analysis
singularity,
13.2.4
sparse data,
3.3.1
,
10.3
SQL data mining functions,
2.4
,
2.4.2
SQL statistical functions,
2.5
star schema,
10.3.1
statistical functions,
2.5
statistics,
1.1.5
stratified sampling,
5.3.2
,
6.1.1
supervised learning,
3.1.1
support
Apriori,
3.2.2
,
10.4.2
association rules,
8.1.1
,
10.5.1
clustering,
7.1.3.2
defined,
1.1.2
Support Vector Machine,
3.2.1
,
20
classification,
3.2.1
,
20.4
Gaussian kernel,
3.2.1
linear kernel,
3.2.1
one class,
3.2.2
,
20.5
regression,
3.2.1
,
20.6
SVD
See
Singular Value Decomposition
SVM
See
Support Vector Machine
T
target,
3.1.1
,
3.1.2.1
text mining,
3.3.3
,
17.1.3
transactional data,
1.3.3
,
8.2
,
10.3
transformations,
3.3.1
transparency,
3.3.1
,
7.2
,
11.1.1
,
13.2.1
U
unstructured data,
3.3.3
unsupervised learning,
3.1.2
UTL_NLA,
2.5
V
Variance Inflation Factor,
13.2.4.3
W
wide data,
9.1
,
13.2.2
Scripting on this page enhances content navigation, but does not change the content in any way.