This chapter describes Oracle extensions to standard Java Database Connectivity (JDBC) that let you access and manipulate Oracle collections, which map to Java arrays, and their data. The following topics are discussed:
Note:
Starting from Oracle Database 12c Release 1 (12.1), theoracle.sql.ARRAY
class is deprecated and replaced with the oracle.jdbc.OracleArray
interface, which is a part of the oracle.jdbc
package. Oracle recommends you to use the methods available in the java.sql
package, where possible, for standard compatibility and methods available in the oracle.jdbc
package for Oracle specific extensions. Refer to MoS Note 1364193.1 for more information about the oracle.jdbc.OracleArray
interface.An Oracle collection, either a variable array (VARRAY) or a nested table in the database, maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle collections in Java. The terms collection and array are sometimes used interchangeably. However, collection is more appropriate on the database side and array is more appropriate on the JDBC application side.
Oracle supports only named collections, where you specify a SQL type name to describe a type of collection. JDBC enables you to use arrays as any of the following:
Columns in a SELECT
clause
IN
or OUT
bind variables
Attributes in an Oracle object
Elements of other arrays
This section covers the following topics:
In your application, you have the choice of materializing a collection as an instance of the oracle.sql.ARRAY
class, which is weakly typed, or materializing it as an instance of a custom Java class that you have created in advance, which is strongly typed. Custom Java classes used for collections are referred to as custom collection classes. A custom collection class must implement the Oracle oracle.jdbc.OracleData
interface. In addition, the custom class or a companion class must implement oracle.jdbc.OracleDataFactory
. The standard java.sql.SQLData
interface is for mapping SQL object types only.
The oracle.sql.ARRAY
class implements the standard java.sql.Array
interface.
The ARRAY
class includes functionality to retrieve the array as a whole, retrieve a subset of the array elements, and retrieve the SQL base type name of the array elements. However, you cannot write to the array, because there are no setter methods.
Custom collection classes, as with the ARRAY
class, enable you to retrieve all or part of the array and get the SQL base type name. They also have the advantage of being strongly typed, which can help you find coding errors during compilation that might not otherwise be discovered until run time.
Furthermore, custom collection classes produced by JPublisher offer the feature of being writable, with individually accessible elements.
Note:
There is no difference in the code between accessing VARRAYs and accessing nested tables.ARRAY
class methods can determine if they are being applied to a VARRAY or nested table, and respond by taking the appropriate actions.See Also:
For more information about custom collection classes, see "Custom Collection Classes with JPublisher".Because Oracle supports only named collections, you must declare a particular VARRAY
type name or nested table type name. VARRAY and nested table are not types themselves, but categories of types.
A SQL type name is assigned to a collection when you create it using the SQL CREATE TYPE
statement:
CREATE TYPE <sql_type_name> AS <datatype>;
A VARRAY is an array of varying size. It has an ordered set of data elements, and all the elements are of the same data type. Each element has an index, which is a number corresponding to the position of the element in the VARRAY. The number of elements in a VARRAY is the size of the VARRAY. You must specify a maximum size when you declare the VARRAY
type. For example:
CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;
This statement defines myNumType
as a SQL type name that describes a VARRAY of NUMBER
values that can contain no more than 10 elements.
A nested table is an unordered set of data elements, all of the same data type. The database stores a nested table in a separate table which has a single column, and the type of that column is a built-in type or an object type. If the table is an object type, then it can also be viewed as a multi-column table, with a column for each attribute of the object type. You can create a nested table as follows:
CREATE TYPE myNumList AS TABLE OF integer;
This statement identifies myNumList
as a SQL type name that defines the table type used for the nested tables of the type INTEGER
.
The most common way to create a new multilevel collection type in JDBC is to pass the SQL CREATE TYPE
statement to the execute
method of the java.sql.Statement
class. The following code creates a one-level nested table, first_level
, and a two- levels nested table, second_level
:
Connection conn = .... // make a database // connection Statement stmt = conn.createStatement(); // open a database // cursor stmt.execute("CREATE TYPE first_level AS TABLE OF NUMBER"); // create a nested // table of number stmt.execute("CREATE TYPE second_level AS TABLE OF first_level"); // create a // two-levels nested table ... // other operations here stmt.close(); // release the // resource conn.close(); // close the // database connection
Once the multilevel collection types have been created, they can be used as both columns of a base table as well as attributes of a object type.
You can obtain collection data in an array instance through a result set or callable statement and pass it back as a bind variable in a prepared statement or callable statement.
The oracle.sql.ARRAY
class, which implements the standard java.sql.Array
interface, provides the necessary functionality to access and update the data of an Oracle collection.
This section covers Array Getter and Setter Methods. Use the following result set, callable statement, and prepared statement methods to retrieve and pass collections as Java arrays.
Note:
Starting from Oracle Database 12c Release 1 (12.1), theoracle.sql.ARRAY
class is deprecated and replaced with the oracle.jdbc.OracleArray
interface, which is a part of the oracle.jdbc
package. Oracle recommends you to use the methods available in the java.sql
package, where possible, for standard compatibility and methods available in the oracle.jdbc
package for Oracle specific extensions. Refer to MoS Note 1364193.1 for more information about the oracle.jdbc.OracleArray
interface.Result Set and Callable Statement Getter Methods
The OracleResultSet
and OracleCallableStatement
interfaces support getARRAY
and getArray
methods to retrieve ARRAY
objects as output parameters, either as oracle.sql.ARRAY
instances or java.sql.Array
instances. You can also use the getObject
method. These methods take as input a String
column name or int
column index.
Prepared and Callable Statement Setter Methods
The OraclePreparedStatement
and OracleCallableStatement
classes support setARRAY
and setArray
methods to take updated ARRAY
objects as bind variables and pass them to the database. You can also use the setObject
method. These methods take as input a String
parameter name or int
parameter index as well as an oracle.sql.ARRAY
instance or a java.sql.Array
instance.
This section discusses the following topics:
The oracle.sql.ARRAY
class contains methods that return array elements as Java primitive types. These methods enable you to access collection elements more efficiently than accessing them as Datum
instances and then converting each Datum
instance to its Java primitive value.
Note:
These specialized methods of theoracle.sql.ARRAY
class are restricted to numeric collections.Each method using the first signature returns collection elements as an XXX
[]
, where XXX
is a Java primitive type. Each method using the second signature returns a slice of the collection containing the number of elements specified by count
, starting at the index
location.
Oracle JDBC driver provides public methods to enable and disable buffering of ARRAY
contents.
The following methods are included with the oracle.sql.ARRAY
class:
It is advisable to enable auto-buffering in a JDBC application when the ARRAY
elements will be accessed more than once by the getAttributes
and getArray
methods, presuming the ARRAY
data is able to fit into the Java Virtual Machine (JVM) memory without overflow.
Important:
Buffering the converted elements may cause the JDBC application to consume a significant amount of memory.When you enable auto-buffering, the oracle.sql.ARRAY
object keeps a local copy of all the converted elements. This data is retained so that a second access of this information does not require going through the data format conversion process.
If an array is in auto-indexing mode, then the array object maintains an index table to hasten array element access.
The oracle.sql.ARRAY
class contains the following methods to support automatic array-indexing:
By default, auto-indexing is not enabled. For a JDBC application, enable auto-indexing for ARRAY
objects if random access of array elements may occur through the getArray
and getResultSet
methods.
This section discusses how to create array objects and how to retrieve and pass collections as array objects, including the following topics.
Note:
Oracle JDBC does not support the JDBC 4.0 methodcreateArrayOf
method of java.sql.Connection
interface. This method only allows anonymous array types, while all Oracle array types are named. Use the Oracle specific method oracle.jdbc.OracleConnection.createARRAY
instead.This section describes how to create ARRAY
objects. This section covers the following topics:
Steps in Creating ARRAY Objects
Starting from Oracle Database 11g Release 1, you can use the createARRAY
factory method of oracle.jdbc.OracleConnection
interface to create an array object. The factory method for creating arrays has been defined as follows:
public ARRAY createARRAY(java.lang.String typeName,java.lang.Object elements)throws SQLException
where, typeName
is the name of the SQL type of the created object and elements
is the elements of the created object.
Perform the following to create an array:
Create a collection with the CREATE
TYPE
statement as follows:
CREATE TYPE elements AS varray(22) OF NUMBER(5,2);
The two possibilities for the contents of elements
are:
An array of Java primitives. For example, int[]
.
An array of Java objects, such as xxx
[]
, where xxx
is the name of a Java class. For example, Integer[]
.
Construct the ARRAY
object by passing the Java string specifying the user-defined SQL type name of the array and a Java object containing the individual elements you want the array to contain.
ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);
Creating Multilevel Collections
As with single-level collections, the JDBC application can create an oracle.sql.ARRAY
instance to represent a multilevel collection, and then send the instance to the database. The same createARRAY
factory method you use to create single-level collections, can be used to create multilevel collections as well. To create a single-level collection, the elements are a one dimensional Java array, while to create a multilevel collection, the elements can be either an array of oracle.sql.ARRAY[]
elements or a nested Java array or the combinations.
The following code shows how to create collection types with a nested Java array:
// prepare the multilevel collection elements as a nested Java array int[][][] elements = { {{1}, {1, 2}}, {{2}, {2, 3}}, {{3}, {3, 4}} }; // create the ARRAY using the factory method ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);
This section first discusses how to retrieve an ARRAY
instance as a whole from a result set, and then how to retrieve the elements from the ARRAY
instance. This section covers the following topics:
You can retrieve a SQL array from a result set by casting the result set to OracleResultSet
and using the getARRAY
method, which returns an oracle.sql.ARRAY
object. If you want to avoid casting the result set, then you can get the data with the standard getObject
method specified by the java.sql.ResultSet
interface and cast the output to oracle.sql.ARRAY
.
Once you have an ARRAY
object, you can retrieve the data using one of these three overloaded methods of the oracle.sql.ARRAY
class:
Oracle also provides methods that enable you to retrieve all the elements of an array, or a subset.
Note:
In case you are working with an array of structured objects, Oracle provides versions of these three methods that enable you to specify a type map so that you can choose how to map the objects to Java.The getOracleArray
method is an Oracle-specific extension that is not specified in the standard Array
interface. The getOracleArray
method retrieves the element values of the array into a Datum[]
array. The elements are of the oracle.sql.*
data type corresponding to the SQL type of the data in the original array.
For an array of structured objects, this method will use oracle.jdbc.OracleStruct
instances for the elements.
Oracle also provides a getOracleArray(
index
,
count
)
method
to get a subset of the array elements.
The getResultSet
method returns a result set that contains elements of the array designated by the ARRAY
object. The result set contains one row for each array element, with two columns in each row. The first column stores the index into the array for that element, and the second column stores the element value. In the case of VARRAYs, the index represents the position of the element in the array. In the case of nested tables, which are by definition unordered, the index reflects only the return order of the elements in the particular query.
Oracle recommends using getResultSet
when getting data from nested tables. Nested tables can have an unlimited number of elements. The ResultSet
object returned by the method initially points at the first row of data. You get the contents of the nested table by using the next
method and the appropriate get
XXX
method. In contrast, getArray
returns the entire contents of the nested table at one time.
The getResultSet
method uses the default type map of the connection to determine the mapping between the SQL type of the Oracle object and its corresponding Java data type. If you do not want to use the default type map of the connection, another version of the method, getResultSet(
map
)
, enables you to specify an alternate type map.
Oracle also provides the getResultSet(
index
,
count
)
and getResultSet(
index
,
count
,
map
)
methods to retrieve a subset of the array elements.
The getArray
method is a standard JDBC method that returns the array elements as a java.lang.Object
, which you can cast as appropriate. The elements are converted to the Java types corresponding to the SQL type of the data in the original array.
Oracle also provides a getArray(
index
,
count
)
method to retrieve a subset of the array elements.
If you use getOracleArray
to return the array elements, then the use by that method of oracle.sql.Datum
instances avoids the expense of data conversion from SQL to Java. The non-character data inside the instance of a Datum
class or any of its subclass remains in raw SQL format.
If you use getResultSet
to return an array of primitive data types, then the JDBC driver returns a ResultSet
object that contains, for each element, the index into the array for the element and the element value. For example:
ResultSet rset = intArray.getResultSet();
In this case, the result set contains one row for each array element, with two columns in each row. The first column stores the index into the array and the second column stores the element value.
If the elements of an array are of a SQL type that maps to a Java type, then getArray
returns an array of elements of this Java type. The return type of the getArray
method is java.lang.Object
. Therefore, the result must be cast before it can be used.
BigDecimal[] values = (BigDecimal[]) intArray.getArray();
Here intArray
is an oracle.sql.ARRAY
, corresponding to a VARRAY of type NUMBER
. The values
array contains an array of elements of type java.math.BigDecimal
, because the SQL NUMBER
data type maps to Java BigDecimal
, by default, according to Oracle JDBC drivers.
Note:
UsingBigDecimal
is a resource-intensive operation in Java. Because Oracle JDBC maps numeric SQL data to BigDecimal
by default, using getArray
may impact performance, and is not recommended for numeric collections.By default, if you are working with an array whose elements are structured objects, and you use getArray
or getResultSet
, then the Oracle objects in the array will be mapped to their corresponding Java data types according to the default mapping. This is because these methods use the default type map of the connection to determine the mapping.
However, if you do not want default behavior, then you can use the getArray(
map
)
or getResultSet(
map
)
method to specify a type map that contains alternate mappings. If there are entries in the type map corresponding to the Oracle objects in the array, then each object in the array is mapped to the corresponding Java type specified in the type map. For example:
Object[] object = (Object[])objArray.getArray(map);
Where objArray
is an oracle.sql.ARRAY
object and map
is a java.util.Map
object.
If the type map does not contain an entry for a particular Oracle object, then the element is returned as an oracle.jdbc.OracleStruct
object.
The getResultSet(
map
)
method behaves similarly to the getArray(
map
)
method.
See Also:
"Using a Type Map to Map Array Elements"If you do not want to retrieve the entire contents of an array, then you can use signatures of getArray
, getResultSet
, and getOracleArray
that let you retrieve a subset. To retrieve a subset of the array, pass in an index and a count to indicate where in the array you want to start and how many elements you want to retrieve. As previously described, you can specify a type map or use the default type map for your connection to convert to Java types. For example:
Object object = arr.getArray(index, count, map); Object object = arr.getArray(index, count);
Similar examples using getResultSet
are:
ResultSet rset = arr.getResultSet(index, count, map); ResultSet rset = arr.getResultSet(index, count);
A similar example using getOracleArray
is:
Datum[] arr = arr.getOracleArray(index, count);
Where arr
is an oracle.sql.ARRAY
object, index
is type long
, count
is type int
, and map
is a java.util.Map
object.
Note:
There is no performance advantage in retrieving a subset of an array, as opposed to the entire array.Use getOracleArray
to return an oracle.sql.Datum[]
array. The elements of the returned array is of oracle.sql.*
type that correspond to the SQL data type of the elements of the original array. For example:
Datum arraydata[] = arr.getOracleArray();
arr
is an oracle.sql.ARRAY
object.
The following example assumes that a connection object conn
and a statement object stmt
have already been created. In the example, an array with the SQL type name NUM_ARRAY
is created to store a VARRAY of NUMBER
data. The NUM_ARRAY
is in turn stored in a table VARRAY_TABLE
.
A query selects the contents of the VARRAY_TABLE
. The result set is cast to OracleResultSet
. The getARRAY
method is applied to it to retrieve the array data into my_array
, which is an oracle.sql.ARRAY
object.
Because my_array
is of type oracle.sql.ARRAY
, you can apply the methods getSQLTypeName
and getBaseType
to it to return the name of the SQL type of each element in the array and its integer code.
The program then prints the contents of the array. Because the contents of NUM_ARRAY
are of the SQL data type NUMBER
, the elements of my_array
are of the type, BigDecimal
. Before you can use the elements, they must first be cast to BigDecimal
. In the for
loop, the individual values of the array are cast to BigDecimal
and printed to standard output.
stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)"); stmt.execute ("CREATE TABLE varray_table (col1 num_varray)"); stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))"); ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table"); ARRAY my_array = ((OracleResultSet)rs).getARRAY(1); // return the SQL type names, integer codes, // and lengths of the columns System.out.println ("Array is of type " + array.getSQLTypeName()); System.out.println ("Array element is of type code " + array.getBaseType()); System.out.println ("Array is of length " + array.length()); // get Array elements BigDecimal[] values = (BigDecimal[]) my_array.getArray(); for (int i=0; i<values.length; i++) { BigDecimal out_value = (BigDecimal) values[i]; System.out.println(">> index " + i + " = " + out_value.intValue()); }
Note that if you use getResultSet
to obtain the array, then you must would first get the result set object, and then use the next
method to iterate through it. Notice the use of the parameter indexes in the getInt
method to retrieve the element index and the element value.
ResultSet rset = my_array.getResultSet(); while (rset.next()) { // The first column contains the element index and the // second column contains the element value System.out.println(">> index " + rset.getInt(1)+" = " + rset.getInt(2)); }
The oracle.sql.ARRAY
class provides three methods, which are overloaded, to access collection elements. The JDBC drivers extend these methods to support multilevel collections. These methods are:
getArray
method
getOracleArray
method
getResultSet
method
The getArray
method returns a Java array that holds the collection elements. The array element type is determined by the collection element type and the JDBC default conversion matrix.
For example, the getArray
method returns a java.math.BigDecimal
array for collection of SQL NUMBER
. The getOracleArray
method returns a Datum
array that holds the collection elements in Datum
format. For multilevel collections, the getArray
and getOracleArray
methods both return a Java array of oracle.sql.ARRAY
elements.
The getResultSet
method returns a ResultSet
object that wraps the multilevel collection elements. For multilevel collections, the JDBC applications use the getObject
, getARRAY
, or getArray
method of the ResultSet
class to access the collection elements as instances of oracle.sql.ARRAY
.
The following code shows how to use the getOracleArray
, getArray
, and getResultSet
methods:
Connection conn = ...; // make a JDBC connection Statement stmt = conn.createStatement (); ResultSet rset = stmt.executeQuery ("select col2 from tab2 where idx=1"); while (rset.next()) { ARRAY varray3 = (ARRAY) rset.getObject (1); Object varrayElems = varray3.getArray (1); // access array elements of "varray3" Datum[] varray3Elems = (Datum[]) varrayElems; for (int i=0; i<varray3Elems.length; i++) { ARRAY varray2 = (ARRAY) varray3Elems[i]; Datum[] varray2Elems = varray2.getOracleArray(); // access array elements of "varray2" for (int j=0; j<varray2Elems.length; j++) { ARRAY varray1 = (ARRAY) varray2Elems[j]; ResultSet varray1Elems = varray1.getResultSet(); // access array elements of "varray1" while (varray1Elems.next()) System.out.println ("idx="+varray1Elems.getInt(1)+" value="+varray1Elems.getInt(2)); } } } rset.close (); stmt.close (); conn.close ();
This section discusses how to pass arrays to prepared statement objects or callable statement objects.
Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows.
Note:
you can use arrays as eitherIN
or OUT
bind variables.Define the array that you want to pass to the prepared statement as an oracle.sql.ARRAY
object.
ARRAY array = oracle.jdbc.OracleConnection.createARRAY(sql_type_name, elements);
sql_type_name
is a Java string specifying the user-defined SQL type name of the array and elements
is a java.lang.Object
containing a Java array of the elements.
Create a java.sql.PreparedStatement
object containing the SQL statement to be run.
Cast your prepared statement to OraclePreparedStatement
, and use setARRAY
to pass the array to the prepared statement.
(OraclePreparedStatement)stmt.setARRAY(parameterIndex, array);
parameterIndex
is the parameter index and array
is the oracle.sql.ARRAY
object you constructed previously.
Run the prepared statement.
Passing an Array to a Callable Statement
To retrieve a collection as an OUT
parameter in PL/SQL blocks, perform the following to register the bind type for your OUT
parameter.
Cast your callable statement to OracleCallableStatement
, as follows:
OracleCallableStatement ocs = (OracleCallableStatement)conn.prepareCall("{? = call func()}");
Register the OUT
parameter with the following form of the registerOutParameter
method:
ocs.registerOutParameter (int param_index, int sql_type, string sql_type_name);
param_index
is the parameter index, sql_type
is the SQL type code, and sql_type_name
is the name of the array type. In this case, the sql_type
is OracleTypes.ARRAY
.
Run the call, as follows:
ocs.execute();
Get the value, as follows:
oracle.sql.ARRAY array = ocs.getARRAY(1);
If your array contains Oracle objects, then you can use a type map to associate the objects in the array with the corresponding Java class. If you do not specify a type map, or if the type map does not contain an entry for a particular Oracle object, then each element is returned as an oracle.jdbc.OracleStruct
object.
If you want the type map to determine the mapping between the Oracle objects in the array and their associated Java classes, then you must add an appropriate entry to the map.
The following example illustrates how you can use a type map to map the elements of an array to a custom Java object class. In this case, the array is a nested table. The example begins by defining an EMPLOYEE
object that has a name attribute and employee number attribute. EMPLOYEE_LIST
is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE
is created to store the names of departments within a corporation and the employees associated with each department. In the EMPLOYEE_TABLE
, the employees are stored in the form of EMPLOYEE_LIST
tables.
stmt.execute("CREATE TYPE EMPLOYEE AS OBJECT (EmpName VARCHAR2(50),EmpNo INTEGER))"); stmt.execute("CREATE TYPE EMPLOYEE_LIST AS TABLE OF EMPLOYEE"); stmt.execute("CREATE TABLE EMPLOYEE_TABLE (DeptName VARCHAR2(20), Employees EMPLOYEE_LIST) NESTED TABLE Employees STORE AS ntable1"); stmt.execute("INSERT INTO EMPLOYEE_TABLE VALUES ("SALES", EMPLOYEE_LIST (EMPLOYEE('Susan Smith', 123), EMPLOYEE('Lee Brown', 124)))");
If you want to retrieve all the employees belonging to the SALES
department into an array of instances of the custom object class EmployeeObj
, then you must add an entry to the type map to specify mapping between the EMPLOYEE
SQL type and the EmployeeObj
custom object class.
To do this, first create your statement and result set objects, then select the EMPLOYEE_LIST
associated with the SALES
department into the result set. Cast the result set to OracleResultSet
so you can use the getARRAY
method to retrieve the EMPLOYEE_LIST
into an ARRAY
object (employeeArray
in the following example).
The EmployeeObj
custom object class in this example implements the SQLData
interface.
Statement s = conn.createStatement(); OracleResultSet rs = (OracleResultSet)s.executeQuery ("SELECT Employees FROM employee_table WHERE DeptName = 'SALES'"); // get the array object ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(1);
Now that you have the EMPLOYEE_LIST
object, get the existing type map and add an entry that maps the EMPLOYEE
SQL type to the EmployeeObj
Java type.
// add type map entry to map SQL type // "EMPLOYEE" to Java type "EmployeeObj" Map map = conn.getTypeMap(); map.put("EMPLOYEE", Class.forName("EmployeeObj"));
Next, retrieve the SQL EMPLOYEE
objects from the EMPLOYEE_LIST
. To do this, call the getArray
method of the employeeArray
array object. This method returns an array of objects. The getArray
method returns the EMPLOYEE
objects into the employees
object array.
// Retrieve array elements Object[] employees = (Object[]) employeeArray.getArray();
Finally, create a loop to assign each of the EMPLOYEE
SQL objects to the EmployeeObj
Java object emp
.
// Each array element is mapped to EmployeeObj object. for (int i=0; i<employees.length; i++) { EmployeeObj emp = (EmployeeObj) employees[i]; ... }
This chapter primarily describes the functionality of the oracle.sql.ARRAY
class, but it is also possible to access Oracle collections through custom Java classes or, more specifically, custom collection classes.
You can create custom collection classes yourself, but the most convenient way is to use the Oracle JPublisher utility. Custom collection classes generated by JPublisher offer all the functionality described earlier in this chapter, as well as the following advantages:
They are strongly typed. This can help you find coding errors during compilation that might not otherwise be discovered until run time.
They can be changeable, or mutable. Custom collection classes produced by JPublisher, unlike the ARRAY
class, allow you to get and set individual elements using the getElement
and setElement
methods.
A custom collection class must satisfy three requirements:
It must implement the oracle.jdbc.OracleData
interface. Note that the standard JDBC SQLData
interface, which is an alternative for custom object classes, is not intended for custom collection classes.
It, or a companion class, must implement the oracle.jdbc.OracleDataFactory
interface, for creating instances of the custom collection class.
It must have a means of storing the collection data. Typically it will directly or indirectly include an oracle.sql.ARRAY
attribute for this purpose.
A JPublisher-generated custom collection class implements OracleData
and OracleDataFactory
and indirectly includes an oracle.sql.ARRAY
attribute. The custom collection class will have an oracle.jpub.runtime.MutableArray
attribute. The MutableArray
class has an oracle.sql.ARRAY
attribute.
Note:
When you use JPublisher to create a custom collection class, you must use theOracleData
implementation. This will be true if the JPublisher -usertypes
mapping option is set to oracle
, which is the default.
You cannot use a SQLData
implementation for a custom collection class. Setting the -usertypes
mapping option to jdbc
is invalid.
As an example of custom collection classes being strongly typed, if you define an Oracle collection MYVARRAY
, then JPublisher can generate a MyVarray
custom collection class. Using MyVarray
instances, instead of generic oracle.sql.ARRAY
instances, makes it easier to catch errors during compilation instead of at run time. For example, if you accidentally assign some other kind of array into a MyVarray
variable.
If you do not use custom collection classes, then you would use standard java.sql.Array
instances, or oracle.sql.ARRAY
instances, to map to your collections.