
[image: Oracle Corporation]

Oracle?? Universal Connection Pool for JDBC

Developer's Guide

12c Release 1 (12.1)

E49541-01

June 2014

This guide provides instructions for using Oracle Universal Connection Pooling API. The API is JDBC driver agnostic.

Oracle Universal Connection Pool for JDBC Developer's Guide, 12c Release 1 (12.1)

E49541-01

Copyright ?? 1999, 2014,??Oracle and/or its affiliates. All rights reserved.

Primary Author: ??Tulika Das

Contributing Author: ??Joseph Ruzzi

Contributor: ??The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an inspiration to all who worked on this release.

Contributor: ??Rajkumar Irudayaraj, Tong Zhou, Yuri Dolgov, Paul Lo, Kuassi Mensah, Frances Zhao

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

Changes in This Release for Oracle Universal Connection Pool for JDBC Developer's Guide

	Changes in Oracle Database 12c Release 1 (12.1)

1 Introduction to UCP

	Overview of Connection Pool
	Benefits of Using a Connection Pool

	Overview of Universal Connection Pool for JDBC
	Conceptual Architecture
	Connection Pool Properties
	Connection Pool Manager
	High Availability and Performance Scenarios

2 Getting Started

	Requirements for using UCP
	Basic Connection Steps in UCP
	Basic Connection Example Using UCP
	UCP for JDBC API Overview

3 Getting Database Connections in UCP

	Borrowing Connections from UCP
	Using the Pool-Enabled Data Source
	Using the Pool-Enabled XA Data Source
	Setting Connection Properties
	Using JNDI to Borrow a Connection
	Connection Initialization Callback
	Creating an Initialization Callback
	Registering an Initialization Callback
	Removing or Unregistering an Initialization Callback

	Setting Connection Pool Properties for UCP
	Validating Connections in UCP
	Validate When Borrowing
	Checking If a Connection Is Valid

	Returning Borrowed Connections to UCP
	Removing Connections from UCP
	Third-Party Integration

4 Optimizing Universal Connection Pool Behavior

	Overview of Optimizing Connection Pools
	Controlling the Pool Size in UCP
	Setting the Initial Pool Size
	Setting the Minimum Pool Size
	Setting the Maximum Pool Size

	Controlling Stale Connections in UCP
	Setting Connection Reuse
	Setting the Maximum Connection Reuse Time
	Setting the Maximum Connection Reuse Count

	Setting the Abandon Connection Timeout
	Setting the Time-To-Live Connection Timeout
	Setting the Connection Wait Timeout
	Setting the Inactive Connection Timeout
	Setting the Timeout Check Interval

	Harvesting Connections in UCP
	Setting Whether a Connection is Harvestable
	Setting the Harvest Trigger Count
	Setting the Harvest Maximum Count

	Caching SQL Statements in UCP
	Enabling Statement Caching

5 Labeling Connections in UCP

	Overview of Labeling Connections in UCP
	Implementing a Labeling Callback in UCP
	Creating a Labeling Callback
	Example of Labeling Callback

	Registering a Labeling Callback
	Removing a Labeling Callback

	Using UCP with DRCP
	Applying Connection Labels in UCP
	Borrowing Labeled Connections from UCP
	Checking Unmatched Labels in UCP
	Removing a Connection Label from UCP

6 Controlling Reclaimable Connection Behavior

	AbandonedConnectionTimeoutCallback
	TimeToLiveConnectionTimeoutCallback

7 Using the Connection Pool Manager

	Using the UCP Manager
	Connection Pool Manager Overview
	Creating a Connection Pool Manager
	Controlling the Life Cycle of a Connection
	Creating a Connection Pool
	Starting a Connection Pool
	Stopping a Connection Pool
	Destroying a Connection Pool

	Performing Maintenance on a Connection Pool
	Refreshing a Connection Pool
	Recycling a Connection Pool
	Purging a Connection Pool

	Accessing JMX-based Management
	UniversalConnectionPoolManagerMBean
	UniversalConnectionPoolMBean

8 Using Oracle RAC Features

	Overview of Oracle RAC Features
	Using Fast Connection Failover
	Overview of Fast Connection Failover
	Understanding Fast Connection Failover
	What the Application Sees
	How It Works

	Fast Connection Failover Prerequisites
	Example Fast Connection Failover Configuration
	Enabling Fast Connection Failover
	Configuring ONS
	Overview of ONS Configuration File
	Remote Configuration
	Client-Side Daemon Configuration

	Configuring the Connection URL

	Using Run-Time Connection Load Balancing
	Overview of Run-Time Connection Load Balancing
	Setting Up Run-Time Connection Load Balancing

	Using Connection Affinity
	Overview of Connection Affinity
	Setting Up Connection Affinity
	Creating a Connection Affinity Callback
	Registering a Connection Affinity Callback
	Removing a Connection Affinity Callback
	Strict Affinity Mode

	Using Global Data Services
	Overview of Global Data Services
	Configuration Settings of Applications Using GDS

9 Ensuring Application Continuity

	Data Source Configuration
	Connection Labeling
	Connection Initialization Callback

10 Diagnosing a Connection Pool

	Pool Statistics
	Dynamic Monitoring Service Metrics
	Viewing Oracle RAC Statistics
	Fast Connection Failover Statistics
	Run-Time Connection Load Balance Statistics
	Connection Affinity Statistics

	Setting Up Logging in UCP
	Using a Logging Properties File
	Using UCP for JDBC and JDK API
	Supported Log Levels

	Exceptions and Error Codes

A Error Codes Reference

	General Structure of UCP Error Messages
	Connection Pool Layer Error Messages
	JDBC Data Sources and Dynamic Proxies Error Messages

Index

Preface

The Oracle Universal Connection Pool (UCP) for JDBC is a full-featured connection pool for managing database connections. Java applications that are database-intensive, use the connection pool to improve performance and better utilize system resources.

The instructions in this guide detail how to use the UCP for JDBC API and cover a wide range of use cases. The guide does not provide detailed information about using Oracle JDBC Drivers, Oracle Database, or SQL except as required to understand UCP for JDBC.

Audience

This guide is primarily written for Application Developers and System Architects who want to learn how to use UCP for JDBC to create and manage database connections for their Java applications. Users must be familiar with Java and JDBC to use this guide. Knowledge of Oracle Database concepts (such as Oracle RAC and ONS) is required when using some UCP for JDBC features.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information about using Java with the Oracle Database, see the following documents in the Oracle Database documentation set:

	
Oracle Database JDBC Developer's Guide

	
Oracle Database 2 Day + Java Developer's Guide

	
Oracle Database Java Developer's Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Changes in This Release for Oracle Universal Connection Pool for JDBC Developer's Guide

This preface contains:

	
Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle Universal Connection Pool for JDBC Developer's Guide for Oracle Database 12c Release 1 (12.1).

New Features

The following features are new in this release:

	
Support for Application Continuity

See Chapter 9, "Ensuring Application Continuity"

	
Support for Global Data Services

See "Using Global Data Services"

	
Support for Database Resident Connection Pool

Database Resident Connection Pool (DRCP) is a connection pool in the server that is shared across many clients. You should use DRCP in connection pools where the number of active connections is fairly less than the number of open connections. Universal Connection Pool for JDBC completely supports DRCP feature.

See "Using UCP with DRCP"

	
See Also:

Oracle Database JDBC Developer's Guide for more information about Database Resident Connection Pool

	
Support for graceful draining for planned outages

See "Planned Shutdown Scenarios"

Multitenant Data Source for Java

To enable sharing a common pool of connections across multiple PDBs (pluggable databases) or tenants, Oracle JDBC and UCP furnish the multitenant data source for Java. In Oracle Database 12c Release 1 (12.1), it is based on a combination of the following:

	
Global database user with access privileges to any PDB

	
UCP connection labeling

	
The new SET CONTAINER statement within a callback function:

The advantage of the SET CONTAINER statement is that the pool does not have to create a new connection to a PDB, if there is an existing connection to a different PDB. The pool can use the existing connection and can connect to the desired PDB through the SET CONTAINER statement. Use the following command to achieve this:

ALTER SESSION SET CONTAINER=<PDB Name>

This avoids the need to create a new connection from scratch.

	
The UCP connection labeling callback interface

Following is an illustration of how multitenant data source for Java works:

	
Tenant1 asks for a connection to PDB1, by calling the getConnection() method with the corresponding label that is mapped to a database ID.

	
UCP searches the pool for a free connection, tentatively with the specified label.

	
If Conn1 label reads PDB1, then the connection is handed to JDBC, and then to Tenant1 for use.

Otherwise, if Conn1 label does not read PDB1, then the following occur:

	
UCP uses the ALTER SESSION SET CONTAINER statement and invokes the user-implemented callback configure method to set Conn1 to PDB1.

	
The SET CONTAINER statement is passed to the server and parsed.

	
The server executes the statement, and assigns the PDB-specific role to Tenant1Foot??1??.

	
The server then connects Conn1 to PDB1, and then returns the corresponding database ID (dbid) and other properties to JDBC.

	
JDBC notifies UCP and hands Conn1 to Tenant1 for use.

	
See Also:

The multitenant data source for Java white paper posted on Oracle Technology Network:
http://www.oracle.com/technetwork/database/application-development/index-099369.html

Footnote Legend

Footnote??1:??If you are a global user in a PDB, then you cannot perform many tasks without a password-protected role.

1 Introduction to UCP

The following sections are included in this chapter:

	
Overview of Connection Pool

	
Overview of Universal Connection Pool for JDBC

Overview of Connection Pool

A connection pool is a cache of database connection objects. The objects represent physical database connections that can be used by an application to connect to a database. At run time, the application requests a connection from the pool. If the pool contains a connection that can satisfy the request, it returns the connection to the application. If no connections are found, a new connection is created and returned to the application. The application uses the connection to perform some work on the database and then returns the object back to the pool. The connection is then available for the next connection request.

Connection pools promote the reuse of connection objects and reduce the number of times that connection objects are created. Connection pools significantly improve performance for database-intensive applications because creating connection objects is costly both in terms of time and resources. Tasks such as network communication, reading connection strings, authentication, transaction enlistment, and memory allocation all contribute to the amount of time and resources it takes to create a connection object. In addition, because the connections are already created, the application waits less time to get the connection.

Connection pools often provide properties that are used to optimize the performance of a pool. The properties control behaviors such as the minimum and maximum number of connections allowed in the pool or the amount of time a connection can remain idle before it is returned to the pool. The best configured connection pools balance quick response times with the memory spent maintaining connections in the pool. It is often necessary to try different settings until the best balance is achieved for a specific application.

Benefits of Using a Connection Pool

Applications that are database-intensive, generally benefit the most from connection pools. As a policy, applications should use a connection pool whenever database usage is known to affect application performance.

A connection pool provides the following benefits:

	
Reduces the number of times new connection objects are created.

	
Promotes connection object reuse.

	
Quickens the process of getting a connection.

	
Reduces the amount of effort required to manually manage connection objects.

	
Minimizes the number of stale connections.

	
Controls the amount of resources spent on maintaining connections.

Overview of Universal Connection Pool for JDBC

UCP for JDBC provides a connection pool implementation for caching JDBC connections. Java applications that are database-intensive use the connection pool to improve performance and better utilize system resources.

A UCP JDBC connection pool can use any JDBC driver to create physical connections that are then maintained by the pool. The pool can be configured and provides a full set of properties that are used to optimize pool behavior based on the performance and availability requirements of an application. For more advanced applications, UCP for JDBC provides a pool manager that can be used to manage a pool instance.

The pool also leverages many high availability and performance features available through an Oracle Real Application Clusters (Oracle RAC) database. These features include Fast Connection Failover (FCF), Run-time connection Load Balancing (RLB), and Connection Affinity.

	
Note:

Starting from Oracle Database 11g Release 2, FCF is also supported by Oracle Restart on a single instance database. Oracle Restart was previously known as Single-Instance High Availability (SIHA). For more information on Oracle Restart, refer to Oracle Database Administrator's Guide.

Conceptual Architecture

Applications use a UCP for JDBC pool-enabled data source to get connections from a UCP JDBC connection pool instance. The PoolDataSource data source is used for getting regular connections (java.sql.Connection), and the PoolXADataSource data source is used for getting XA (eXtended API) connections (javax.sql.XAConnection). The same pool features are included in both XA and non-XA UCP JDBC connection pools.

The pool-enabled data source relies on a connection factory class to create the physical connections that are maintained by the pool. An application can choose to use any factory class that is capable of creating Connection or XAConnection objects. The pool-enabled data sources provide a method for setting the connection factory class, as well as methods for setting the database URL and database credentials that are used by the factory class to connect to a database.

Applications borrow a connection handle from the pool to perform work on a database. Once the work is completed, the connection is closed and the connection handle is returned to pool and is available to be used again. Figure 1-1 below shows the conceptual view of the interaction between an application and a UCP JDBC connection pool.

See Chapter 3, "Getting Database Connections in UCP," for more information on using pool-enabled data sources and borrowing database connections.

Figure 1-1 Conceptual View of a UCP JDBC Connection Pool

[image: conceptual view of UCP for JDBC]

Connection Pool Properties

UCP JDBC Connection pool properties are configured through methods available on the pool-enabled data source. The pool properties are used to control the pool size, handle stale connections, and make autonomous decisions about how long connections can remain borrowed before they are returned to the pool. The optimal settings for the pool properties depend on the application and hardware resources. Typically, there is a trade-off between the time it takes for an application to get a connection versus the amount of memory it takes to maintain a certain pool size. In many cases, experimentation is required to find the optimal balance to achieve the desired performance for a specific application.

See Chapter 4, "Optimizing Universal Connection Pool Behavior," for more information on setting connection pool properties.

Connection Pool Manager

UCP for JDBC includes a connection pool manager that is used by applications that require administrative control over a connection pool. The manager is used to explicitly control the life cycle of a pool and to perform maintenance on a pool. The manager also provides the opportunity for an application to expose the pool and its manageability through an administrative console.

See Chapter 7, "Using the Connection Pool Manager," for more information on explicitly controlling a connection pool.

High Availability and Performance Scenarios

A UCP JDBC connection pool provides many features that are used to ensure high connection availability and performance. Many of these features, such as refreshing a pool or validating connections, are generic and work across driver and database implementations. Some of these features, such as run-time connection load balancing, and connection affinity, require the use of an Oracle JDBC driver and an Oracle RAC database.

See Chapter 8, "Using Oracle RAC Features," for more information on using Oracle RAC features.

2 Getting Started

The following sections are included in this chapter:

	
Requirements for using UCP

	
Basic Connection Steps in UCP

	
Basic Connection Example Using UCP

	
UCP for JDBC API Overview

Requirements for using UCP

UCP for JDBC has the following design-time and run-time requirements:

	
JRE 1.5 or higher

	
A JDBC diver or a connection factory class capable of returning a java.sql.Connection and javax.sql.XAConnection object

Oracle drivers from releases 10.1 or higher are supported. Advanced Oracle Database features, such as Oracle RAC and Fast Connection Failover, require the Oracle Notification Service library (ons.jar) that is included with the Oracle Client software.

	
The ucp.jar library included in the classpath of the application.

	
A database that supports SQL. Advanced features, such as Oracle RAC and Fast Connection Failover, require an Oracle Database.

Basic Connection Steps in UCP

UCP for JDBC provides a pool-enabled data source that is used by applications to borrow connections from a UCP JDBC connection pool. A connection pool is not explicitly defined for the most basic use case. Instead, a default connection pool is implicitly created when the connection is borrowed.

The following steps describe how to get a connection from a UCP for JDBC pool-enabled data source in order to access a database. The complete example is provided in Example 2-1, "Basic Connection Example":

	
Use the UCP for JDBC data source factory (oracle.ucp.jdbc.PoolDataSourceFactory) to get an instance of a pool-enabled data source using the getPoolDataSource method. The data source instance must be of the type PoolDataSource. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

	
Set the connection properties that are required to get a physical connection to a database. These properties are set on the data source instance and include: the URL, the user name, and password to connect to the database and the connection factory used to get the physical connection. These properties are specific to a JDBC driver and database. For example:

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

	
Set any pool properties in order to override the connection pool's default behavior. the pool properties are set on the data source instance. For example:

pds.setInitialPoolSize(5);

	
Get a connection using the data source instance. The returned connection is a logical handle to a physical connection in the data source's connection pool. For example:

Connection conn = pds.getConnection();

	
Use the connection to perform some work on the database:

Statement stmt = conn.createStatement ();
stmt.execute("SELECT * FROM foo");

	
Close the connection and return it to the pool.

conn.close();

Basic Connection Example Using UCP

The following example is a program that connects to a database to do some work and then exits. The example is simple and in some cases not very practical; however, it does demonstrate the basic steps required to get a connection from a UCP for JDBC pooled-enabled data source in order to access a database.

Example 2-1 Basic Connection Example

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

public class BasicConnectionExample {
 public static void main(String args[]) throws SQLException {
 try
 {
 //Create pool-enabled data source instance.

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

 //set the connection properties on the data source.

 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
 pds.setUser("<user>");
 pds.setPassword("<password>");

 //Override any pool properties.

 pds.setInitialPoolSize(5);

 //Get a database connection from the datasource.

 Connection conn = pds.getConnection();

 System.out.println("\nConnection obtained from " +
 "UniversalConnectionPool\n");

 //do some work with the connection.
 Statement stmt = conn.createStatement();
 stmt.execute("select * from foo");

 //Close the Connection.

 conn.close();
 conn=null;

 System.out.println("Connection returned to the " +
 "UniversalConnectionPool\n");

 }
 catch(SQLException e)
 {
 System.out.println("BasicConnectionExample - " +
 "main()-SQLException occurred : "
 + e.getMessage());
 }
 }
}

UCP for JDBC API Overview

The following section provides a quick overview of the most commonly used packages of the UCP for JDBC API. Refer to the Oracle Universal Connection Pool Java API Reference for complete details on the API.

oracle.ucp.jdbc

This package includes various interfaces and classes that are used by applications to work with JDBC connections and a connection pool. Among the interfaces found in this package, the PoolDataSource and PoolXADataSource data source interfaces are used by an application to get connections as well as get and set connection pool properties. Data source instances implementing these two interfaces automatically create a connection pool.

oracle.ucp.admin

This package includes interfaces for using a connection pool manager as well as MBeans that allow users to access connection pool and the connection pool manager operations and attributes using JMX operations. Among the interfaces, the UniversalConnectionPoolManager interface provides methods for creating and maintaining connection pool instances.

oracle.ucp

This package includes both required and optional callback interfaces that are used to implement connection pool features. For example, the ConnectionAffinityCallback interface is used to create a callback that enables or disables connection affinity and can also be used to customize connection affinity behavior. This package also contains statistics classes, UCP specific exception classes, and the logic to use the UCP directly, without using data sources.

3 Getting Database Connections in UCP

The following sections are included in this chapter:

	
Borrowing Connections from UCP

	
Setting Connection Pool Properties for UCP

	
Validating Connections in UCP

	
Returning Borrowed Connections to UCP

	
Removing Connections from UCP

	
Third-Party Integration

Borrowing Connections from UCP

An application borrows connections using a pool-enabled data source. The UCP for JDBC API provides two pool-enabled data sources; one for borrowing regular connections; and one for borrowing XA connections. These data sources provide access to UCP JDBC connection pool functionality and include a set of getConnection methods that are used to borrow connections. The same pool features are included in both XA and non-XA UCP JDBC connection pools.

UCP JDBC connection pools maintain both available connections and borrowed connections. A connection is reused from the pool if an application requests to borrow a connection that matches an available connection. A new connection is created if no available connection in the pool match the requested connection. The number of available connections and borrowed connections are subjected to pool properties such as pool size, timeout intervals, and validation rules.

This section describes the following concepts:

	
Using the Pool-Enabled Data Source

	
Using the Pool-Enabled XA Data Source

	
Setting Connection Properties

	
Using JNDI to Borrow a Connection

	
Connection Initialization Callback

	
Note:

The instructions in this section use a pool-enabled data source to implicitly create and start a connection pool. See Chapter 7, "Using the Connection Pool Manager"for instructions on using the connection pool manager to explicitly create a connection pool.

Using the Pool-Enabled Data Source

UCP for JDBC provides a pool-enabled data source (oracle.ucp.jdbc.PoolDataSource) that is used to get connections to a database. The oracle.ucp.jdbc.PoolDataSourceFactory factory class provides a getPoolDataSource() method that creates the pool-enabled data source instance. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

The pool-enabled data source requires a connection factory class in order to get an actual physical connection. The connection factory is typically provided as part of a JDBC driver and can be a data source itself. A UCP JDBC connection pool can use any JDBC driver to create physical connections that are then maintained by the pool. The setConnectionFactoryClassName(String) method is used to define the connection factory for the pool-enabled data source instance. The following example uses Oracle's oracle.jdbc.pool.OracleDataSource connection factory class included with the JDBC driver. If you are using a different vendor's JDBC driver, refer to the vendor's documentation for an appropriate connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

In addition to the connection factory class, a pool-enabled data source requires the URL, user name, and password that is used to connect to a database. A pool-enabled data source instance includes methods to set each of these properties. The following example uses an Oracle JDBC Thin driver syntax. If you are using a different vendor's JDBC driver, refer to the vendor's documentation for the appropriate URL syntax to use.

pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

	
Note:

See the Oracle Database JDBC Developer's Guide for detailed Oracle URL syntax usage.

Lastly, a pool-enabled data source provides a set of getConnection methods. The methods include:

	
getConnection() ??? Returns a connection that is associated with the user name and password that was used to connect to the database.

	
getConnection(String username, String password) ??? Returns a connection that is associated with the given user name and password.

	
getConnection(java.util.Properties labels) ??? Returns a connection that matches a given label. See Chapter 5, "Labeling Connections in UCP," for detailed information on using connection labels.

	
getConnection(String username, String password, java.util.Properties labels) ??? Returns a connection that is associated with a given user name and password and that matches a given label. See Chapter 5, "Labeling Connections in UCP," for detailed information on using connection labels.

An application uses the getConnection methods to borrow a connection handle from the pool that is of the type java.sql.Connection. If a connection handle is already in the pool that matches the requested connection (same URL, user name, and password) then it is returned to the application; or else, a new connection is created and a new connection handle is returned to the application. An example for both Oracle and MySQL are provided.

Oracle Example

The following example demonstrates borrowing a connection when using the JDBC Thin driver:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

MySQL Example

The following example demonstrates borrowing a connection when using the Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/dbname");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

Using the Pool-Enabled XA Data Source

UCP for JDBC provides a pool-enabled XA data source (oracle.ucp.jdbc.PoolXADataSource) that is used to get XA connections that can be enlisted in a distributed transaction. UCP JDBC XA pools have the same features as non-XA UCP JDBC pools. The oracle.ucp.jdbc.PoolDataSourceFactory factory class provides a getPoolXADataSource() method that creates the pool-enabled XA data source instance. For example:

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

A pool-enabled XA data source instance, like a non-XA data source instance, requires the connection factory, URL, user name, and password in order to get an actual physical connection. These properties are set in the same way as a non-XA data source instance (see above). However, an XA-specific connection factory class is required to get XA connections. The XA connection factory is typically provided as part of a JDBC driver and can be a data source itself. The following example uses Oracle's oracle.jdbc.xa.client.OracleXADataSource XA connection factory class included with the JDBC driver. If a different vendor's JDBC driver is used, refer to the vendor's documentation for an appropriate XA connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

Lastly, a pool-enabled XA data source provides a set of getXAConnection methods that are used to borrow a connection handle from the pool that is of the type javax.sql.XAConnection. The getXAConnection methods are the same as the getConnection methods previously described. The following example demonstrates borrowing an XA connection.

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

XAConnection conn = pds.getXAConnection();

Setting Connection Properties

Oracle's connection factories support properties that configure connections with specific features. UCP for JDBC pool-enabled data sources provide the setConnectionProperties(Properties) method, which is used to set properties on a given connection factory. The following example demonstrates setting connection properties for Oracle's JDBC driver. If you are using a different vendor's JDBC driver, refer to their documentation to check whether setting properties in this manner is supported and what properties are available:

Properties connProps = new Properties();
connProps.put("fixedString", false);
connProps.put("remarksReporting", false);
connProps.put("restrictGetTables", false);
connProps.put("includeSynonyms", false);
connProps.put("defaultNChar", false);
connProps.put("AccumulateBatchResult", false);

pds.setConnectionProperties(connProps);

The UCP JDBC connection pool does not remove connections that are already created if setConnectionProperties is called after the pool is created and in use.

	
See Also:

Oracle Database JDBC Java API Reference for a detailed list of supported properties to configure the connection. For example, to set the auto-commit mode, you can use the OracleConnection.CONNECTION_PROPERTY_AUTOCOMMIT property.

Using JNDI to Borrow a Connection

A connection can be borrowed from a connection pool by performing a JNDI look up for a pool-enabled data source and then calling getConnection() on the returned object. The pool-enabled data source must first be bound to a JNDI context and a logical name. This assumes that an application includes a Service Provider Interface (SPI) implementation for a naming and directory service where object references can be registered and located.

The following example uses Sun's file system JNDI service provider, which can be downloaded from the JNDI software download page:

http://www.oracle.com/technetwork/java/index.html

The example demonstrates creating an initial context and then performing a lookup for a pool-enabled data source that is bound to the name MyPooledDataSource. The object returned is then used to borrow a connection from the connection pool.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:/tmp");

ctx = new InitialContext(env);

PoolDataSource jpds = (PoolDataSource)ctx.lookup(MyPooledDataSource);
Connection conn = jpds.getConnection();

In the example, MyPoolDataSource must be bound to the context. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

ctx.bind(MyPooledDataSource, pds);

Connection Initialization Callback

This callback enables applications and frameworks to initialize connections retrieved from Universal Connection Pool. It is executed at every connection checkout from the pool, as well as at each successful reconnection during failover.

If an application cannot use connection labeling because it cannot be changed, then the connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is borrowed from the pool and at each successful reconnection following a recoverable error. Using the same callback at both run time and replay ensures that exactly the same initialization, which was used when the original session was established, is reestablished at run time. If the callback invocation fails, then replay is disabled on that connection.

This section discusses initialization callbacks in the following sections:

	
Creating an Initialization Callback

	
Registering an Initialization Callback

	
Removing or Unregistering an Initialization Callback

Creating an Initialization Callback

To create a UCP connection initialization callback, an application implements the oracle.ucp.jdbc.ConnectionInitializationCallback interface. This interface has the following method:

void initialize(java.sql.Connection connection) throws SQLException;

	
Note:

	
One callback is created for every connection pool.

	
This callback is not used if a labeling callback is registered for the connection pool.

Example

The following example demonstrates how to create a simple initialization callback:

import oracle.ucp.jdbc.ConnectionInitializationCallback;
class MyConnectionInitializationCallback implements ConnectionInitializationCallback
{
 public MyConnectionInitializationCallback()
 {
 ...
 }
 public void initialize(java.sql.Connection connection) throws SQLException
 {
 // Reset the state for the connection, if necessary (like ALTER SESSION)
 }
}

Registering an Initialization Callback

UCP provides the registerConnectionInitializationCallback method in the oracle.ucp.jdbc.PoolDataSource interface for registering a connection initialization callback.

public void registerConnectionInitializationCallback (ConnectionInitializationCallback cbk) throws SQLException;

One callback may be registered on each connection pool instance.

Removing or Unregistering an Initialization Callback

UCP provides the unregisterConnectionInitializationCallback method in the oracle.ucp.jdbc.PoolDataSource interface for unregistering a connection initialization callback.

public void unregisterConnectionInitializationCallback (ConnectionInitializationCallback cbk) throws SQLException;

	
See Also:

Oracle Universal Connection Pool for JDBC Java API Reference for more information

Setting Connection Pool Properties for UCP

UCP JDBC connection pools are configured using connection pool properties. The properties have get and set methods that are available through a pool-enabled data source instance. The methods are a convenient way to programmatically configure a pool. If no pool properties are set, then a connection pool uses default property values.

The following example demonstrates configuring connection pool properties. The example sets the connection pool name and the maximum/minimum number of connections allowed in the pool. See Chapter 4, "Optimizing Universal Connection Pool Behavior," for a detailed description of all the supported properties as well as their default values.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);

UCP JDBC connection pool properties may be set in any order and can be dynamically changed at run time. For example, setMaxPoolSize could be changed at any time and the pool recognizes the new value and adapts accordingly.

Validating Connections in UCP

Connections can be validated using pool properties when the connection is borrowed, and also programmatically using the ValidConnection interface. Both approaches are detailed in this section. Invalid connections can affect application performance and availability.

Validate When Borrowing

A connection can be validated by executing an SQL statement on a connection when the connection is borrowed from the connection pool. Two connection pool properties are used in conjunction in order to enable connection validation:

	
setValidateConnectionOnBorrow(boolean) ??? Specifies whether or not connections are validated when the connection is borrowed from the connection pool. The method enables validation for every connection that is borrowed from the pool. A value of false means no validation is performed. The default value is false.

	
setSQLForValidateConnection(String) ??? Specifies the SQL statement that is executed on a connection when it is borrowed from the pool.

	
Note:

The setSQLForValidateConnection property is not recommended when using an Oracle JDBC driver. UCP for JDBC performs an internal ping when using an Oracle JDBC driver. The mechanism is faster than executing an SQL statement and is overridden if this property is set. Instead, set the setValidateConnectionOnBorrow property to true and do not include the setSQLForValidateConnection property.

The following example demonstrates validating a connection when borrowing the connection from the pool. The example uses Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/mysql");
pds.setUser("<user>");
pds.setPassword("<password>");

pds.setValidateConnectionOnBorrow(true);
pds.setSQLForValidateConnection("select * from mysql.user");

Connection conn = pds.getConnection();

Checking If a Connection Is Valid

The oracle.ucp.jdbc.ValidConnection interface provides two methods: isValid and setInvalid. The isValid method returns whether or not a connection is usable and the setInvalid method is used to indicate that a connection should be removed from the pool instance. See "Removing Connections from UCP" for more information on using the setInvalid method.

The isValid method is used to check if a connection is still usable after an SQL exception has been thrown. This method can be used at any time to check if a borrowed connection is valid. The method is particularly useful in combination with a retry mechanism, such as the Fast Connection Failover actions that are triggered after a down event of Oracle RAC. See Chapter 8, "Using Oracle RAC Features," for more information on Fast Connection Failover.

	
Note:

The isValid method checks with the pool instance and Oracle JDBC driver to determine whether a connection is still valid. The isValid method results in a round-trip to the database only if both the pool and the driver report that a connection is still valid. The round-trip is used to check for database failures that are not immediately discovered by the pool or the driver.

The isValid method is also helpful when used in conjunction with the connection timeout and connection harvesting features. These features may return a connection to the pool while a connection is still held by an application. In such cases, the isValid method returns false, allowing the application to get a new connection.

The following example demonstrates using the isValid method:

try { conn = poolDataSouorce.getConnection ...}catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

For XA applications, before calling the isValid() method, you must cast any XAConnection that is obtained from PoolXADataSource to a ValidConnection. If you cast a Connection that is obtained by calling the XAConnection.getConnection() method to ValidConnecion, then it may throw an exception.

Returning Borrowed Connections to UCP

Borrowed connections that are no longer being used should be returned to the pool so that they can be available for the next connection request. The close method closes connections and automatically returns them to the pool. The close method does not physically remove the connection from the pool.

Borrowed connections that are not closed will remain borrowed; subsequent requests for a connection result in a new connection being created if no connections are available. This behavior can cause many connections to be created and can affect system performance.

The following example demonstrates closing a connection and returning it to the pool:

Connection conn = pds.getConnection();

//do some work with the connection.

conn.close();
conn=null;

Removing Connections from UCP

The setInvalid method of the ValidConnection interface indicates that a connection should be removed from the connection pool when it is closed. The method is typically used when a connection is no longer usable, such as after an exception or if the isValid method of the ValidConnection interface returns false. The method can also be used if an application deems the state on a connection to be bad. The following example demonstrates using the setInvalid method to close and remove a connection from the pool:

Connection conn = pds.getConnection();
...

((ValidConnection) conn).setInvalid();
...

conn.close();
conn=null;

Third-Party Integration

Third-party products, such as middleware platforms or frameworks, can use UCP to provide connection pooling functionality for their applications and services. UCP integration includes the same connection pool features that are available to stand-alone applications and offers the same tight integration with the Oracle Database.

Two data source classes are available as integration points with UCP: PoolDataSourceImpl for non-XA connection pools and PoolXADataSourceImpl for XA connection pools. Both classes are located in the oracle.ucp.jdbc package. These classes are implementations of the PoolDataSource and PoolXADataSource interfaces, respectively, and contain default constructors. For more information on the implementation classes refer to the Oracle Universal Connection Pool Java API Reference.

These implementations explicitly create connection pool instances and can return connections. For example:

PoolXADataSource pds = new PoolXADataSourceImpl();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

XAConnection conn = pds.getXAConnection();

Third-party products can instantiate these data source implementation classes. In addition, the methods of these interfaces follow the JavaBean design pattern and can be used to set connection pool properties on the class using reflection. For example, a UCP data source that uses an Oracle JDBC connection factory and database might be defined as follows and loaded into a JNDI registry:

<data-sources>
 <data-source
 name="UCPDataSource"
 jndi-name="jdbc/UCP_DS"
 data-source-class="oracle.ucp.jdbc.PoolDataSourceImpl">
 <property name="ConnectionFactoryClassName"
 value="oracle.jdbc.pool.OracleDataSource"/>
 <property name="URL" value="jdbc:oracle:thin:@//localhost:1521:oracle"/>
 <property name="User" value"user"/>
 <property name="Password" value="password"/>
 <property name="ConnectionPoolName" value="MyPool"/>
 <property name="MinPoolSize" value="5"/>
 <property name="MaxPoolSize" value="50"/>
 </data-source>
</data-sources>

When using reflection, the name attribute matches (case sensitive) the name of the setter method used to set the property. An application could then use the data source as follows:

Connection connection = null;
try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource) context.lookup("jdbc/UCP_DS");
 connection = ds.getConnection();
 ...

4 Optimizing Universal Connection Pool Behavior

The following sections are included in this chapter:

	
Overview of Optimizing Connection Pools

	
Controlling the Pool Size in UCP

	
Controlling Stale Connections in UCP

	
Harvesting Connections in UCP

	
Caching SQL Statements in UCP

Overview of Optimizing Connection Pools

This chapter provides instructions for setting connection pool properties in order to optimize pooling behavior. Upon creation, UCP JDBC connection pools are pre-configured with a default setup. The default setup provides a general, all-purpose connection pool. However, different applications may have different database connection requirements and may want to modify the default behavior of the connection pool. Behaviors, such as pool size and connection timeouts can be configured and can improve overall connection pool performance as well as connection availability. In many cases, the best way to tune a connection pool for a specific application is to try different property combinations using different values until optimal performance and throughput is achieved.

Setting Connection Pool Properties

Connection pool properties are set either when getting a connection through a pool-enabled data source or when creating a connection pool using the connection pool manager.

The following example demonstrates setting connection pool properties though a pool-enabled data source:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);
...

The following example demonstrates setting connection pool properties when creating a connection pool using the connection pool manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);
...

mgr.createConnectionPool(pds);

Controlling the Pool Size in UCP

UCP JDBC connection pools include a set of properties that are used to control the size of the pool. The properties allow the number of connections in the pool to increase and decrease as demand increases and decreases. This dynamic behavior helps conserve system resources that are otherwise lost on maintaining unnecessary connections.

Setting the Initial Pool Size

The initial pool size property specifies the number of available connections that are created when the connection pool is initially created or re-initialized. This property is typically used to reduce the ramp-up time incurred by priming the pool to its optimal size.

A value of 0 indicates that no connections are pre-created. The default value is 0. The following example demonstrates configuring an initial pool size:

pds.setInitialPoolSize(5);

If the initial pool size property is greater than the maximum pool size property, then only the maximum number of connections are initialized.

If the initial pool size property is less than the minimum pool size property, then only the initial number of connections are initialized and maintained until enough connections are created to meet the minimum pool size value.

Setting the Minimum Pool Size

The minimum pool size property specifies the minimum amount of available connections and borrowed connections that a pool maintains. A connection pool always tries to return to the minimum pool size specified unless the minimum amount is yet to be reached. For example, if the minimum limit is set to 10 and only 2 connections are ever created and borrowed, then the number of connections maintained by the pool remains at 2 because this number is less than the minimum pool size.

This property allows the number of connections in the pool to decrease as demand decreases. At the same time, the property ensures that system resources are not wasted on maintaining connections that are unnecessary.

The default value is 0. The following example demonstrates configuring a minimum pool size:

pds.setMinPoolSize(2);

Setting the Maximum Pool Size

The maximum pool size property specifies the maximum number of available and borrowed (in use) connections that a pool maintains. If the maximum number of connections are borrowed, no connections will be available until a connection is returned to the pool.

This property allows the number of connections in the pool to increase as demand increases. At the same time, the property ensures that the pool does not grow to the point of exhausting the resources of a system, which ultimately affects the performance and availability of an application.

A value of 0 indicates that no connections are maintained by the pool. An attempt to get a connection results in an exception. The default value is to allow the pool to continue to create connections up to Integer.MAX_VALUE (2147483647 by default). The following example demonstrates configuring a maximum pool size:

pds.setMaxPoolSize(100);

Controlling Stale Connections in UCP

Stale connections are connections that remain either available or borrowed, but are no longer being used. Stale connections that remain borrowed may affect connection availability. In addition, stale connections may impact system resources that are otherwise wasted on maintaining unused connections for extended periods of time. The pool properties discussed in this section are used to control stale connections.

	
Note:

It is good practice to close all connections that are no longer required by an application. Closing connections helps minimize the number of stale connections that remain borrowed.

Setting Connection Reuse

The connection reuse feature allows connections to be gracefully closed and removed from a connection pool after a specific amount of time or after the connection has been used a specific number of times. This feature saves system resources that are otherwise wasted on maintaining unusable connections.

Setting the Maximum Connection Reuse Time

The maximum connection reuse time allows connections to be gracefully closed and removed from the pool after a connection has been in use for a specific amount of time. The timer for this property starts when a connection is physically created. Borrowed connections are closed only after they are returned to the pool and the reuse time is exceeded.

This feature is typically used when a firewall exists between the pool tier and the database tier and is setup to block connections based on time restrictions. The blocked connections remain in the pool even though they are unusable. In such scenarios, the connection reuse time is set to a smaller value than the firewall timeout policy.

	
Note:

The maximum connection reuse time is different from the time-to-live connection timeout. The time-to-live connection timeout starts when a connection is borrowed from the pool; while, the maximum connection reuse time starts when the connection is physically created. In addition, with a time-to-live timeout, a connection is closed and returned to the pool for reuse if the timeout expires during the borrowed period. With maximum connection reuse time, a connection is closed and discarded from the pool after the timeout expires. See Setting the Time-To-Live Connection Timeout.

The maximum connection reuse time value represents seconds. A value of 0 indicates that this feature is disabled. The default value is 0. The following example demonstrates configuring a maximum connection reuse time:

pds.setMaxConnectionReuseTime(300);

Setting the Maximum Connection Reuse Count

The maximum connection reuse count allows connections to be gracefully closed and removed from the connection pool after a connection has been borrowed a specific number of times. This property is typically used to periodically recycle connections in order to eliminate issues such as memory leaks.

A value of 0 indicates that this feature is disabled. The default value is 0. The following example demonstrates configuring a maximum connection reuse count:

pds.setMaxConnectionReuseCount(100);

Setting the Abandon Connection Timeout

The abandoned connection timeout (ACT) enables borrowed connections to be reclaimed back into the connection pool after a connection has not been used for a specific amount of time. Abandonment is determined by monitoring calls to the database. This timeout feature helps maximize connection reuse and conserves system resources that are otherwise lost on maintaining borrowed connections that are no longer in use.

	
Note:

UCP for JDBC either cancels or rolls back connections that have local transactions pending before reclaiming connections for reuse.

The ACT value represents seconds. A value of 0 indicates that the feature is disabled. The default value is set to 0. The following example demonstrates configuring an abandoned connection timeout:

pds.setAbandonConnectionTimeout(10);

Every connection is reaped after a specific period of time. Either it is reaped when ACT expires, or, if it is immune from ACT, then it is reaped after the immunity expires. If you set ACT on a pool, then:

	
If a statement is executed without calling the Statement.setQueryTimeout method on that statement, then the connection is reaped if ACT is exceeded, even though the connection is waiting for the server to respond to the query.

	
If a statement is executed with calling the Statement.setQueryTimeout method, then the connection is reaped after the query timeout and ACT have expired. The connection is not reaped while waiting on the query timeout. The expiration of the query timeout is an event that resets the ACT timer. If the ACT expires while waiting for the cancel action that occurs at the expiration of the query time out, then the connection is reaped.

	
If a connection has two statements: s1 with a query timeout and s2 without a query timeout, then ACT does not reap the connection while s1 waits for the query timeout, but reaps the connection if s2 hangs.

Note that the two statements execute sequentially based on JDBC requirement.

Setting the Time-To-Live Connection Timeout

The time-to-live connection timeout enables borrowed connections to remain borrowed for a specific amount of time before the connection is reclaimed by the pool. This timeout feature helps maximize connection reuse and helps conserve systems resources that are otherwise lost on maintaining connections longer than their expected usage.

	
Note:

UCP for JDBC either cancels or rolls back connections that have local transactions pending before reclaiming connections for reuse.

The time-to-live connection timeout value represents seconds. A value of 0 indicates that the feature is disabled. The default value is set to 0. The following example demonstrates configuring a time-to-live connection timeout:

pds.setTimeToLiveConnectionTimeout(18000)

Setting the Connection Wait Timeout

The connection wait timeout specifies how long an application request waits to obtain a connection if there are no longer any connections in the pool. A connection pool runs out of connections if all connections in the pool are being used (borrowed) and if the pool size has reached it's maximum connection capacity as specified by the maximum pool size property. The request receives an SQL exception if the timeout value is reached. The application can then retry getting a connection. This timeout feature improves overall application usability by minimizing the amount of time an application is blocked and provides the ability to implement a graceful recovery.

The connection wait timeout value represents seconds. A value of 0 indicates that the feature is disabled. The default value is set to 3 seconds. The following example demonstrates configuring a connection wait timeout:

pds.setConnectionWaitTimeout(10);

Setting the Inactive Connection Timeout

The inactive connection timeout specifies how long an available connection can remain idle before it is closed and removed from the pool. This timeout property is only applicable to available connections and does not affect borrowed connections. This property helps conserve resources that are otherwise lost on maintaining connections that are no longer being used. The inactive connection timeout (together with the maximum pool size) allows a connection pool to grow and shrink as application load changes.

The inactive connection timeout value represents seconds. A value of 0 indicates that the feature is disabled. The default value is set to 0. The following example demonstrates configuring an inactive connection timeout:

pds.setInactiveConnectionTimeout(60);

Setting the Timeout Check Interval

The timeout check interval property controls how frequently the timeout properties (abandoned connection timeout, time-to-live connection timeout, and inactive connection timeout) are enforced. Connections that have timed-out are reclaimed when the timeout check cycle runs. This means that a connection may not actually be reclaimed by the pool at the moment that the connection times-out. The lag time between the connection timeout and actually reclaiming the connection may be considerable depending on the size of the timeout check interval.

The timeout check interval property represents seconds. The default value is set to 30. The following example demonstrates configuring a property check interval:

pds.setTimoutCheckInterval(60);

	
See Also:

Oracle Database Net Services Reference and Oracle Database Net Services Administrator's Guide for more information about timeouts and Oracle Net Services

Harvesting Connections in UCP

The connection harvesting feature allows a specified number of borrowed connections to be reclaimed when the connection pool reaches a specified number of available connections. This feature helps ensure that a certain number of connections are always available in the pool and helps maximize performance. The feature is particularly useful if an application caches connection handles. Caching is typically performed for performance reasons because it minimizes re-initialization of state necessary for connections to participate in a transaction.

For example, a connection is borrowed from the pool, initialized with necessary session state, and then held in a context object. Holding connections in this manner may cause the connection pool to run out of available connections. The connection harvest feature reclaims the borrowed connections, if appropriate, and allows the connections to be reused.

Connection harvesting is controlled using the HarvestableConnection interface and configured or enabled using two pool properties: Connection Harvest Trigger Count and Connection Harvest Maximum Count. The interface and properties are used together when implementing the connection harvest feature.

Setting Whether a Connection is Harvestable

The setConnectionHarvestable(boolean) method of the oracle.ucp.jdbc.HarvestableConnection interface controls whether or not a connection will be harvested. This method is used as a locking mechanism when connection harvesting is enabled. For example, the method is set to false on a connection when the connection is being used within a transaction and must not be harvested. After the transaction completes, the method is set to true on the connection and the connection can be harvested if required.

	
Note:

All connections are harvestable, by default, when the connection harvest feature is enabled. If the feature is enabled, the setConnectionHarvestable method should always be used to explicitly control whether a connection is harvestable.

The following example demonstrates using the setConnectionHarvestable method to indicate that a connection is not harvestable when the connection harvest feature attempts to harvest connections:

Connection conn = pds.getConnection();

((HarvestableConnection) conn).setConnectionHarvestable(false);

Setting the Harvest Trigger Count

The connection harvest trigger count specifies the available connection threshold that triggers connection harvesting. For example, if the connection harvest trigger count is set to 10, then connection harvesting is triggered when the number of available connections in the pool drops to 10.

A value of Integer.MAX_VALUE (2147483647 by default) indicates that connection harvesting is disabled. The default value is Integer.MAX_VALUE.

The following example demonstrates enabling connection harvesting by configuring a connection harvest trigger count.

pds.setConnectionHarvestTriggerCount(2);

Setting the Harvest Maximum Count

The connection harvest maximum count property specifies how many borrowed connections should be returned to the pool once the harvest trigger count has been reached. The number of connections actually harvested may be anywhere from 0 to the connection harvest maximum count value. Least recently used connections are harvested first which allows very active user sessions to keep their connections the most.

The harvest maximum count value can range from 0 to the maximum connection property value. The default value is 1. An SQLException is thrown if an out-of-range value is specified.

The following example demonstrates configuring a connection harvest maximum count.

pds.setConnectionHarvestMaxCount(5);

	
Note:

	
If connection harvesting and abandoned connection timeout features are enabled at the same time, then the timeout processing does not reclaim the connections that are designated as nonharvestable.

	
If connection harvesting and time-to-live connection timeout features are enabled at the same time, then the timeout processing reclaims the connections that are designated as nonharvestable.

For more information about abandoned connection timeout feature and time-to-live connection timeout feature, refer to Chapter 6.

Caching SQL Statements in UCP

Statement caching makes working with statements more efficient. Statement caching improves performance by caching executable statements that are used repeatedly and makes it unnecessary for programmers to explicitly reuse prepared statements. Statement caching eliminates overhead due to repeated cursor creation, repeated statement parsing and creation and reduces overhead of communication between applications and the database. Statement caching and reuse is transparent to an application. Each statement cache is associated with a physical connection. That is, each physical connection will have its own statement cache.

The match criteria for cached statements are as follows:

	
The SQL string in the statement must be the same (case-sensitive) to one in the cache.

	
The statement type must be the same (prepared or callable) to the one in the cache.

	
The scrollable type of result sets produced by the statement must be the same (forward-only or scrollable) as the one in the cache.

Statement caching is implemented and enabled differently depending on the JDBC driver vendor. The instructions in this section are specific to Oracle's JDBC driver. Statement caching on other vendors' drivers can be configured by setting a connection property on a connection factory. See "Setting Connection Properties" for information on setting connection properties. In addition, refer to the JDBC vendor's documentation to determine whether statement caching is supported and if it can be set as a connection property. UCP for JDBC does support JDBC 4.0 (JDK16) APIs to enable statement pooling if a JDBC vendor supports it.

Enabling Statement Caching

The maximum number of statements property specifies the number of statements to cache for each connection. The property only applies to the Oracle JDBC driver. If the property is not set, or if it is set to 0, then statement caching is disabled. By default, statement caching is disabled. When statement caching is enabled, a statement cache is associated with each physical connection maintained by the connection pool. A single statement cache is not shared across all physical connections.

The following example demonstrates enabling statement caching:

pds.setMaxStatements(10);

Determining the Statement Cache Size

The cache size should be set to the number of distinct statements the application issues to the database. If the number of statements that an application issues to the database is unknown, use the JDBC performance metrics to assist with determining the statement cache size.

Statement Cache Size Resource Issues

Each connection is associated with its own statement cache. Statements held in a connection's statement cache may hold on to database resources. It is possible that the number of opened connections combined with the number of cached statements for each connection could exceed the limit of open cursors allowed for the database. This issue may be avoided by reducing the number of statements allowed in the cache, or by increasing the limit of open cursors allowed by the database.

5 Labeling Connections in UCP

This chapter discusses the following topics:

	
Overview of Labeling Connections in UCP

	
Implementing a Labeling Callback in UCP

	
Applying Connection Labels in UCP

	
Borrowing Labeled Connections from UCP

	
Checking Unmatched Labels in UCP

	
Using UCP with DRCP

	
Removing a Connection Label from UCP

Overview of Labeling Connections in UCP

Applications often initialize connections retrieved from a connection pool before using the connection. The initialization varies and could include simple state re-initialization that requires method calls within the application code or database operations that require round trips over the network. The cost of such initialization may be significant.

Labeling connections enables an application to attach arbitrary name/value pairs to a connection. The application can request a connection with the desired label from the connection pool. By associating particular labels with particular connection states, an application can retrieve an already initialized connection from the pool and avoid the time and cost of re-initialization. The connection labeling feature does not impose any meaning on user-defined keys or values; the meaning of user-defined keys and values is defined solely by the application.

Some of the examples for connection labeling include, role, NLS language settings, transaction isolation levels, stored procedure calls, or any other state initialization that is expensive and necessary on the connection before work can be executed by the resource.

Connection labeling is application-driven and requires the use of two interfaces. The oracle.ucp.jdbc.LabelableConnection interface is used to apply and remove connection labels, as well as retrieve labels that have been set on a connection. The oracle.ucp.ConnectionLabelingCallback interface is used to create a labeling callback that determines whether or not a connection with a requested label already exists. If no connections exist, the interface allows current connections to be configured as required. The methods of these interfaces are described in detail throughout this chapter.

Implementing a Labeling Callback in UCP

UCP uses Database Resident Connection Pooling (DRCP) tagging infrastructure to support labeling in UCP, whether you work with single labels or multiple labels. However, the behavior with multiple labels can be a little different when you use the UCP and DRCP combination instead of only UCP.

	
See Also:

"Using UCP with DRCP"

A labeling callback is used to define how the connection pool selects labeled connections and allows the selected connection to be configured before returning it to an application. Applications that use the connection labeling feature must provide a callback implementation.

A labeling callback is used when a labeled connection is requested but there are no connections in the pool that match the requested labels. The callback determines which connection requires the least amount of work in order to be re-configured to match the requested label and then enables the connection labels to be updated before returning the connection to the application. This section describes the following topics:

	
Creating a Labeling Callback

	
Registering a Labeling Callback

	
Removing a Labeling Callback

Creating a Labeling Callback

To create a labeling callback, an application implements the oracle.ucp.ConnectionLabelingCallback interface. One callback is created per connection pool. The interface provides the following two methods:

	
The cost Method

	
The configure Method

The cost Method

This method projects the cost of configuring connections considering label-matching differences. Upon a connection request, the connection pool uses this method to select a connection with the least configuration cost.

public int cost(Properties requestedLabels, Properties currentLabels);

The configure Method

This method is called by the connection pool on the selected connection before returning it to the application. The method is used to set the state of the connection and apply or remove any labels to/from the connection.

public boolean configure(Properties requestedLabels, Connection conn);

The connection pool iterates over each connection available in the pool. For each connection, it calls the cost method. The result of the cost method is an integer which represents an estimate of the cost required to reconfigure the connection to the required state. The larger the value, the costlier it is to reconfigure the connection. The connection pool always returns connections with the lowest cost value. The algorithm is as follows:

	
If the cost method returns 0 for a connection, then the connection is a match. The connection pool does not call the configure method on the connection found and returns the connection as it is.

	
If the cost method returns a value greater than 0, then the connection pool iterates until it finds a connection with a cost value of 0 or runs out of available connections.

	
If the pool has iterated through all available connections and the lowest cost of a connection is Integer.MAX_VALUE (2147483647 by default), then no connection in the pool is able to satisfy the connection request. The pool creates and returns a new connection. If the pool has reached the maximum pool size (it cannot create a new connection), then the pool either throws an SQL exception or waits if the connection wait timeout attribute is specified.

	
If the pool has iterated through all available connections and the lowest cost of a connection is less than Integer.MAX_VALUE, then the configure method is called on the connection and the connection is returned. If multiple connections are less than Integer.MAX_VALUE, the connection with the lowest cost is returned.

	
Note:

A cost of 0 does not imply that requestedLabels equals currentLabels.

Example of Labeling Callback

The following example demonstrates a simple labeling callback implementation that implements both the cost and configure methods. The callback is used to find a labeled connection that is initialized with a specific transaction isolation level.

class MyConnectionLabelingCallback
 implements ConnectionLabelingCallback {

 public MyConnectionLabelingCallback()
 {
 }

 public int cost(Properties reqLabels, Properties currentLabels)
 {
 // Case 1: exact match
 if (reqLabels.equals(currentLabels))
 {
 System.out.println("## Exact match found!! ##");
 return 0;
 }

 // Case 2: some labels match with no unmatched labels
 String iso1 = (String) reqLabels.get("TRANSACTION_ISOLATION");
 String iso2 = (String) currentLabels.get("TRANSACTION_ISOLATION");
 boolean match =
 (iso1 != null && iso2 != null && iso1.equalsIgnoreCase(iso2));
 Set rKeys = reqLabels.keySet();
 Set cKeys = currentLabels.keySet();
 if (match && rKeys.containsAll(cKeys))
 {
 System.out.println("## Partial match found!! ##");
 return 10;
 }

 // No label matches to application's preference.
 // Do not choose this connection.
 System.out.println("## No match found!! ##");
 return Integer.MAX_VALUE;
 }

 public boolean configure(Properties reqLabels, Object conn)
 {
 try
 {
 String isoStr = (String) reqLabels.get("TRANSACTION_ISOLATION");
 ((Connection)conn).setTransactionIsolation(Integer.valueOf(isoStr));
 LabelableConnection lconn = (LabelableConnection) conn;

 // Find the unmatched labels on this connection
 Properties unmatchedLabels =
 lconn.getUnmatchedConnectionLabels(reqLabels);

 // Apply each label <key,value> in unmatchedLabels to conn
 for (Map.Entry<Object, Object> label : unmatchedLabels.entrySet())
 {
 String key = (String) label.getKey();
 String value = (String) label.getValue();
 lconn.applyConnectionLabel(key, value);
 }
 }
 catch (Exception exc)
 {
 return false;
 }
 return true;
 }
}

Registering a Labeling Callback

A pool-enabled data source provides the registerConnectionLabelingCallback(ConnectionLabelingCallback callback) method for registering labeling callbacks. Only one callback may be registered on a connection pool. The following example demonstrates registering a labeling callback that is implemented in the MyConnectionLabelingCallback class:

MyConnectionLabelingCallback callback = new MyConnectionLabelingCallback();
pds.registerConnectionLabelingCallback(callback);

Removing a Labeling Callback

A pool-enabled data source provides the removeConnectionLabelingCallback() method for removing a labeling callback. The following example demonstrates removing a labeling callback.

pds.removeConnectionLabelingCallback(callback);

Using UCP with DRCP

Natively, DRCP supports connection tagging, which is a single label without weights. So, labeling with single label works transparently if you use UCP with DRCP. Multiple label UCP connections work, but they have the following behavior changes:

	
The cost method in the ConnectionLabelingCallback API is not invoked if you use UCP with DRCP using connection labeling

	
UCP can invoke the configure method in the ConnectionLabelingCallback API more with DRCP configuration than without DRCP configuration.

	
See Also:

Oracle Database JDBC Developer's Guide for more information about DRCP

Applying Connection Labels in UCP

Labels are applied on a borrowed connection using the applyConnectionLabel method from the LabelableConnection interface. This method is typically called from the configure method of the labeling callback. Any number of connection labels may be cumulatively applied on a borrowed connection. Each time a label is applied to a connection, the supplied key/value pair is added to the collection of labels already applied to the connection. Only the last applied value is retained for any given key.

	
Note:

A labeling callback must be registered on the connection pool before a label can be applied on a borrowed connection; otherwise, an exception is thrown. See "Implementing a Labeling Callback in UCP".

The following example demonstrates initializing a connection with a transaction isolation level and then applying a label to the connection:

String pname = "property1";
String pvalue = "value";
Connection conn = pds.getConnection();

// initialize the connection as required.

conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

((LabelableConnection) conn).applyConnectionLabel(pname, pvalue);

In order to remove a given key from the set of connection labels applied, apply a label with the key to be removed and a null value. This may be used to clear a particular key/value pair from the set of connection labels.

Borrowing Labeled Connections from UCP

A pool-enabled data source provides two getConnection methods that are used to borrow a labeled connection from the pool. The methods are shown below:

public Connection getConnection(java.util.Properties labels)
 throws SQLException;

public Connection getConnection(String user, String password,
 java.util.Properties labels)
 throws SQLException;

The methods require that the label be passed to the getConnection method as a Properties object. The following example demonstrates getting a connection with the label property1, value.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connection conn = pds.getConnection(label);

Checking Unmatched Labels in UCP

A connection may have multiple labels that each uniquely identifies the connection based on some desired criteria. The getUnmatchedConnectionLabels method is used to verify which connection labels matched from the requested labels and which did not. The method is used after a connection with multiple labels is borrowed from the connection pool and is typically used by a labeling callback. The following example demonstrates checking for unmatched labels.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connecion conn = pds.getConnection(label);
Properties unmatched = ((LabelableConnection)
 connection).getUnmatchedConnectionLabels (label);

Removing a Connection Label from UCP

The removeConnectionLabel method is used to remove a label from a connection. This method is used after a labeled connection is borrowed from the connection pool. The following example demonstrates removing a connection label.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
Connection conn = pds.getConnection(label);
((LabelableConnection) conn).removeConnectionLabel(pname);

6 Controlling Reclaimable Connection Behavior

This chapter describes the following interfaces:

	
AbandonedConnectionTimeoutCallback

	
TimeToLiveConnectionTimeoutCallback

AbandonedConnectionTimeoutCallback

The AbandonedConnectionTimeoutCallback callback interface is used for the abandoned connection timeout feature. This feature enables applications to provide customized handling of abandoned connections.The callback object either uses one of its logical connection proxies or it is registered with each pooled connection. This enables applications to perform customized handling, when a particular connection is deemed abandoned by the pool. The handleTimedOutConnection method is invoked when a borrowed connection is deemed abandoned by the Universal Connection Pool. Applications can perform one of the following operations on the connection:

	
Completely override the pool-handling process

	
Invoke additional handling actions

	
Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the abandoned connection within the handleTimedOutConnection method.

	
Note:

If you try to register more than one AbandonedConnectionTimeoutCallback interface on the same connection, then it results in an exception. This exception can be a UniversalConnectionPoolException at the pool layer or a java.sql.SQLException, specific to the type of the UCP Adapter like JDBC, JCA and so on.

TimeToLiveConnectionTimeoutCallback

The TimeToLiveConnectionTimeoutCallback callback interface used for the time-to-live (TTL) connection timeout feature. This enables applications to provide customized handling for TTL timed-out connections.

The callback object either uses one of its logical connection proxies or it is registered with each pooled connection. This enables applications to perform customized handling, when the TTL of the particular connection times out.

The handleTimedOutConnection method is invoked when a borrowed connection is found to be TTL timed-out by the Universal Connection Pool. Applications can perform one of the following operations on the connection:

	
Completely override the pool-handling process

	
Invoke additional handling actions

	
Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the abandoned connection within the handleTimedOutConnection method.

	
Note:

If you try to register more than one TimeToLiveConnectionTimeoutCallback interface on the same connection, then it results in an exception. This exception can be a UniversalConnectionPoolException at the pool layer or a java.sql.SQLException, specific to the type of the UCP Adapter like JDBC, JCA, and so on.

7 Using the Connection Pool Manager

The following sections are included in this chapter:

	
Using the UCP Manager

	
Accessing JMX-based Management

Using the UCP Manager

The Universal Connection Pool (UCP) manager creates and maintains UCP instances. A pool instance is registered with the pool manager every time a new pool is created. This section covers the following topics:

	
Connection Pool Manager Overview

	
Creating a Connection Pool Manager

	
Controlling the Life Cycle of a Connection

	
Performing Maintenance on a Connection Pool

Connection Pool Manager Overview

Applications use a connection pool manager to explicitly create and manage UCP JDBC connection pools. Applications use the manager because it offers full life cycle control, such as creating, starting, stopping, and destroying a connection pool. Applications also use the manager to perform routine maintenance on the connection pool, such as refreshing, recycling, and purging connections in a pool. Lastly, applications use the connection pool manager because it offers a centralized integration point for administrative tools and consoles.

Creating a Connection Pool Manager

A connection pool manager is an instance of the UniversalConnectionPoolManager interface, which is located in the oracle.ucp.admin package. The manager is a Singleton instance that is used to manage multiple connection pools per JVM. The interface includes methods for interacting with a connection pool manager. UCP for JDBC includes an implementation that is used to get a connection pool manager instance. The following example demonstrates creating a connection pool manager instance using the implementation:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

Controlling the Life Cycle of a Connection

Applications use the connection pool manager to explicitly control the life cycle of connection pools. The manager is used to create, start, stop, and destroy connection pools. Life cycle methods are included as part of the UniversalConnectionPoolManager interface.

Understanding Life Cycle States

The life cycle states of a connection pool affects what manager operations can be performed on a connection pool. Applications that explicitly control the life cycle of a pool must ensure that the manager's operations are used only when the pool is in an appropriate state. Life cycle constraints are discussed throughout this section.

The following list describes the life cycle states of a pool:

	
Starting ??? Indicates that the connection pool's start method has been called and it is in the process of starting up.

	
Running ??? Indicates that the connection pool has been started and is ready to give out connections.

	
Stopping ??? Indicates that the connection pool is in the process of stopping.

	
Stopped ??? Indicates that the connection pool is stopped.

	
Failed ??? Indicates that the connection pool has encountered failures during starting, stopping, or execution.

Creating a Connection Pool

The manager's CreateConnectionPool method creates and registers a connection pool. The manager uses a connection pool adapter to create the pool and relies on a pool-enabled data source to configure the pool's properties. A connection pool name must be defined as part of the configuration and provides a way to refer to specific pools when interacting with the manager. A connection pool name must be unique and cannot be used by more than one connection pool.

The following example demonstrates creating a connection pool instance when using a manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionPoolName("mgr_pool");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

mgr.createConnectionPool((UniversalConnectionPoolAdapter)pds);

An application does not have to use the manager to create a pool in order for the pool to be managed. A pool that is implicitly created (that is, automatically created when using a pool-enabled data source) and configured with a pool name is automatically registered and managed by the pool manager. Oracle recommends implicit pool creation.9

	
Note:

The manager throws an exception if a connection pool already exists with the same name. An application must not implicitly start a connection pool before using the createConnectionPool method to explicitly create the same pool.

Starting a Connection Pool

The manager's startConnectionPool method starts a connection pool using the pool name as a parameter to determine which pool to start. The pool name is defined as a pool property on a pool-enabled data source.

The following example demonstrates starting a connection pool:

mgr.startConnectionPool("mgr_pool");

An application must always create a connection pool using the manager's createConnectionPool method prior to starting the pool. In addition, a life cycle state exception occurs if an application attempts to start a pool that has been previously started or if the pool is in a state other than stopped or failed.

Stopping a Connection Pool

The manager's stopConnectionPool method stops a connection pool using the pool name as a parameter to determine which pool to stop. The pool name is defined as a pool property on the pool-enabled data source. Stopping a connection pool closes all available and borrowed connections.

The following example demonstrates stopping a connection pool:

mgr.stopConnectionPool("mgr_pool");

An application can use the manager to stop a connection pool that was started implicitly or explicitly. An error occurs if an application attempts to stop a pool that does not exist or if the pool is in a state other than started or starting.

Destroying a Connection Pool

The manager's destroyConnectionPool method stops a connection pool and removes it from the connection pool manager. A pool name is used as a parameter to determine which pool to destroy. The pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates destroying a connection pool:

mgr.destroyConnectionPool("mgr_pool");

An application cannot start a connection pool that has been destroyed and must explicitly create and start a new connection pool.

Performing Maintenance on a Connection Pool

Applications use the connection pool manager to perform maintenance on a connection pool. Maintenance includes refreshing, recycling, and purging a connection pool. The maintenance methods are included as part of the UniversalConnectionPoolManager interface.

Maintenance is typically performed to remove and replace invalid connections and ensures a high availability of valid connections. Invalid connections typically cannot be used to connect to a database but are still maintained by the pool. These connections waste system resources and directly affect a pool's maximum connection limit. Ultimately, too many invalid connections negatively affects an applications performance.

	
Note:

Applications can check whether or not a connection is valid when borrowing the connection from the pool. See "Validating Connections in UCP" for detailed information. If an application consistently has a high number of invalid connections, additional testing should be performed to determine the cause.

Refreshing a Connection Pool

Refreshing a connection pool replaces every connection in the pool with a new connection. Any connections that are currently borrowed are marked for removal and refreshed after the connection is returned to the pool. The manager's refreshConnectionPool method refreshes a connection pool using the pool name as a parameter to determine which pool to refresh. The pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates refreshing a connection pool:

mgr.refreshConnectionPool("mgr_pool");

Recycling a Connection Pool

Recycling a connection pool replaces only invalid connection in the pool with a new connection and does not replace borrowed connections. The manager's recycleConnectionPool method recycles a connection pool using the pool name as a parameter to determine which pool to recycle. The pool name is defined as a pool property on the pool-enabled data source.

The setSQLForValidateConnection property must be set when using non-Oracle drivers. UCP for JDBC uses this property to determine whether or not a connection is valid before recycling the connection. See "Validating Connections in UCP" for more information on using the setSQLForValidateConnection property.

The following example demonstrates recycling a connection pool:

mgr.recycleConnectionPool("mgr_pool");

Purging a Connection Pool

Purging a connection pool removes every connection (available and borrowed) from the connection pool and leaves the connection pool empty. Subsequent requests for a connection result in a new connection being created. The manager's purgeConnectionPool method purges a connection pool using the pool name as a parameter to determine which pool to purge. The pool name is defined as a pool property on the pool-enabled data source.

The following example demonstrates purging a connection pool:

mgr.purgeConnectionPool("mgr_pool");

	
Note:

Connection pool properties, such as minPoolSize and initialPoolSize, may not be enforced after a connection pool is purged.

Accessing JMX-based Management

JMX (Java Management Extensions) is a Java technology that supplies tools for managing and monitoring applications, system objects, devices, service-oriented networks, and JVM (Java Virtual Machine). This API allows its classes to be dynamically constructed and changed. So, you can use this technology to monitor and manage resources as they are created, installed, and implemented. The JMX API also includes remote access, so a remote management program can interact with a running application for these purposes.

In JMX, a given resource is instrumented by one or more Java objects known as MBeans (Managed Beans). These MBeans are registered in a core managed object server, known as an MBean server, that acts as a management agent and can run on most devices enabled for the Java programming language. A JMX agent consists of an MBean server, in which MBeans are registered, and a set of services for handling MBeans.

All MBean attributes and operations are available only when the UniversalConnectionPoolManager.isJmxEnabled method returns true. The default value of this flag is true. This default value can be altered by calling the UniversalConnectionPoolManager.setJmxEnabled method. When an MBeanServer is not available, the jmxFlag is automatically set to false.

	
See Also:

Oracle Universal Connection Pool for JDBC Java API Reference

UCP provides the following two MBeans for pool management support:

	
UniversalConnectionPoolManagerMBean

	
UniversalConnectionPoolMBean

UniversalConnectionPoolManagerMBean

The UniversalConnectionPoolManagerMBean is a manager MBean that includes all the functionalities of a conventional connection pool manager. The UniversalConnectionPoolManagerMBean provides the following functionalities:

	
Registering and unregistering pool MBeans

	
Pool management operations like starting the pool, stopping the pool, refreshing the pool, and so on

	
Starting and stopping DMS statistics

	
Logging

UniversalConnectionPoolMBean

The UniversalConnectionPoolMBean is a pool MBean that covers dynamic configuration of pool properties and pool statistics. The UniversalConnectionPoolMBean provides the following functionalities:

	
Configuring pool property attributes like size, timeouts, and so on

	
Pool management operations like refreshing the pool, recycling the pool, and so on

	
Monitoring pool statistics and life cycle states

8 Using Oracle RAC Features

The following sections are included in this chapter:

	
Overview of Oracle RAC Features

	
Using Fast Connection Failover

	
Using Run-Time Connection Load Balancing

	
Using Connection Affinity

	
Using Global Data Services

Overview of Oracle RAC Features

UCP JDBC connection pools provide a tight integration with various Oracle Real Application Clusters (Oracle RAC) Database features. The features include Fast Connection Failover (FCF), Run-Time Connection Load Balancing, and Connection Affinity. These features require the use of an Oracle JDBC driver, Oracle RAC database, and the Oracle Notification Service library (ons.jar) that is included with the Oracle Client software.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more information about these technologies

	
Note:

Starting from Oracle Database 11g Release 1 (11.2), FCF is also supported by Oracle Restart on a single instance database. Oracle Restart was previously known as Single-Instance High Availability (SIHA). For more information on Oracle Restart, refer to Oracle Database Administrator's Guide.

Applications use Oracle RAC features to maximize connection performance and availability and to mitigate down-time due to connection problems. Applications have different availability and performance requirements and should implement Oracle RAC features accordingly.

Generic High Availability and Performance Features

The UCP for JDBC APIs and connection pool properties include many high availability and performance features that do not require an Oracle RAC database. These features work well with both Oracle and non-Oracle connections and are discussed throughout this guide. For example: validating connections on borrow; setting timeout properties; setting maximum reuse properties; and connection pool manager operations are all used to ensure a high-level of connection availability and optimal performance.

	
Note:

Generic high availability and performance features work slightly better when using Oracle connections because UCP for JDBC leverages Oracle JDBC internal APIs.

Database Version Compatibility for Oracle RAC

Table 8-1 lists supported Database versions for various Oracle RAC features:

Table 8-1 Oracle RAC Version Compatibility

	Feature	Supported Database Version
	
Fast Connection Failover

	
Oracle Database 10.1.x and later versions

	
Run-time Connection Load-Balancing

	
Oracle Database 10.2.x and later versions

	
Web Session Affinity

	
Oracle Database 11.1.x and later versions

	
Transaction-Based Affinity

	
Oracle Database 10.2.x and later versions (Oracle Database 11.1.x recommended)

Oracle JDBC Driver Version Compatibility for Oracle RAC

Oracle JDBC driver 10.1.x and later versions are supported with Oracle RAC features.

Using Fast Connection Failover

This section contains the following subsections:

	
Overview of Fast Connection Failover

	
Understanding Fast Connection Failover

	
Fast Connection Failover Prerequisites

	
Example Fast Connection Failover Configuration

	
Enabling Fast Connection Failover

	
Configuring ONS

	
Configuring the Connection URL

Overview of Fast Connection Failover

The Fast Connection Failover (FCF) feature is a Fast Application Notification (FAN) client implemented through the connection pool. The feature requires the use of an Oracle JDBC driver and an Oracle RAC database or an Oracle Restart on a single instance database. This section only describes the steps that an application must perform when using FCF with Oracle RAC. For more information on setting up an Oracle RAC database, see the Oracle Real Application Clusters Administration and Deployment Guide or consult an Oracle database administrator.

FCF manages pooled connections for high availability and provides the following features:

	
FCF supports unplanned outages. Dead connections are rapidly detected and then the connections are aborted and removed from the pool. Connection removal relies on abort to rapidly sever socket connections in order to prevent hangs. Borrowed and in-use connections are interrupted only for unplanned outages.

	
FCF supports planned outages. Borrowed or in-use connections are not interrupted and closed until work is done and control of the connection is returned to the pool.

	
FCF encapsulates fatal connection errors and exceptions into the isValid API for robust and efficient retries. See "Checking If a Connection Is Valid" for more information on using this API.

	
FCF recognizes new nodes that join an Oracle RAC cluster and places new connections on that node appropriately in order to deliver maximum quality of service to applications at run time. This facilitates middle-tier integration of Oracle RAC node joins and work-request routing from the application tier.

	
FCF distributes run-time work requests to all active Oracle RAC instances.

Unplanned Shutdown Scenarios

FCF supports unplanned shutdown scenarios by detecting and removing stale connections to an Oracle RAC cluster. Stale connections include connections that do not have a service available on any instance in an Oracle RAC cluster due to service-down and node-down events. Borrowed connections and available connections that are stale are detected, and their network connection is severed before removing them from the pool. These removed connections are not replaced by the pool. Instead, the application must retry connections before performing any work with a connection.

	
Note:

Borrowed connections are immediately aborted and closed during unplanned shutdown scenarios. Any on-going transactions immediately receive an exception.

Planned Shutdown Scenarios

FCF supports planned shutdown scenarios where an Oracle RAC service can be gracefully shutdown. In such scenarios, stale borrowed connections are marked and will only be aborted and removed after they are returned to the pool. Any on-going transactions do not see any difference and proceed to complete.

The primary difference between unplanned and planned shutdown scenarios is how borrowed connections are handled. Stale connections that are idle in the pool (not borrowed) are removed in the same manner as the unplanned shutdown scenario.

Starting from Oracle Database 12c Release 1 (12.1.0.2), UCP for JDBC supports graceful connection draining from any planned-down Oracle RAC instance. Affected borrowed connections are removed smoothly over a grace period, instead of immediate removal upon their return to the pool. This helps in avoiding throughput impact and logon storms during any service relocation.

	
See Also:

"Enabling Fast Connection Failover" for more information about graceful connection draining using UCP for JDBC

Oracle RAC Instance Rejoin and New Instance Scenarios

FCF supports scenarios where an Oracle RAC cluster adds instances that provide a service of interest. The instance may be new to the cluster or may have been restarted after a down event. In both cases, UCP for JDBC recognizes the new instance and creates connections to the node as required.

Understanding Fast Connection Failover

After Fast Connection Failover is enabled, the mechanism is automatic; no application intervention is needed. This section discusses how a connection failover is presented to an application and what steps the application takes to recover, in the following sections:

	
What the Application Sees

	
How It Works

What the Application Sees

By the time an Oracle RAC service failure is propagated to the JDBC application, the database already rolls back the local transaction. The cache manager then cleans up all invalid connections. When an application holding an invalid connection tries to do work through that connection, it is possible to receive SQLException, ORA-17008, Closed Connection.

When an application receives a Closed Connection error message, it should do the following:

	
Retry the connection request. This is essential, because the old connection is no longer open.

	
Replay the transaction. All work done before the connection was closed has been lost.

	
Note:

The application should not try to roll back the transaction. The transaction was already rolled back in the database by the time the application received the exception.

How It Works

Under Fast Connection Failover, each connection in the cache maintains a mapping to a service, instance, database, and host name.

When a database generates an Oracle RAC event, that event is forwarded to the JVM in which JDBC is running. A daemon thread inside the JVM receives the Oracle RAC event and passes it on to the Connection Cache Manager. The Connection Cache Manager then throws SQL exceptions to the applications affected by the Oracle RAC event.

A typical failover scenario may work like the following:

	
A database instance fails, leaving several stale connections in the cache.

	
The Oracle RAC mechanism in the database generates an Oracle RAC event which is sent to the JVM containing JDBC.

	
The daemon thread inside the JVM finds all the connections affected by the Oracle RAC event, notifies them of the closed connection through SQL exceptions, and rolls back any open transactions.

	
Each individual connection receives a SQL exception and must retry.

Fast Connection Failover Prerequisites

Fast Connection Failover is available under the following circumstances:

	
The Universal Connection Pool is enabled.

Fast Connection Failover works in conjunction with the JDBC connection caching mechanism. This helps applications manage connections to ensure high availability.

	
The application uses service names to connect to the database.

The application cannot use service identifiers.

	
The underlying database has Oracle Database 12c Release 1 (12.1) Real Application Clusters (Oracle RAC) capability or Oracle Data Guard configured with either single instance Databases or Oracle RAC.

If failover events are not propagated, then connection failover cannot occur.

	
Oracle Notification Service (ONS) is configured and available on the node where JDBC is running.

JDBC depends on ONS to propagate database events and notify JDBC of them.

	
The Java Virtual Machine (JVM) in which your JDBC instance is running must have oracle.ons.oraclehome set to point to your ORACLE_HOME.

Example Fast Connection Failover Configuration

The following example demonstrates a connection pool that uses the FCF feature. FCF is configured through a pool-enabled data source. The example includes enabling FCF, configuring the Oracle Notification Service (ONS) and configuring a connection URL. These topics are discussed after the example.

Example 8-1 Fast Connection Failover Configuration Example

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");
pds.setFastConnectionFailoverEnabled(true);
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=
/oracle11/onswalletfile");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");pds.setURL("jdbc:oracle:thin@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode1) (PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode2) (PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");
...

The isValid method of the oracle.ucp.jdbc.ValidConnection interface is typically used in conjunction with the FCF feature and is used to check if a borrowed connection is still usable after an SQL exception has been thrown due to an Oracle RAC down event. For example:

try { conn = pds.getConnection; ...}catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

For more information on the ValidConnection interface, see "Checking If a Connection Is Valid".

Enabling Fast Connection Failover

The FCF pool property is used to enable and disable FCF. FCF is disabled by default. The following example demonstrates enabling FCF as shown in Example 8-1.

pds.setFastConnectionFailoverEnabled(true);

	
Note:

Starting from Oracle Database 12c Release 1 (12.1.0.2), UCP for JDBC supports the oracle.ucp.PlannedDrainingPeriod system property. It specifies the grace time period (in integer seconds) over which the pool smoothly drains the borrowed connections affected by a planned shut down. Draining starts when the same Database service becomes available on another instance different from the one that is going down.
When this property is not set, or set to 0, then the pool closes any affected borrowed connection immediately when it is returned to the pool.

Querying Fast Connection Failover Status

An application determines if Fast Connection Failover is enabled by calling OracleDataSource.getFastConnectionFailoverEnabled, which returns true if failover is enabled, false otherwise.

	
Note:

FCF must also be enabled to use run-time connection load balancing and connection affinity. These features are discussed later in this chapter.

Configuring ONS

FCF relies on the Oracle Notification Service (ONS) to propagate database events between the connection pool and the Oracle RAC database. At run time, the connection pool must be able to setup an ONS environment. ONS (ons.jar) is included as part of the Oracle Client software. ONS can be configured using either remote configuration or client-side ONS daemon configuration. Remote configuration is the preferred configuration for standalone client applications. This section discusses the following topics:

	
Overview of ONS Configuration File

	
Remote Configuration

	
Client-Side Daemon Configuration

Overview of ONS Configuration File

ONS configuration is controlled by the ONS configuration file, ORACLE_HOME/opmn/conf/ons.config. This file tells the ONS daemon how it should behave. Configuration information within ons.config is defined in simple name and value pairs.

Some parameters in the ons.config file are required and some are optional. Table 8-2 lists the required ONS configuration parameters and Table 8-3 lists the optional ONS configuration parameters. ONS must be refreshed after updating the ons.config file.

Table 8-2 Required ONS Configuration Parameters

	Parameter	Explanation
	
localport

	
Specifies the port that ONS binds to on the local host interface to talk to local clients.

For example, localport=4100

	
remoteport

	
Specifies the port that ONS binds to on all interfaces for talking to other ONS daemons.

For example, remoteport=4200

	
nodes

	
Specifies a list of other ONS daemons to talk to. Node values are given as a comma-delimited list of either host names or IP addresses plus ports. The port value that is given is the remote port that each ONS instance is listening on. In order to maintain an identical file on all nodes, the host:port of the current ONS node can also be listed in the nodes list. It will be ignored when reading the list.

For example, nodes=myhost.example.com:4200,123.123.123.123:4200

The nodes listed in the nodes line correspond to the individual nodes in the Oracle RAC instance. Listing the nodes ensures that the middle-tier node can communicate with the Oracle RAC nodes. At least one middle-tier node and one node in the Oracle RAC instance must be configured to see one another. As long as one node on each side is aware of the other, all nodes are visible. You need not list every single cluster and middle-tier node in the ONS configuration file of each Oracle RAC node. In particular, if one ONS configuration file cluster node is aware of the middle tier, then all nodes in the cluster are aware of it.

Table 8-3 Optional ONS Configuration Parameters

	Parameter	Description
	
logcomp

	
Specifies the ONS components to log. The format is as follows:

<component>[<subcomponent>,...];<component>[<subcomponent>,...];...

If no subcomponents need to be specified, then do not include the brackets ([]) after the component name. To exclude messages from a subcomponent, precede the subcomponent name with an exclamation mark (!). For example, to exclude messages from the topology subcomponent, you use the following format:

[all,!topology]

Note that before specifying a subcomponent from which you want to exclude messages, you must first ensure that the subcomponent includes the messages.

Following are the valid values for components:

	
internal

	
ons

If you specify the component as internal, then there are no valid values for subcomponent. If you specify the component as ons, then you can specify the following values for subcomponent:

	
all: Specifies all messages

	
ons: ONS local information

	
listener: ONS listener information

	
discover: ONS discover (server or multicast) information

	
servers: ONS remote servers currently up and connected to the cluster

	
topology: ONS current cluster wide server connection topology

	
server: ONS remote server connection information

	
client: ONS client connection information

	
connect: ONS generic connection information

	
subscribe: ONS client subscription information

	
message: ONS notification receiving and processing information

	
deliver: ONS notification delivery information

	
special: ONS special notification processing

	
internal: ONS internal resource information

	
secure: ONS SSL operation information

	
workers: ONS worker threads

The following example shows that you want to log messages for all the subcomponents under ons, except the secure subcomponent:

logcomp=ons[all,!secure]

	
logfile

	
Specifies a log file that ONS should use for logging messages. The default value for log file is $ORACLE_HOME/opmn/logs/ons.log.

For example, logfile=/private/oraclehome/opmn/logs/myons.log

	
walletfile

	
Specifies the wallet file used by the Oracle Secure Sockets Layer (SSL) to store SSL certificates. If a wallet file is specified to ONS, then it uses SSL when communicating with other ONS instances and require SSL certificate authentication from all ONS instances that try to connect to it. This means that if you want to turn on SSL for one ONS instance, then you must turn it on for all instances that are connected. This value should point to the directory where your ewallet.p12 file is located.

For example, walletfile=/private/oraclehome/opmn/conf/ssl.wlt/default

	
useocr

	
Specifies the value, reserved for use on the server-side, to indicate ONS whether it should store all Oracle RAC nodes and port numbers in Oracle Cluster Registry (OCR) instead of the ONS configuration file or not. A value of useocr=on is used to store all Oracle RAC nodes and port numbers in Oracle Cluster Registry (OCR).

Do not use this option on the client-side.

	
allowgroup

	
Specifies the ONS setting to indicate the user group connecting to the localport. When set to true, ONS allows users within the same OS group to connect to its local port. When set to false, ONS only allows the same user running the ONS daemon to access its local port. The default value of this parameter is false. When using remote ONS configuration, there is no need to set this parameter.

The ons.config file allows blank lines and comments on lines that begin with the number sign (#).

Remote Configuration

UCP for JDBC supports remote configuration of ONS through the ONSConfiguration pool property. The ONSConfiguration pool property value is a string that closely resembles the content of the ons.config file. The string contains a list of name=value pairs separated by a new line character (\n). You can set this pool property in the following two ways:

	
The name can be one of the following: nodes, walletfile, or walletpassword. The parameter string should at least specify the ONS configuration nodes attribute as a list of host:port pairs separated by a comma. SSL is used when the walletfile attribute is specified as an Oracle wallet file.

The following example demonstrates an ONS configuration string as shown in Example 8-1:

...
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/oracle11/onswalletfile");
...

	
The name can be only propertiesfile. The value is the location of an ONS-specific Java properties file. This file must contain the oracle.ons.nodes property, and one or both of the following ONS Java properties:

	
oracle.ons.walletfile

	
oracle.ons.walletpassword

The following example illustrates such an ONSConfiguration string:

pds.setONSConfiguration("propertiesfile=/usr/ons/ons.properties");

The following is an example of the content of the Java properties ons.properties file:

oracle.ons.nodes=racnode1:4200,racnode2:4200
oracle.ons.walletfile=/oracle11/onswalletfile

	
Note:

The parameters in the configuration string must match those for the Oracle RAC Database. In addition, if you are using Oracle Application Server, then you must configure ONS using procedures that are applicable to the server.
For standalone Java applications, you must configure ONS using the setONSConfiguration method. However, if your application meets the following requirements, then you no longer need to call the setONSConfiguration method for enabling FCF:

	
Your application is using Oracle Database 12c Release 1 (12.1) UCP and Oracle RAC Database 12c Release 1 (12.1)

	
Your application does not require ONS wallet or keystore

Client-Side Daemon Configuration

Client-side ONS daemon configuration is typical of applications that run on a middle-tier server such as the Oracle Application Server. Clients in this scenario directly configure ONS by updating the ons.config file. The location of the file may be different depending on the platform. Example 8-2 demonstrates an ons.config file for Example 8-1:

	
Note:

For client-side ONS daemon configuration, if the operating system (OS) user that starts the connection pool and the OS user that starts the client-side daemon are different, then they both must belong to the same OS group. Also, the value of the allowgroup parameter must be set to true in the ons.config file.

Example 8-2 Example of a Sample ons.config File

This is an example ons.config file
#
The first three values are required
localport=4100
remoteport=4200
nodes=racnode1.example.com:4200,racnode2.example.com:4200

After configuring ONS, you start the ONS daemon with the onsctl command. You must make sure that an ONS daemon is running at all times.

Using the onsctl Command

After configuring, use ORACLE_HOME/opmn/bin/onsctl to start, stop, reconfigure, and monitor the ONS daemon. Table 8-4 is a summary of the commands that onsctl supports.

Table 8-4 onsctl Commands

	Command	Effect	Output
	
start

	
Starts the ONS daemon

	
onsctl: ons started

	
stop

	
Stops the ONS daemon

	
onsctl: shutting down ons daemon...

	
ping

	
Verifies whether or not the ONS daemon is running

	
ons is running ...

	
reconfig

	
Triggers a reload of the ONS configuration without shutting down the ONS daemon

	

	
help

	
Prints a help summary message for onsctl

	

	
detailed

	
Prints a detailed help message for onsctl

	

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide

	
Note:

	
The Java Virtual Machine (JVM), in which your JDBC instance is running, must have the oracle.ons.oraclehome system property set to the location of ORACLE_HOME before starting the application. For example:

java -Doracle.ons.oraclehome=$ORACLE_HOME ...

	
Oracle recommends remote configuration of ONS for UCP.

	
Note:

In Oracle RAC 12.1.0.2.0, by default, server installation requires the value of the walletfile ONS parameter to be set, and enforces the use of SSL for all ONS connections.
If you have a UCP application that is already using the walletfile parameter in the ONS remote configuration string or local configuration file, then the only requirement is that, for the same topology, the wallet file on the client side must have the same content as the wallet file on the server side. You can make a copy of the server-side file and make it available on the client side.

For UCP applications that are using Oracle RAC features without setting the walletfile parameter, you must perform one of the following:

	
Add the walletfile parameter setting to the ONS remote configuration string or local configuration file, as shown in Example 8-1. Keep in mind that, for the same topology, the wallet file on the client side must have the same content as the wallet file on the Oracle RAC server side.

	
Run the following command to remove the walletfile parameter setting from both client and server ONS configuration string and the local configuration file:

srvctl modify nodeapps -clientdata

For secure communication, the ONS auto-configuration in Oracle RAC 12.1.x no longer works when Oracle RAC 12.1.0.2.0 is first installed or patched. Applications have to use explicit ONS configuration (remote or local) instead, and make one of the changes previously discussed.

Configuring the Connection URL

The connection URL of a connection factory must use the service name syntax when using FCF. The service name is used to map the connection pool to the service. In addition, the factory class must be an Oracle factory class. The following example demonstrates configuring the connection URL as shown in Example 8-1:

...
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@//host:port/service_name");
...

	
Note:

An exception is thrown if a service identifier (SID) is specified for the connection URL when FCF is enabled.

The following examples demonstrate valid connection URL syntax when connecting to an Oracle RAC database. Examples for both the Oracle JDBC thin and Oracle OCI driver are included. Notice that the URL can be used to explicitly enable load balancing among Oracle RAC nodes:

Valid Connection URL Usage

pds.setURL("jdbc:oracle:thin@//host:port/service_name");

pds.setURL("jdbc:oracle:thin@//cluster-alias:port/service_name");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@TNS_ALIAS");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521)) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

Using Run-Time Connection Load Balancing

This section contains the following subsections:

	
Overview of Run-Time Connection Load Balancing

	
Setting Up Run-Time Connection Load Balancing

Overview of Run-Time Connection Load Balancing

In an Oracle Real Application Clusters environment, a connection could belong to any instance that provides the relevant service. In the best case, all instances perform equally well and randomly retrieving a connection from the cache is appropriate. However, when one instance performs better than others, random selection of a connection is inefficient. The run-time connection load balancing feature enables routing of work requests to an instance that offers the best performance, minimizing the need to relocate work.

UCP JDBC connection pools leverage the load balancing functionality provided by an Oracle RAC database. Run-time connection load balancing requires the use of an Oracle JDBC driver and an Oracle RAC database. For more information on setting up an Oracle RAC database, see the Oracle Real Application Clusters Administration and Deployment Guide or consult an Oracle database administrator.

Run-time connection load balancing is useful when:

	
Traditional balancing of workload is not optimal

	
Requests must be routed to make optimal use of resources in a clustered database

	
Capacity within the cluster differs and is expected to change over time

	
The need to avoid sending work to slow, hung, and dead nodes is required

UCP for JDBC uses the Oracle RAC Load Balancing Advisory. The advisory is used to balance work across Oracle RAC instances and is used to determine which instances offer the best performance. Applications transparently receive connections from instances that offer the best performance. Connection requests are quickly diverted from instances that have slowed, are not responding, or that have failed.

Run-time connection load balancing provides the following benefits:

	
Manages pooled connections for high performance and scalability

	
Receives continuous recommendations on the percentage of work to route to database instances

	
Adjusts distribution of work based on different back-end node capacities such as CPU capacity or response time

	
Reacts quickly to changes in cluster reconfiguration, application workload, overworked nodes, or hangs

	
Receives metrics from the Oracle RAC Load Balance Advisory. Connections to well performing instances are used most often. New and unused connections to under-performing instances will gravitate away over time. When distribution metrics are not received, connection are selected using a random choice.

Setting Up Run-Time Connection Load Balancing

Run-time connection load balancing requires that FCF is enabled and configured properly. See "Using Fast Connection Failover" for detailed instructions on setting up FCF.

In addition, you must configure the Oracle RAC Load Balancing Advisory with service-level goals for each service for which load balancing is enabled:

	
The service goal must be set to one of the following:

	
DBMS_SERVICE.SERVICE_TIME

	
DBMS_SERVICE.THROUGHPUT

The service goal can be set using the goal parameter, and the connection balancing goal can be set using the clb_goal parameter.

	
The connection balancing goal must be set to SHORT. For example,

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_THROUGHPUT -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

Or

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_SERVICE_TIME -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

The connection balancing goal can also be set by calling the DBMS_SERVICE.create_service procedure.

	
Note:

You can set the connection balancing goal to LONG. However, this is mostly useful for closed workloads, that is, when the rate of completing work is equal to the rate of starting new work.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Using Connection Affinity

This section contains the following subsections:

	
Overview of Connection Affinity

	
Setting Up Connection Affinity

Overview of Connection Affinity

UCP JDBC connection pools leverage affinity functionality provided by an Oracle RAC database. Connection affinity requires the use of an Oracle JDBC driver and an Oracle RAC database version 11.1.0.6 or higher.

Connection affinity is a performance feature that enables a connection pool to select connections that are directed at a specific Oracle RAC instance. The pool uses run-time connection load balancing (if configured) to select an Oracle RAC instance to create the first connection and then subsequent connections are created with an affinity to the same instance.

	
See Also:

	
"Strict Affinity Mode"

	
Oracle Real Application Clusters Administration and Deployment Guide for more information about setting up an Oracle RAC database.

UCP JDBC connection pools support the following two types of connection affinity:

	
Transaction-Based Affinity

	
Web Session Affinity

Transaction-Based Affinity

Transaction-based affinity is an affinity to an Oracle RAC instance that can be released by either the client application or a failure event. Applications typically use this type of affinity when long-lived affinity to an Oracle RAC instance is desired or when the cost (in terms of performance) of being redirected to a new Oracle RAC instance is high. Distributed transactions are a good example of transaction-based affinity. XA connections that are enlisted in a distributed transaction keep an affinity to the Oracle RAC instance for the duration of the transaction. In this case, an application would incur a significant performance cost if a connection is redirect to a different Oracle RAC instance during the distributed transaction.

Web Session Affinity

Web session affinity is an affinity to an Oracle RAC instance that can be released by either the instance, a client application, or a failure event. The Oracle RAC instance uses a hint to communicate to a connection pool whether affinity has been enabled or disabled on the instance. An Oracle RAC instance may disable affinity based on many factors, such as performance or load. If an Oracle RAC instance can no longer support affinity, the connections in the pool are refreshed to use a new instance and affinity is established once again.

Applications typically use this type of affinity when short-lived affinity to an Oracle RAC instance is expected or if the cost (in terms of performance) of being redirected to a new Oracle RAC instance is minimal. For example, a mail client session might use Web session affinity to an Oracle RAC instance to increase performance and is relatively unaffected if a connection is redirected to a different instance.

Setting Up Connection Affinity

Perform the following steps to set up connection affinity:

	
Enable FCF.

	
See Also:

"Using Fast Connection Failover"

	
Enable run-time connection load balancing.

	
See Also:

"Using Run-Time Connection Load Balancing"

	
Create a connection affinity callback.

	
Register the callback.

	
Note:

Transaction-based affinity is strictly scoped between the application/middle-tier and UCP for JDBC. Therefore, transaction-based affinity requires only the setFastConnectionFailoverEnabled property be set to true and does not require complete FCF configuration.
In addition, transaction-based affinity does not technically require run-time connection load balancing. However, it can help with performance and is usually enabled regardless. If run-time connection load balancing is not enabled, the connection pool randomly picks connections.

This section contains the following subsections:

	
Creating a Connection Affinity Callback

	
Registering a Connection Affinity Callback

	
Removing a Connection Affinity Callback

Creating a Connection Affinity Callback

Connection affinity requires the use of a callback. The callback is an implementation of the ConnectionAffinityCallback interface which is located in the oracle.ucp package. The callback is used by the connection pool to establish and retrieve a connection affinity context and is also used to set the affinity policy type (transaction-based or Web session).

The following example demonstrates setting an affinity policy in a callback implementation. The example also demonstrates manually setting an affinity context. typically, the connection pool sets the affinity context inside an application. However, the ability to manually set an affinity context is provided for applications that want to customize affinity behavior and control the affinity context directly.

public class AffinityCallbackSample
 implements ConnectionAffinityCallback {

 Object appAffinityContext = null;
 ConnectionAffinityCallback.AffinityPolicy affinityPolicy =
 ConnectionAffinityCallback.AffinityPolicy.TRANSACTION_BASED_AFFINITY;

 //For Web session affinity, use WEBSESSION_BASED_AFFINITY;

 public void setAffinityPolicy(AffinityPolicy policy)
 {
 affinityPolicy = policy;
 }

 public AffinityPolicy getAffinityPolicy()
 {
 return affinityPolicy;
 }

 public boolean setConnectionAffinityContext(Object affCxt)
 {
 synchronized (lockObj)
 {
 appAffinityContext = affCxt;
 }
 return true;
 }

 public Object getConnectionAffinityContext()
 {
 synchronized (lockObj)
 {
 return appAffinityContext;
 }
 }
}

Registering a Connection Affinity Callback

A connection affinity callback is registered on a connection pool using the registerConnectionAffinityCallback method. The callback is registered when creating the connection pool. Only one callback can be registered per connection pool.

The following example demonstrates registering a connection affinity callback implementation:

ConnectionAffinityCallback callback = new MyCallback();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.registerConnectionAffinityCallback(callback);
...

Removing a Connection Affinity Callback

A connection affinity callback is removed from a connection pool using the removeConnectionAffinityCallback method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.removeConnectionAffinityCallback();
...

Strict Affinity Mode

By default, affinity is only a hint. A connection pool selects a new Oracle RAC instance for connections if it does not find a connection on a desired instance. You can change this behavior by switching the strict affinity mode on. The strict affinity mode throws a UCP exception if a connection on a desired instance is not found.

Use the following pool properties to switch on the strict affinity mode:

	
The useStrictWebSessionAffinity property

Set the useStrictWebSessionAffinity property to true or false for switching the strict Web session affinity mode on or off respectively.

	
The useStrictXAAffinity property

Set the useStrictXAAffinity property to true or false for switching the strict transaction-based affinity mode on or off respectively.

These properties can be handled through the UniversalConnectionPoolMBean.

	
See Also:

"UniversalConnectionPoolMBean"

Using Global Data Services

This section describes the new Global Data Services (GDS) feature that can be used with Universal Connection Pool:

	
Overview of Global Data Services

	
Configuration Settings of Applications Using GDS

Overview of Global Data Services

Global Data Services (GDS) is a new feature introduced in Oracle Database 12c Release 1 (12.1). Through this feature, Fast Connection Failover, Run-time Connection Load-Balancing, and Connection Affinity features that were available only in Oracle RAC, are now extended to a set of replicated databases that offer common services.

The set of databases may include Oracle RAC and single-instance Oracle databases interconnected through Data Guard, GoldenGate, or any other replication technology. A database service that can be provided by multiple databases is called a global service, so that it can be distinguished from the traditional service that can be provided only by a single database. This combination enables services to be deployed anywhere within this globally distributed configuration, supporting load balancing, high availability, database affinity, and so on.

	
See Also:

Oracle Database Global Data Services Concepts and Administration Guide

Configuration Settings of Applications Using GDS

UCP connects to Global Data Services in the same way that it connects to local services on an Oracle RAC. The service name in the connection string should be the name of the global service. The endpoint should be the endpoint of a GDS listener instead of the endpoint for the local, remote, or SCAN listener of a database.

A client must specify its region in the REGION parameter of the connection string. This is a new requirement for GDS. The region name is required because, in case of GDS, Run-time Load Balancing advisory is customized for particular regions. Following is an example of a typical connection string:

(DESCRIPTION=
 (ADDRESS=(GDS_protocol_address_information))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

Like with local services, UCP can specify multiple GDS listeners in the same connection string for listener failover, load balancing, or both.

	
Note:

SCAN is not supported for GDS listeners, therefore endpoint for each listener must be specified.

(DESCRIPTION=
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (FAILOVER=ON)
 (ADDRESS=(GDS_protocol_address_information))
 (ADDRESS=(GDS_protocol_address_information)))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

The REGION parameter is optional if only global service managers from the local region are specified in the client connection string. This is the case when there is only one region in the GDS configuration, or can be the case when there are multiple regions. But, it is not feasible to change the connection string of the an existing client designed to work with a single database. If the REGION parameter is not specified, then the client's region is assumed to be the region of the global service manager used to connect to the global service.

	
Note:

Unless the REGION parameter is specified in the connection string, you can use a pre-12c thin JDBC client only with a GDS configuration that has a single region.

All GDS listeners in the preceding example belong to the same region where UCP is running, that is the local region. To provide high availability, when all GDSs in the local region are unavailable, you can specify the GDS listeners for the buddy region in additional ADDRESS_LIST descriptors.

(DESCRIPTION=
 (FAILOVER=on)
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(global_protocol_address_information))
 (ADDRESS=(global_protocol_address_information)))
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(global_protocol_address_information))
 (ADDRESS=(global_protocol_address_information)))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

You do not need manual ONS configuration because UCP automatically retrieves the ONS connection information that is optimally customized for the UCP region from GDS.

	
Note:

	
To enable automatic ONS configuration for GDS, you must enable Fast Connection Failover (FCF) on UCP.

	
Automatic ONS configuration works only with Oracle GDS and Oracle RAC. It does not work with single-instance Oracle Databases.

Automatic ONS configuration does not support ONS wallet or keystore parameters. If your application requires any of these parameters, then you must configure ONS explicitly in either of the following two ways:

	
Calling the PoolDataSource.setONSConfiguration(String) method

	
Adding the ONS wallet or keystore parameters in the local ONS configuration file

9 Ensuring Application Continuity

Oracle Database 12c Release 1 (12.1) introduces the Application Continuity feature that provides a general purpose, application-independent infrastructure. Application Continuity enables recovery of work from an application perspective, after the occurrence of a planned or unplanned outage that can be related to system, communication, or hardware following a repair, a configuration change, or a patch application.

	
See Also:

Oracle Database Development Guide for more information about Application Continuity

For using Application Continuity, you must first configure your data source as described in "Data Source Configuration". After that, use one of the following two features for implementing Application Continuity in your applications using Universal Connection Pool (UCP) for JDBC:

	
Connection Labeling

	
Connection Initialization Callback

Data Source Configuration

To utilize the Application Continuity feature on a pool-enabled data source, the application must make the following call on oracle.ucp.jdbc.PoolDataSource interface:

// pds is a PoolDataSource
pds.setConnectionFactoryClassName("oracle.jdbc.replay.OracleDataSourceImpl");

	
See Also:

"Using the Pool-Enabled Data Source"

Always connect to a service, instead of using SID. Application Continuity is not supported when connecting in the SID syntax.

	
See Also:

Oracle Database Development Guide for more information about Application Continuity

When running against Oracle Real Application Clusters (Oracle RAC) or Data Guard, the application should also enable Fast Connection Failover (FCF) as shown in the following code snippet:

pds.setFastConnectionFailoverEnabled(true);

	
See Also:

"Enabling Fast Connection Failover" for more information

Connection Labeling

Connection labeling enables an application to attach arbitrary name/value pairs to a connection. The application can request a connection with the desired label from the connection pool.

	
See Also:

"Labeling Connections in UCP" for more information labeling connections

Connection labeling sets the initial state for each connection request. If the application uses connection labeling or benefits from labeling connections, then a labeling callback should be registered for Application Continuity to initialize clean connections at failover.

Every time Application Continuity gets a new connection from the underlying data source, the labeling callback executes. The callback executes during normal connection check-out and also during replay. So, the state that is created at run time is exactly re-created during replay. The initialization must be idempotent.

It is legal for the callback to execute a transaction as long as the transaction completes (either it commits or rolls back) at the end of callback invocation. Application Continuity repeats any action coded within the callback implementation, including such transaction. If an outage occurs during the execution of a UCP labeling callback, then Application Continuity may execute the callback more than once as part of the replay attempt. Again, it is important for the callback actions to be idempotent.

Connection Initialization Callback

If an application cannot use connection labeling because it cannot be changed, then the connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is borrowed from the pool and at each successful reconnection following a recoverable error. For more information about using connection initialization callback, refer to "Connection Initialization Callback".

10 Diagnosing a Connection Pool

The following sections are included in this chapter:

	
Pool Statistics

	
Dynamic Monitoring Service Metrics

	
Viewing Oracle RAC Statistics

	
Setting Up Logging in UCP

	
Exceptions and Error Codes

Pool Statistics

Universal Connection Pool (UCP) for JDBC provides a set of run-time statistics for the connection pool. These statistics can be divided into the following two categories:

	
Noncumulative

These statistics apply only to the current running connection pool instance.

	
Cumulative

These statistics are collected across multiple pool start/stop cycles.

The oracle.ucp.UniversalConnectionPoolStatistics interface provides methods that are used to query the connection pool statistics. The methods of this interface can be called from a pool-enabled data source and pool-enabled XA data source, using the oracle.ucp.jdbc.PoolDataSource.getStatistics method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...
...
int totalConnsCount = pds.getStatistics().getTotalConnectionsCount();
System.out.println("The total connetion count in the pool is "+ totalConnsCount +".");

The oracle.ucp.jdbc.PoolDataSource.getStatistics method can also be called by itself to return all connection pool statistics as a String.

Dynamic Monitoring Service Metrics

UCP supports all the pool statistics to be in the form of Dynamic Monitoring Service (DMS) metrics. You must include the dms.jar file in the class path of the application to collect and utilize these DMS metrics.

UCP supports DMS metrics collection in both the pool manager interface and the pool manager MBean. You can use the UnversalConnectionPoolManager.startMetricsCollection method to start collecting DMS metrics for the specified connection pool instance, and use the UnversalConnectionPoolManager.stopMetricsCollection method to stop DMS metrics collection. The metrics update interval can be specified using the UnversalConnectionPoolManager.setMetricUpdateInterval method. The pool manager MBean exports similar operations.

Viewing Oracle RAC Statistics

UCP for JDBC provides a set of Oracle RAC run-time statistics that are used to determine how well a connection pool is utilizing Oracle RAC features and are also used to help determine whether the connection pool has been configured properly to use the Oracle RAC features. The statistics report FCF processing information, run-time connection load balance success/failure rate, and affinity context success/failure rate.

The OracleJDBCConnectionPoolStatistics interface that is located in the oracle.ucp.jdbc.oracle package provides methods that are used to query the connection pool for Oracle RAC statistics. The methods of this interface can be called from a pool-enabled and pool-enabled XA data source using the data source's getStatistics method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...

Long rclbS = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getSuccessfulRCLBBasedBorrowCount();
System.out.println("The RCLB success rate is "+rclbS+".");

The data source's getStatistics method can also be called by itself and returns all connection pool statistics as a String and includes the Oracle RAC statistics.

Fast Connection Failover Statistics

The getFCFProcessingInfo method provides information on recent Fast Connection Failover (FCF) attempts in the form of a String. The FCF information is typically used to help diagnose FCF problems. The information includes the outcome of each FCF attempt (successful or failed), the relevant Oracle RAC instances, the number of connections that were cleaned up, the exception that triggered the FCF attempt failure, and more. The following example demonstrates using the getFCFProcessingInfo method:

Sting fcfInfo = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFCFProcessingInfo();
System.out.println("The FCF information: "+fcfInfo+".");

Following is a sample output string from the getFCFProcessingInfo() method:

 Oct 28, 2008 12:34:02 SUCCESS <Reason:planned> <Type:SERVICE_UP> \
 <Service:"svvc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2) \
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0 Closed=2) \
 TornDown=2 MarkedToClose=2 Cardinality=2
 ...
 Oct 28, 2008 12:09:52 SUCCESS <Reason:unplanned> <Type:SERVICE_DOWN> \
 <Service:"svc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2) \
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0 Closed=2)
 ...
 Oct 28, 2008 11:14:53 FAILURE <Type:HOST_DOWN> <Host:"host1"> \
 Connections:(Available=6 Affected=4 FailedToProcess=0 MarkedDown=4 Closed=4) \
 (Borrowed=6 Affected=4 FailedToProcess=0 MarkedDown=4 MarkedDeferredClose=0 Closed=4)

If you enable logging, then the preceding information will also be available in the UCP logs and you will be able to verify the FCF outcome.

Run-Time Connection Load Balance Statistics

The run-time connection load balance statistics are used to determine if a connection pool is effectively utilizing the run-time connection load balancing feature of Oracle RAC. The statistics report how many requests successfully used the run-time connection load balancing algorithms and how many requests failed to use the algorithms. The getSuccessfulRCLBBasedBorrowCount method and the getFailedRCLBBasedBorrowCount method, respectively, are used to get the statistics. The following example demonstrates using the getFailedRCLBBasedBorrowCount method:

Long rclbF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedRCLBBasedBorrowCount();
System.out.println("The RCLB failure rate is: "+rclbF+".");

A high failure rate may indicate that the Oracle RAC Load Balancing Advisory or connection pool is not configured properly.

Connection Affinity Statistics

The connection affinity statistics are used to determine if a connection pools is effectively utilizing connection affinity. The statistics report the number of borrow requests that succeeded in matching the affinity context and how many requests failed to match the affinity context. The getSuccessfulAffinityBasedBorrowCount method and the getFailedAffinityBasedBorrowCount method, respectively, are used to get the statistics. The following example demonstrates using the getFailedAffinityBasedBorrowCount method:

Long affF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedAffinityBasedBorrowCount();
System.out.println("The connection affinity failure rate is: "+affF+".");

Setting Up Logging in UCP

UCP for JDBC leverages the JDK logging facility (java.util.logging). Logging is not enabled by default and must be configured in order to print log messages. Logging can be configured using a log configuration file as well as through API-level configuration.

	
Note:

The default log level is null. This ensures that a parent logger's log level is used by default.

Using a Logging Properties File

Logging can be configured using a properties file. The location of the properties file must be set as a Java property for the logging configuration file property. For example:

java -Djava.util.logging.config.file=log.properties

The logging properties file defines the handler to use for writing logs, the formatter to use for formatting logs, a default log level, as well as log levels for specific packages or classes. For example:

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

oracle.ucp.level = FINEST
oracle.ucp.jdbc.PoolDataSource = WARNING

A custom formatter is included with UCP for JDBC and can be entered as the value for the formatter property. For example:

java.util.logging.ConsoleHandler.formatter = oracle.ucp.util.logging.UCPFormatter

You can also download the ucpdemos.jar file, which is shipped with UCP, from Oracle Technology Network (OTN). This file contains a list of sample logging property files. For example, this file contains the logging property file that can be used for troubleshooting the Fast Connection Failover (FCF) feature.

Using UCP for JDBC and JDK API

Logging can be dynamically configured though either the UCP for JDBC API or the JDK API. When using the UCP for JDBC API, logging is configured using a connection pool manager. When using the JDK, logging is configured using the java.util.logging implementation.

The following example demonstrates using the UCP for JDBC API to configure logging:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

mgr.setLogLevel(Level.FINE);

The following example demonstrate using the JDK logging implementation directly:

Logger.getLogger("oracle.ucp").setLevel(Level.FINEST);
Logger.getLogger("oracle.ucp.jdbc.PoolDataSource").setLevel(Level.FINEST);

Supported Log Levels

The following list describes each of the log levels that are supported for JDBC. Levels lower than FINE produce output that may not be meaningful to users. Levels lower than FINER will produce very large volumes of output.

	
INTERNAL_ERROR ??? Internal Errors

	
SEVERE ??? SQL Exceptions

	
WARNING ??? SQL Warnings and other invisible problems

	
INFO ??? Public events such as connection attempts or Oracle RAC events

	
CONFIG ??? SQL statements

	
FINE ??? Public APIs

	
TRACE_10 ??? Internal events

	
FINER ??? Internal APIs

	
TRACE_20 ??? Internal debug

	
TRACE_30 ??? High volume internal APIs

	
FINEST ??? High volume internal debug

Exceptions and Error Codes

Many UCP methods throw the UniversalConnectionPoolException, with exception chaining supported. You can call the printStackTrace method on the thrown exception, to identify the root cause of the exception. The UniversalConnectionPoolException includes standard Oracle error codes that are in the range of 45000 and 45499. The getErrorCode method can be used to retrieve the error code for an exception.

A Error Codes Reference

This appendix briefly discusses the general structure of Universal Connection Pool (UCP) error messages, UCP error messages for the connection pool layer, and UCP error messages for JDBC data sources and dynamic proxies. The appendix is organized as follows:

	
General Structure of UCP Error Messages

	
Connection Pool Layer Error Messages

	
JDBC Data Sources and Dynamic Proxies Error Messages

Both the message lists are sorted by the error message number.

General Structure of UCP Error Messages

The general UCP error message structure enables run-time information to be appended to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a closed statement error might be displayed as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next method (of a result set object).

In some cases, the user can find the same information in a stack trace.

Connection Pool Layer Error Messages

This section lists UCP error messages for the connection pool layer.

Table A-1 Connection Pool Layer Error Messages

	Error Message Number	Message
	
UCP-45001

	
Universal Connection Pool internal error

	
UCP-45002

	
No available connections in the Universal Connection Pool

	
UCP-45003

	
Universal Connection Pool already exists

	
UCP-45004

	
Invalid connection retrieval information

	
UCP-45005

	
Callback already registered

	
UCP-45006

	
Invalid Universal Connection Pool configuration

	
UCP-45051

	
Inactive connection timeout timer scheduling failed

	
UCP-45052

	
Abandoned connection timeout timer scheduling failed

	
UCP-45053

	
Time-to-live connection timeout timer scheduling failed

	
UCP-45054

	
The Universal Connection Pool cannot be null

	
UCP-45055

	
Error when removing an available connection

	
UCP-45057

	
The AvailableConnections object cannot be null

	
UCP-45058

	
The Failoverable object cannot be null

	
UCP-45059

	
MaxPoolsize is set to 0. There are no connections to return

	
UCP-45060

	
Invalid life cycle state. Check the status of the Universal Connection Pool

	
UCP-45061

	
Universal Connection Pool is not started. Start the Universal Connection Pool before accessing

	
UCP-45062

	
The collection of available connections can only be set when the Universal Connection Pool is in the initialization state

	
UCP-45063

	
Universal Connection Pool has been shutdown while attempting to get a connection

	
UCP-45064

	
All connections in the Universal Connection Pool are in use

	
UCP-45065

	
Connection borrowing returned null

	
UCP-45091

	
Connection labeling callback already registered

	
UCP-45092

	
Borrowing labeled connection with no labeling callback registered

	
UCP-45093

	
Requested no-label connection but borrowing labeled connection

	
UCP-45097

	
Connection harvesting timer scheduling failed

	
UCP-45100

	
ConnectionFactoryAdapter returned null

	
UCP-45103

	
ConnectionFactoryAdapter must be an instance of DataSourceConnectionFactoryAdapter

	
UCP-45104

	
ConnectionFactoryAdapter object cannot be null

	
UCP-45105

	
ConnectionFactoryAdapter must be an instance of ConnectionPoolDataSourceConnectionFactoryAdapter

	
UCP-45106

	
ConnectionFactoryAdapter must be an instance of XADataSourceConnectionFactoryAdapter

	
UCP-45150

	
UniversalPooledConnection cannot be null

	
UCP-45152

	
UniversalPooledConnectionStatus object cannot be null

	
UCP-45153

	
The connection label key cannot be null or an empty string

	
UCP-45154

	
The connection labeling operation cannot be invoked on closed connections

	
UCP-45155

	
Connection harvesting callback already registered

	
UCP-45156

	
Abandoned connection timeout callback already registered

	
UCP-45157

	
Time-to-live connection timeout callback already registered

	
UCP-45201

	
The connection label key cannot be null or an empty string

	
UCP-45202

	
The cloning of the ConnectionRetrievalInfo object failed

	
UCP-45203

	
The Connection Request Info is null

	
UCP-45251

	
ConnectionPoolDataSource cannot be null

	
UCP-45252

	
Invalid ConnectionRetrievalInfo object

	
UCP-45253

	
SQLException occurred while getting PooledConnection from ConnectionPoolDataSource

	
UCP-45254

	
Invalid connection type. Must be a javax.sql.PooledConnection

	
UCP-45255

	
SQLException while closing PooledConnection

	
UCP-45256

	
Data source cannot be null

	
UCP-45257

	
Cannot get Connection from Data source

	
UCP-45258

	
Invalid connection type. Must be a java.sql.Connection

	
UCP-45259

	
The connection to proxy must be an instance of java.sql.Connection

	
UCP-45260

	
XADatasource cannot be null

	
UCP-45261

	
SQLException occurred while getting XAConnection from XADataSource

	
UCP-45262

	
Invalid connection type. Must be a javax.sql.XAConnection

	
UCP-45263

	
SQLException occurred while closing XAConnection

	
UCP-45264

	
The connection cannot be null

	
UCP-45265

	
The connection to proxy must be an instance of java.sql.Statement

	
UCP-45266

	
The statement to proxy must be an instance of java.sql.ResultSet

	
UCP-45267

	
The connection to proxy must be an instance of javax.sql.XAConnection

	
UCP-45268

	
The Driver argument cannot be null

	
UCP-45269

	
The URL argument cannot be null

	
UCP-45301

	
Unable to get a connection for failover information

	
UCP-45302

	
Unable to execute SQL query to get failover information

	
UCP-45303

	
SQLException occurred while getting failover information

	
UCP-45304

	
The event type cannot be null

	
UCP-45305

	
The event type is invalid. Event type must be database/event/host or database/event/service

	
UCP-45306

	
The failover event type is invalid. It must be an OracleFailoverEvent

	
UCP-45307

	
The affinity context is invalid. It must be an OracleConnectionAffinityContext

	
UCP-45308

	
Exception occurred while enabling failover with remote ONS subscription

	
UCP-45350

	
Universal Connection Pool already exists in the Universal Connection Pool Manager. Universal Connection Pool cannot be added to the Universal Connection Pool Manager

	
UCP-45351

	
Universal Connection Pool not found in Universal Connection Pool Manager. Register the Universal Connection Pool with Universal Connection Pool Manager

	
UCP-45352

	
Cannot get Universal Connection Pool Manager instance

	
UCP-45353

	
Cannot get Universal Connection Pool Manager MBean instance

	
UCP-45354

	
MBean ObjectName is not in the right format. Use the right format to construct ObjectName for MBean

	
UCP-45355

	
MBean exception occurred while registering or unregistering the MBean

	
UCP-45356

	
MBean already exits in the MBeanServer. Use a different name to register MBean

	
UCP-45357

	
Exception occurred when trying to register an object in the MBean server that is not a JMX compliant MBean

	
UCP-45358

	
The specified MBean does not exist in the repository

	
UCP-45359

	
Invalid target object type is specified. Check the managed resource

	
UCP-45360

	
Invalid MBean Descriptor is specified. Check the Universal Connection Pool Manager MBean Descriptor

	
UCP-45361

	
Runtime exception occurred while building MBeanInfo for Universal Connection Pool Manager MBean

	
UCP-45362

	
Runtime exception occurred while building constructors information for Universal Connection Pool Manager MBean

	
UCP-45363

	
Runtime exception occurred while building attributes information for Universal Connection Pool Manager MBean

	
UCP-45364

	
Runtime exception occurred while building operations information for Universal Connection Pool Manager MBean

	
UCP-45365

	
Universal Connection Pool must be an instance of ConnectionConnectionPool or OracleConnectionConnectionPool

	
UCP-45366

	
Invalid MBean Descriptor is specified. Check the JDBC Universal Connection Pool MBean Descriptor

	
UCP-45367

	
Runtime exception occurred while building MBeanInfo for JDBC Universal Connection Pool MBean

	
UCP-45368

	
Runtime exception occurred while building constructors information for JDBC Universal Connection Pool MBean

	
UCP-45369

	
Runtime exception occurred while building attributes information for JDBC Universal Connection Pool MBean

	
UCP-45370

	
Runtime exception occurred while building operations information for JDBC Universal Connection Pool MBean

	
UCP-45371

	
Runtime exception occurred while building attributes information for Universal Connection Pool MBean

	
UCP-45372

	
Runtime exception occurred while building operations information for Universal Connection Pool MBean

	
UCP-45373

	
Invalid MBean Descriptor is specified. Check the Universal Connection Pool MBean Descriptor

	
UCP-45374

	
Runtime exception occurred while building MBeanInfo for Universal Connection Pool MBean

	
UCP-45375

	
Cannot stop the UCP metric collection. Exception occurred while trying to stop the metric collection or while destroying the nouns or sensors.

	
UCP-45376

	
Metrics update timer task scheduling failed

	
UCP-45377

	
Problem occurred while updating UCP metric sensors

	
UCP-45378

	
Universal Connection Pool is not an instance of OracleJDBCConnectionPool and cannot access ONSConfiguration property

	
UCP-45379

	
Cannot set the connection pool name in Universal Connection Pool MBean. Check the connection pool name to avoid duplicates

	
UCP-45380

	
MBean object is null

	
UCP-45381

	
MBean object name is null

	
UCP-45382

	
MBean display name is null

	
UCP-45383

	
Invalid adapter for pool creation in Universal Connection Pool Manager

	
UCP-45384

	
Invalid adapter for pool creation in Universal Connection Pool Manager MBean

	
UCP-45385

	
Error during pool creation in Universal Connection Pool Manager

	
UCP-45386

	
Error during pool creation in Universal Connection Pool Manager MBean

	
UCP-45401

	
Waiting threads LO watermark cannot be negative

	
UCP-45402

	
Waiting threads HI watermark cannot be negative

	
UCP-45403

	
Total worker threads limit cannot be negative

	
UCP-45404

	
Queue poll timeout cannot be negative

	
UCP-45405

	
The waiting threads HI watermark cannot be lower than the LO watermark

	
UCP-45406

	
The limit of total worker threads cannot be higher than the limit of waiting threads

	
UCP-45407

	
The error number is out of range

	
UCP-45408

	
Invalid operation because the logger is null

JDBC Data Sources and Dynamic Proxies Error Messages

This section lists UCP error messages for JDBC data sources and dynamic proxies error messages.

Table A-2 JDBC Data Sources and Dynamic Proxies Error Messages

	Error Message Number	Message
	
SQL-0

	
Unable to start the Universal Connection Pool

	
SQL-1

	
Unable to build the Universal Connection Pool

	
SQL-2

	
Invalid minimum pool size

	
SQL-3

	
Invalid maximum pool size

	
SQL-4

	
Invalid inactive connection timeout

	
SQL-5

	
Invalid connection wait timeout

	
SQL-6

	
Invalid time-to-live connection timeout

	
SQL-7

	
Invalid abandoned connection timeout

	
SQL-8

	
Invalid timeout check interval

	
SQL-9

	
Failed to enable Failover

	
SQL-10

	
Failed to set the maxStatements value

	
SQL-11

	
Failed to set the SQL string for validation

	
SQL-12

	
Invalid connection harvest trigger count

	
SQL-13

	
Invalid connection harvest max count

	
SQL-14

	
Universal Connection Pool is created already. Can not create the Universal Connection Pool again

	
SQL-15

	
Exception occurred while destroying the Universal Connection Pool

	
SQL-16

	
Operation only applies to Oracle connection pools

	
SQL-17

	
Exception occurred while setting ONS configuration string

	
SQL-18

	
Failed to register labeling callback

	
SQL-19

	
Failed to remove labeling callback

	
SQL-20

	
Failed to register affinity callback

	
SQL-21

	
Failed to remove affinity callback

	
SQL-22

	
Invalid Universal Connection Pool configuration

	
SQL-23

	
Unable to create factory class instance with provided factory class name

	
SQL-24

	
Unable to set the User

	
SQL-25

	
Unable to set the Password

	
SQL-26

	
Unable to set the URL

	
SQL-27

	
The factory class must be an instance of DataSource

	
SQL-28

	
Cannot create connections. There are no available connections

	
SQL-29

	
Exception occurred while getting connection

	
SQL-30

	
Universal Connection Pool is not started

	
SQL-31

	
The connection is closed

	
SQL-32

	
Error occurred when applying label

	
SQL-33

	
Error occurred when removing the connection label

	
SQL-34

	
Error occurred when getting labels

	
SQL-35

	
Error occurred when getting unmatched labels

	
SQL-36

	
Error occurred when setting connection harvestable

	
SQL-37

	
Error occurred when registering harvesting callback

	
SQL-38

	
Error occurred when removing harvesting callback

	
SQL-39

	
Error occurred when registering abandoned-connection callback

	
SQL-40

	
Error occurred when removing abandoned-connection callback

	
SQL-41

	
Error occurred when registering time-to-live-connection callback

	
SQL-42

	
Error occurred when removing time-to-live-connection callback

	
SQL-43

	
The result set is closed

	
SQL-44

	
The statement is closed

	
SQL-45

	
Cannot set the connection pool name. Check the connection pool name to avoid duplicates

	
SQL-46

	
The SQL string is null

	
SQL-47

	
Error occurred when setting connection to be invalid

	
SQL-48

	
Unable to set the Connection properties

	
SQL-49

	
Unable to set the Database server name

	
SQL-50

	
Unable to set the Database port number

	
SQL-51

	
Unable to set the Database name

	
SQL-52

	
Unable to set the data source name

	
SQL-53

	
Unable to set the data source description

	
SQL-54

	
Unable to set the data source network protocol

	
SQL-55

	
Unable to set the data source role name

	
SQL-56

	
Invalid max connection reuse time

	
SQL-57

	
Invalid max connection reuse count

	
SQL-58

	
The method is disabled

	
SQL-59

	
Unable to set the connection factory properties

Index

A?? B?? C?? D?? E?? F?? G?? H?? I?? J?? L?? M?? O?? P?? R?? S?? T?? U?? V?? W?? X??

A

	abandon connection timeout property, 4.3.2
	AbandonedConnectionTimeoutCallback, 6.1
	admin package, 2.4
	affinity
	
	transaction-based, 8.4.1
	web session, 8.4.1

	API overview, 2.4
	application continuity
	
	connection initialization callback, 9.3
	connection labeling, 9.2
	data source configuration, 9.1

	Application Continuity, 9
	applyConnectionLabel, 5.4
	applying connection labels, 5.4

B

	basic connection example, 2.3
	benefits of connection pools, 1.1.1
	benefits of FCF, 8.2.1
	benefits of run-time connection load balancing, 8.3.1
	borrowing connections
	
	basic steps, 2.2
	conceptual architecture, 1.2.1
	labeled, 5.5
	overview, 3.1
	using JNDI, 3.1.4
	using the pool-enabled data source, 3.1.1
	using the pool-enabled XA data source, 3.1.2

C

	caching statements, 4.5
	callback
	
	connection affinity, 8.4.2.1
	labeling, 5.2

	checking unmatched labels, 5.6
	closing connections, 3.4
	conceptual architecture, 1.2.1
	configure method, 5.2.1, 5.2.1
	Configuring ONS, 8.2.6
	
	client-side daemon configuration, 8.2.6.3
	
	allowgroup parameter, 8.2.6.3

	Remote Configuration, 8.2.6.2

	connection affinity
	
	create callback, 8.4.2.1
	overview, 8.4.1
	register callback, 8.4.2.2
	remove callback, 8.4.2.3
	setting up, 8.4.2
	statistics, 10.3.3
	transaction-based, 8.4.1
	web session, 8.4.1

	connection factory, 2.2
	
	conceptual architecture, 1.2.1
	requirements, 2.1
	setting, 3.1.1, 3.1.2

	connection labels
	
	apply, 5.4
	check unmatched, 5.6
	implement callback, 5.2
	overview, 5.1
	removing, 5.7

	Connection object, 1.2.1
	connection pool
	
	benefits, 1.1.1
	create explicitly, 7.1.3.1
	create implicitly, 2.2, 3.1
	destroy, 7.1.3.4
	general overview, 1.1
	maintenance, 7.1.4
	purge, 7.1.4.3
	recycle, 7.1.4.2
	refresh, 7.1.4.1
	remove connection from, 3.5
	start, 7.1.3.2
	stop, 7.1.3.3
	understanding lifecycle, 7.1.3

	connection pool manager
	
	create, 7.1.2
	create pool explicitly, 7.1.3.1
	destroy pool, 7.1.3.4
	overview, 1.2.3, 7.1.1
	purge pool, 7.1.4.3
	recycle pool, 7.1.4.2
	refresh pool, 7.1.4.1
	start pool, 7.1.3.2
	stop pool, 7.1.3.3

	connection pool properties
	
	abandon connection timeout, 4.3.2
	connection wait timeout, 4.3.4
	harvest maximum count, 4.4.3
	harvest trigger count, 4.4.2
	inactive connection timeout, 4.3.5
	initial pool size, 4.2.1
	maximum connection reuse count, 4.3.1.2
	maximum connection reuse time, 4.3.1.1
	maximum pool size, 4.2.3
	maximum statements, 4.5.1
	minimum pool size, 4.2.2
	optimizing, 4.1
	overview, 1.2.2
	setting, 3.2, 4.1
	timeout check interval, 4.3.6
	time-to-live connection timeout, 4.3.3
	validate on borrow, 3.3.1

	connection properties, 3.1.3
	connection reuse properties, setting, 4.3.1
	connection steps, basic, 2.2
	
	example, 2.3

	connection URL, 8.2.7
	connection wait timeout property, 4.3.4
	ConnectionAffinityCallback interface, 8.4.2.1
	ConnectionLabelingCallback interface, 5.1, 5.2.1
	connections
	
	basic steps, 2.2
	borrowing, 3.1
	borrowing labeled, 5.5
	borrowing using JNDI, 3.1.4
	checking if valid, 3.3.2
	closing, 3.4
	controlling stale, 4.3
	harvesting, 4.4
	labeling, 5.1
	removing from the pool, 3.5
	run-time load balancing, 8.3.1
	using affinity, 8.4.1
	validate on borrow, 3.3.1

	cost method, 5.2.1, 5.2.1
	create connection pool
	
	explicit, 7.1.3.1
	implicit, 2.2

D

	data source
	
	PoolDataSource, 1.2.1, 3.1.1
	PoolXADataSource, 1.2.1, 3.1.2

	database requirements, 2.1
	DBMS_SERVICE.SERVICE_TIME, 8.3.2
	DBMS_SERVICE.THROUGHPUT, 8.3.2
	destroyConnectionPool, 7.1.3.4
	destroying a connection pool, 7.1.3.4

E

	enable FCF property, 8.2.5
	errors
	
	connection pool layer messages, A.2
	general UCP message structure, A.1
	JDBC data sources and dynamic proxies messages, A.3

	example
	
	basic connection, 2.3
	connection affinity callback, 8.4.2.1
	FCF, 8.2.4
	labeling callback, 5.2.1.1

F

	FAN, 8.2.1
	fast connection failover
	
	prerequisites, 8.2.3

	Fast Connection Failover
	
	See FCF

	FCF, 8.2.1
	
	configure connection URL, 8.2.7
	configure ONS, 8.2.6
	enable, 8.2.5
	example, 8.2.4
	statistics, 10.3.1

G

	GDS, 8.5
	getAffinityPolicy, 8.4.2.1
	getConnection methods, 3.1.1, 5.5
	getPoolDataSource, 3.1.1
	getPoolXADataSource, 3.1.2
	getStatistics, 10.3
	getting a connection, 3.1.1
	getting an XA connection, 3.1.2
	getUniversalConnectionPoolManager, 7.1.2
	getUnmatchedConnectionLabels, 5.6
	getXAConnection methods, 3.1.2
	Global Data Services, 8.5

H

	harvest connections, 4.4
	harvest maximum count property, 4.4.3
	harvest trigger count property, 4.4.2
	HarvestableConnection interface, 4.4.1
	high availability, 1.2.4, 8.1

I

	inactive connection timeout property, 4.3.5
	initial pool size property, 4.2.1
	integration
	
	third-party, 3.6

	isValid, 3.3.2

J

	JDBC connection pool
	
	See UCP for JDBC

	JDBC driver
	
	connection properties, 3.1.3
	requirements, 2.1

	jdbc package, 2.4
	JNDI, 3.1.4
	JRE requirements, 2.1

L

	LabelableConnection interface, 5.1, 5.4
	labeled connections
	
	apply label, 5.4
	borrowing, 5.5
	check unmatched, 5.6
	implement callback, 5.2
	overview, 5.1
	remove label, 5.7

	labeling callback
	
	create, 5.2.1
	example, 5.2.1.1
	register, 5.2.2
	removing, 5.2.3
	run-time algorithm, 5.2.1

	lifecycle of connection pools, 7.1.3
	lifecycle states, 7.1.3
	Load Balance Advisory, 8.3.1
	load balancing, 8.2.7, 8.3.1
	logging, 10.4
	logging configuration
	
	programmatically, 10.4.2
	properties file, 10.4.1

	logging levels, 10.4.3

M

	manager, connection pool, 7.1.1
	maximum connection reuse count property, 4.3.1.2
	maximum connection reuse time property, 4.3.1.1
	maximum pool size property, 4.2.3
	maximum statements property, 4.5.1
	method, 3.1.2
	minimum pool size property, 4.2.2

O

	ONS, 8.2.6
	ons.config file, 8.2.6, 8.2.6.1, 8.2.6.1
	optimizing a connection pool, 4.1
	Oracle Client software, 8.2.6
	Oracle Client software requirements, 2.1
	Oracle Notification Service
	
	See ONS

	Oracle RAC
	
	connection affinity, 8.4.1
	FCF, 8.2.1
	features overview, 8.1
	run-time connection load balancing, 8.3.1
	statistics, 10.3

	Oracle RAC Load Balance Advisory, 8.3.1
	overview
	
	API, 2.4
	connection pool manager, 7.1.1
	connection pool properties, 4.1
	connection pools, general, 1.1
	connection steps, 2.2
	high availability and performance features, 1.2.4
	labeling connections, 5.1
	Oracle RAC features, 8.1
	UCP for JDBC, 1.2

P

	password, 2.2, 3.1.1, 3.1.2
	pool manager
	
	See connection pool manager

	pool properties
	
	See connection pool properties

	pool size, controlling
	
	initial size, 4.2.1
	maximum, 4.2.3
	minimum, 4.2.2

	PoolDataSource interface, 1.2.1, 3.1.1
	PoolDataSourceFactory class, 3.1.1, 3.1.2
	PoolDataSourceImpl, 3.6
	pool-enabled data source
	
	create instance, 3.1.1

	pool-enabled XA data source
	
	create instance, 3.1.2

	PoolXADataSource interface, 1.2.1, 3.1.2
	PoolXADataSourceImpl, 3.6
	purgeConnectionPool, 7.1.4.3
	purging a connection pool, 7.1.4.3

R

	Real Application Clusters
	
	SeeOracle RAC

	recycleConnectionPool, 7.1.4.2
	recycling a connection pool, 7.1.4.2
	refreshConnectionPool, 7.1.4.1
	refreshing a connection pool, 7.1.4.1
	registerConnectionAffinityCallback, 8.4.2.2
	registerConnectionLabelingCallback, 5.2.2
	removeConnectionAffinityCallback, 8.4.2.3
	removeConnectionLabel, 5.7
	removeConnectionLabelingCallback, 5.2.3
	removing connection labels, 5.7
	removing connections from the pool, 3.5
	reuse properites
	
	maximum count, 4.3.1.2

	reuse properties
	
	maximum time, 4.3.1.1

	run-time connection load balancing
	
	overview, 8.3.1
	setting up, 8.3.2
	statistics, 10.3.2

S

	SERVICE_TIME, 8.3.2
	setAbandonConnectionTimeout, 4.3.2
	setAffinityPolicy, 8.4.2.1
	setConnectionAffinityContext, 8.4.2.1
	setConnectionFactoryClassName, 3.1.1, 3.1.2
	setConnectionHarvestable, 4.4.1
	setConnectionHarvestMaxCount, 4.4.3
	setConnectionHarvestTriggerCount, 4.4.2
	setConnectionProperties, 3.1.3
	setConnectionWaitTimeout, 4.3.4
	setFastConnectionFailoverEnabled, 8.2.5
	setInactiveConnectionTimeout, 4.3.5
	setInitialPoolSize, 4.2.1
	setInvalid, 3.3.2, 3.5
	setMaxConnectionReuseCount, 4.3.1.2
	setMaxConnectionReuseTime, 4.3.1.1
	setMaxPoolSize, 4.2.3
	setMaxStatements, 4.5.1
	setMinPoolSize, 4.2.2
	setONSConfiguration, 8.2.6
	setPassword, 3.1.1, 3.1.2
	setSQLForValidateConnection, 3.3.1
	setTimeToLiveConnectionTimeout, 4.3.3
	setTimoutCheckInterval, 4.3.6
	setURL, 3.1.1, 3.1.2
	setUser, 3.1.1, 3.1.2
	setValidateConnectionOnBorrow, 3.3.1
	SHORT, 8.3.2
	SQL statement caching, 4.5
	stale connections, 4.3
	startConnectionPool, 7.1.3.2
	starting a connection pool, 7.1.3.2
	statement caching, 4.5
	statistics
	
	connection affinity, 10.3.3
	FCF, 10.3.1
	Oracle RAC, 10.3
	run-time connection load balancing, 10.3.2

	stopConnectionPool, 7.1.3.3
	stopping a connection pool, 7.1.3.3

T

	third-party integration, 3.6
	THROUGHPUT, 8.3.2
	timeout check interval property, 4.3.6
	timeout properties
	
	abandon, 4.3.2
	check interval, 4.3.6
	inactive, 4.3.5
	time-to-live, 4.3.3
	wait, 4.3.4

	time-to-live connection timeout property, 4.3.3
	TimeToLiveConnectionTimeoutCallback, 6.2
	transaction-based affinity, 8.4.1

U

	UCP for JDBC
	
	API overview, 2.4
	basic connection steps, 2.2
	conceptual architecture, 1.2.1
	connection pool manager
	connection pool properties, 3.2, 4.1
	Oracle RAC features, 8.1
	overview, 1.2
	software requirements, 2.1

	UCP manager
	
	See connection pool manager

	ucp package, 2.4
	universal connection pool
	
	See UCP for JDBC

	UniversalConnectionPoolManager interface, 7.1.2
	UniversalConnectionPoolManagerImpl, 7.1.2
	unmatched labels, 5.6
	URL, 2.2, 3.1.1, 3.1.2, 8.2.7
	username, 2.2, 3.1.1, 3.1.2

V

	validate connections
	
	on borrow, 3.3.1
	programmatically, 3.3.2

	ValidConnection interface, 3.3.2, 3.5

W

	web session affinity, 8.4.1

X

	XA connections, 1.2.1, 3.1.2
	XAConnection object, 1.2.1

Oracle Legal Notices
Copyright Notice
Copyright ?? 1994-2015, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]

